首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By means of high-precision acoustic measurements and by the methods of fluorescent and electron microscopy investigations were performed of thermoinduced conformational changes in T4 bacteriophage and its thermolabile mutants altered in baseplate proteins (gene products "7", "8", "10"). A relationship was found between the conformational changes in T4 bacteriophage structure in the temperature range of 33-45 degrees C and the efficiency of bacteriophage adsorption and changes in the orientation of long tail fibers. Possibility of heat regulation of "recognition" of "host" cells by bacterial viruses is suggested.  相似文献   

2.
The tail of bacteriophage T4 undergoes large structural changes upon infection while delivering the phage genome into the host cell. The baseplate is located at the distal end of the contractile tail and plays a central role in transmitting the signal to the tail sheath that the tailfibers have been adsorbed by a host bacterium. This then triggers the sheath contraction. In order to understand the mechanism of assembly and conformational changes of the baseplate upon infection, we have determined the structure of an in vitro assembled baseplate through the three-dimensional reconstruction of cryo-electron microscopy images to a resolution of 3.8 Å from electron micrographs. The atomic structure was fitted to the baseplate structure before and after sheath contraction in order to elucidate the conformational changes that occur after bacteriophage T4 has attached itself to a cell surface. The structure was also used to investigate the protease digestion of the assembly intermediates and the mutation sites of the tail genes, resulting in a number of phenotypes.  相似文献   

3.
Active-site dynamics in RNA polymerases   总被引:9,自引:0,他引:9  
Landick R 《Cell》2004,116(3):351-353
  相似文献   

4.
A model is presented for the self-assembly and operation of a bacteriophage comparable with the T4 bacteriophage that infects Escherichia coli. The model treats protein molecules as simple units obeying the principle free energy minimization, and exhibiting the properties of quasi-equivalence and conformational switching. A computer program incorporating the model has been developed. The results of simulation using this program are presented.  相似文献   

5.
DNA polymerase from bacteriophage T7 undergoes large, substrate-induced conformational changes that are thought to account for high replication fidelity, but prior studies were adversely affected by mutations required to construct a Cys-lite variant needed for site-specific fluorescence labeling. Here we have optimized the direct incorporation of a fluorescent un-natural amino acid, (7-hydroxy-4-coumarin-yl)-ethylglycine, using orthogonal amber suppression machinery in Escherichia coli. MS methods verify that the unnatural amino acid is only incorporated at one position with minimal background. We show that the single fluorophore provides a signal to detect nucleotide-induced conformational changes through equilibrium and stopped-flow kinetic measurements of correct nucleotide binding and incorporation. Pre-steady-state chemical quench methods show that the kinetics and fidelity of DNA replication catalyzed by the labeled enzyme are largely unaffected by the unnatural amino acid. These advances enable rigorous analysis to establish the kinetic and mechanistic basis for high-fidelity DNA replication.  相似文献   

6.
Picha KM  Ahnert P  Patel SS 《Biochemistry》2000,39(21):6401-6409
Many helicases assemble into ring-shaped hexamers and bind DNA in their central channel. This raises the question as to how the DNA gets into the central channel to form a topologically linked complex. We have used the presteady-state stopped-flow kinetic method and protein fluorescence changes to investigate the mechanism of single-stranded DNA (ssDNA) binding to the bacteriophage T7 helicase-primase, gp4A'. We have found that the kinetics of 30-mer ssDNA binding to a preformed gp4A' hexamer in the presence of both Mg-dTMP-PCP and Mg-dTTP are similar, indicating that Mg-dTTP binding is sufficient and hydrolysis is not necessary for efficient DNA binding. Multiple transient changes in gp4A' fluorescence revealed a four-step mechanism for DNA binding with Mg-dTTP. These transient changes were analyzed by global fitting and kinetic simulation to determine the intrinsic rate constants of this four-step mechanism. The initial steps, including the bimolecular encounter of the DNA with the helicase and a subsequent conformational change, were fast. We propose that these initial steps of DNA binding occur at a readily accessible site, which is likely to be on the outside of the hexamer ring. The binding of the 30-mer ssDNA at this loading site is followed by slower conformational changes that allow the DNA to transit into the central channel of gp4A' via a ring-opening or threading pathway.  相似文献   

7.
Steven AC 《Cell》2004,118(4):403-404
Contraction of the bacteriophage T4 tail in the act of host cell penetration represents a massive structural change powered by conformational free energy. A paper in this issue of Cell by compares cryo-electron microscopic reconstructions of the initial and final states and reveals that the basic underlying mechanism is concerted rigid-body movements of the constituent protein subunits, akin to the tumbling of gears in a lock.  相似文献   

8.
Gene product 9 (gp9) of bacteriophage T4, whose spatial structure we have recently solved to 2.3 A resolution, is a convenient model for studying the folding and oligomerization mechanisms of complex proteins. The gp9 polypeptide chain consists of 288 amino acids forming three domains. Three monomers, packed in parallel, assemble to a functionally active protein. The main aim of this work was to study conformational changes and trimerization of gp9 deletion mutants using monoclonal antibodies (mAbs). We selected a set of mAbs interacting with the amino, middle, and carboxyl regions of the protein, respectively. Eighteen mAbs bind to native as well as to denatured protein, and two mAbs bind to denatured protein only. Using mAbs, we found that deletions of the gp9 N-terminal region result in conformational changes in the middle and C-terminal domains. The study of mAb binding to the CDelta. truncated mutant by competitive ELISA and immunoblotting shows that the C-terminus of the gp9 sequence is essential for protein trimerization and stability. A single point substitution of the Gln282 residue causes formation of a labile trimer that has significant conformational changes in the protein domains. The results of our study show that folding and trimerization of gp9 is a cooperative process that involves all domains of the protein.  相似文献   

9.
10.
Hariharan C  Reha-Krantz LJ 《Biochemistry》2005,44(48):15674-15684
The fluorescence of the base analogue 2-aminopurine (2AP) was used to probe bacteriophage T4 DNA polymerase-induced conformational changes in the template strand produced during the nucleotide incorporation and proofreading reactions. 2AP fluorescence in DNA is quenched by 2AP interactions with neighboring bases, but T4 DNA polymerase binding to DNA substrates labeled with 2AP in the templating position produces large increases in fluorescence intensity. Fluorescence lifetime studies were performed to characterize the fluorescent complexes. Three fluorescence lifetime components were observed for unbound DNA substrates as reported previously, but T4 DNA polymerase binding modulated the amplitudes of these components and created a new, highly fluorescent 10.5 ns component. Experimental evidence for correlation of fluorescence lifetimes with functionally distinct complexes was obtained by forming complexes under different reaction conditions. T4 DNA polymerase complexes were formed with DNA substrates with matched and mismatched primer ends and with A+T- or G+C-rich primer-terminal regions. dTTP was added to binary complexes to form ternary DNA polymerase-DNA-nucleotide complexes. The effect of temperature on complex formation was studied, and complexes were formed with proofreading-defective T4 DNA polymerases. Complexes characterized by the 10.5 ns lifetime were demonstrated to be formed at the crossroads of the primer-extension and proofreading pathways.  相似文献   

11.
12.
Molecular motors undergo cyclical conformational changes and convert chemical energy into mechanical work. The conformational dynamics of a viral packaging motor, the hexameric helicase P4 of dsRNA bacteriophage phi8, was visualized by hydrogen-deuterium exchange and high-resolution mass spectrometry. Concerted changes of exchange kinetics revealed a cooperative unit that dynamically links ATP-binding sites and the central RNA-binding channel. The cooperative unit is compatible with a structure-based model in which translocation is mediated by a swiveling helix. Deuterium labeling also revealed the transition state associated with RNA loading, which proceeds via opening of the hexameric ring. The loading mechanism is similar to that of other hexameric helicases. Hydrogen-deuterium exchange provides an important link between time-resolved spectroscopic observations and high-resolution structural snapshots of molecular machines.  相似文献   

13.
14.
In a designed fusion protein the trimeric domain foldon from bacteriophage T4 fibritin was connected to the C terminus of the collagen model peptide (GlyProPro)(10) by a short Gly-Ser linker to facilitate formation of the three-stranded collagen triple helix. Crystal structure analysis at 2.6 A resolution revealed conformational changes within the interface of both domains compared with the structure of the isolated molecules. A striking feature is an angle of 62.5 degrees between the symmetry axis of the foldon trimer and the axis of the triple helix. The melting temperature of (GlyProPro)(10) in the designed fusion protein (GlyProPro)(10)foldon is higher than that of isolated (GlyProPro)(10,) which suggests an entropic stabilization compensating for the destabilization at the interface.  相似文献   

15.
We have determined the crystal structure of an active, hexameric fragment of the gene 4 helicase from bacteriophage T7. The structure reveals how subunit contacts stabilize the hexamer. Deviation from expected six-fold symmetry of the hexamer indicates that the structure is of an intermediate on the catalytic pathway. The structural consequences of the asymmetry suggest a "binding change" mechanism to explain how cooperative binding and hydrolysis of nucleotides are coupled to conformational changes in the ring that most likely accompany duplex unwinding. The structure of a complex with a nonhydrolyzable ATP analog provides additional evidence for this hypothesis, with only four of the six possible nucleotide binding sites being occupied in this conformation of the hexamer. This model suggests a mechanism for DNA translocation.  相似文献   

16.
17.
Previous studies on the selection of bacteriophage T4 mutator mutants have been extended and a method to regulate the mutator activity of DNA polymerase mutator strains has been developed. The nucleotide changes of 17 bacteriophage T4 DNA polymerase mutations that confer a mutator phenotype and the nucleotide substitutions of several other T4 DNA polymerase mutations have been determined. The most striking observation is that the distribution of DNA polymerase mutator mutations is not random; almost all mutator mutations are located in the N-terminal half of the DNA polymerase. It has been shown that the T4 DNA polymerase shares several regions of homology at the protein sequence level with DNA polymerases of herpes, adeno and pox viruses. From studies of bacteriophage T4 and herpes DNA polymerase mutants, and from analyses of similar protein sequences from several organisms, we conclude that DNA polymerase synthetic activities are located in the C-terminal half of the DNA polymerase and that exonucleolytic activity is located nearer the N terminus.  相似文献   

18.
The process of bacteriophage T4 morphogenesis was studied using a heat leakage scanning calorimeter. Thermograms of defective mutant 49 (am NG727) in permissive and non-permissive cells of Escherichia coli showed a difference in thermal properties between packaged and non-packaged DNA molecules. In vivo, non-packaged DNA carried out their thermal transition at 85°C, the same temperature as that of T4 DNA melting measured in the standard saline citrate buffer, while the packaged DNA gave a sharper peak at 87°C due to some interaction with the head shell structure. Empty head shells showed a sharp heat absorption peak at 89°C both in vivo and in vitro, indicating the high degree of cooperativity in their conformational changes.  相似文献   

19.
M. Masurekar  K. N. Kreuzer    L. S. Ripley 《Genetics》1991,127(3):453-462
Acridine-induced frameshift mutations in bacteriophage T4 occur at the precise location in the DNA at which acridines stimulate DNA cleavage by the T4-encoded type II topoisomerase in vitro. The mutations are duplications or deletions that begin precisely at the broken phosphodiester bond. In vivo, acridine-induced frameshift mutagenesis is reduced nearly to background levels when the topoisomerase is genetically inactivated. These observations are consistent with a model in which cleaved DNA, induced by the topoisomerase and acridine, serves as the substrate for the production of frameshift mutations at the same site. Our model predicts that the specificity and frequency of cleavage direct the specificity and frequency of mutagenesis. This prediction was tested by examining the influence of DNA sequence changes on topoisomerase-mediated cleavage and on mutagenesis in the T4 rIIB gene. The model successfully predicted the results. When DNA sequence changes altered the position of acridine-induced, topoisomerase-mediated DNA cleavage in vitro, frameshift mutations were found at the new positions. DNA sequence changes that strongly decreased in vitro cleavage also reduced mutagenesis at that site. These results demonstrate that acridine-induced frameshift mutation specificity is directed by the characteristics of the acridine-topoisomerase reaction and do not suggest that slipped pairing in repeated sequences plays a major role in acridine-induced frameshifts in bacteriophage T4.  相似文献   

20.

Aims

Antibacterial food packaging materials, such as bacteriophage‐activated electrospun fibrous mats, may address concerns triggered by waves of bacterial food contamination. To address this, we investigated several efficient methods for incorporating T4 bacteriophage into electrospun fibrous mats.

Methods and Results

The incorporation of T4 bacteriophage using simple suspension electrospinning led to more than five orders of magnitude decrease in bacteriophage activity. To better maintain bacteriophage viability, emulsion electrospinning was developed where the T4 bacteriophage was pre‐encapsulated in an alginate reservoir via an emulsification process and subsequently electrospun into fibres. This resulted in an increase in bacteriophage viability, but there was still two orders of magnitude drop in activity. Using a coaxial electrospinning process, full bacteriophage activity could be maintained. In this process, a core/shell fibre structure was formed with the T4 bacteriophage being directly incorporated into the fibre core. The core/shell fibre encapsulated bacteriophage exhibited full bacteriophage viability after storing for several weeks at +4°C.

Conclusions

Coaxial electrospinning was shown to be capable of encapsulating bacteriophages with high loading capacity, high viability and long storage time.

Significance and Impact of the Study

These results are significant in the context of controlling and preventing bacterial infections in perishable foods during storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号