首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Furini S  Beckstein O  Domene C 《Proteins》2009,74(2):437-448
Previous studies have reported that the KcsA potassium channel has an osmotic permeability coefficient of 4.8 x 10(-12) cm3/s, giving it a significantly higher osmotic permeability coefficient than that of some membrane channels specialized in water transport. This high osmotic permeability is proposed to occur when the channel is depleted of potassium ions, the presence of which slow down the water permeation process. The atomic structure of the potassium-depleted KcsA channel and the mechanisms of water permeation have not been well characterized so far. Here, all-atom molecular dynamics simulations, in conjunction with an umbrella sampling strategy and a nonequilibrium approach to simulate pressure gradients are employed to illustrate the permeation of water in the absence of ions through the KcsA K+ channel. Equilibrium molecular dynamics simulations (95 ns combined total length) identified a possible structure of the potassium-depleted KcsA channel, and umbrella sampling calculations (160 ns combined total length) revealed that this structure is not permeable by water molecules moving along the channel axis. The simulation of a pressure gradient across the channel (30 ns combined total length) identified an alternative permeation pathway with a computed osmotic permeability of approximately (2.7 +/- 0.9) x 10(-13) cm3/s. Water fluxes along this pathway did not proceed through collective water motions or transitions to vapor state. All of the major results of this study were robust against variations in a wide set of simulation parameters (force field, water model, membrane model, and channel conformation).  相似文献   

2.
alpha-Hemolysin of Staphylococcus aureus is a self-assembling toxin that forms a water-filled transmembrane channel upon oligomerization in a lipid membrane. Apart from being one of the best-studied toxins of bacterial origin, alpha-hemolysin is the principal component in several biotechnological applications, including systems for controlled delivery of small solutes across lipid membranes, stochastic sensors for small solutes, and an alternative to conventional technology for DNA sequencing. Through large-scale molecular dynamics simulations, we studied the permeability of the alpha-hemolysin/lipid bilayer complex for water and ions. The studied system, composed of approximately 300,000 atoms, included one copy of the protein, a patch of a DPPC lipid bilayer, and a 1 M water solution of KCl. Monitoring the fluctuations of the pore structure revealed an asymmetric, on average, cross section of the alpha-hemolysin stem. Applying external electrostatic fields produced a transmembrane ionic current; repeating simulations at several voltage biases yielded a current/voltage curve of alpha-hemolysin and a set of electrostatic potential maps. The selectivity of alpha-hemolysin to Cl(-) was found to depend on the direction and the magnitude of the applied voltage bias. The results of our simulations are in excellent quantitative agreement with available experimental data. Analyzing trajectories of all water molecule, we computed the alpha-hemolysin's osmotic permeability for water as well as its electroosmotic effect, and characterized the permeability of its seven side channels. The side channels were found to connect seven His-144 residues surrounding the stem of the protein to the bulk solution; the protonation of these residues was observed to affect the ion conductance, suggesting the seven His-144 to comprise the pH sensor that gates conductance of the alpha-hemolysin channel.  相似文献   

3.
Water permeability through single-file channels is affected by intrinsic factors such as their size and polarity and by external determinants like their lipid environment in the membrane. Previous computational studies revealed that the obstruction of the channel by lipid headgroups can be long-lived, in the range of nanoseconds, and that pore-length-matching membrane mimetics could speed up water permeability. To test the hypothesis of lipid-channel interactions modulating channel permeability, we designed different gramicidin A derivatives with attached acyl chains. By combining extensive molecular-dynamics simulations and single-channel water permeation measurements, we show that by tuning lipid-channel interactions, these modifications reduce the presence of lipid headgroups in the pore, which leads to a clear and selective increase in their water permeability.  相似文献   

4.
To gain an insight into the molecular basis of ion permeation mechanism through the nicotinic acetylcholine receptor (AChR) channel, we have determined permeability ratios of organic cations relative to Na+ of specifically mutated Torpedo californica AChR channels expressed in Xenopus oocytes. The mutations involved mainly the side chains of the amino acid residues in the intermediate ring, where mutations have been found to exert strong effects on single-channel conductance and ion selectivity among alkali metal cations. The results obtained reveal that both the size and the net charge of the side chains of the intermediate ring are involved in determining the permeability, and provide experimental evidence that the pore size at the intermediate ring is a critical determinant of permeability. Our findings further suggest that changes in net charge exert effects on permeability by affecting the pore size of the channel.  相似文献   

5.
In membranes containing aqueous pores (channels), the osmotic water permeability coefficient, P f, is greater than the diffusive water permeability coefficient, P d. In fact, the magnitude of P f/P d is commonly used to determine pore radius. Although, for membranes studied to date, P f/P d monotonically declines with decreasing pore radius, there is controversy over the value it theoretically assumes when that radius is so small that water molecules cannot overtake one another within the channel (single-file transport). In one view it should equal 1, and in another view it should equal N, the number of water molecules in the pore. Gramicidin A forms, in lipid bilayer membranes, narrow aqueous channels through which single-file transport may occur. For these channels we find that P f/P d approximately 5. In contrast, for the wider nystatin and amphotericin B pores, P f/P d approximately 3. These findings offer experimental support for the view that P f/P d = N for single-file transport, and we therefore conclude that there are approximately five water molecules in a gramicidin A channel. A similar conclusion was reached independently from streaming potential data. Using single-channel conductance data, we calculate the water permeability of an individual gramicidin A channel. In the Appendix we report that there is a wide range of channel sizes and lifetimes in cholesterol-containing membranes.  相似文献   

6.
We have developed a simple dye transfer method that allows quantification of the gap-junction permeability of small cultured cells. Fluorescent dyes (calcein and Lucifer yellow) were perfused into one cell of an isolated cell pair using a patch-type micropipette in the tight-seal whole cell configuration. Dye spreading into the neighboring cells was monitored using a low-light charge-coupled device camera. Permeation rates for calcein and Lucifer yellow were then estimated by fitting the time course of the fluorescence intensities in both cells. For curve fitting, we used a set of model equations derived from a compartment model of dye distribution. The permeation rates were correlated to the total ionic conductance of the gap junction measured immediately after the perfusion experiment. Assuming that dye permeation is through a unit-conductance channel, we were then able to calculate the single-channel permeance for each tracer dye. We have applied this technique to HeLa cells stably transfected with rat-Cx46 and Cx43, and to BICR/M1R(k) cells, a rat mammary tumor cell line that has very high dye coupling through endogenous Cx43 channels. Scatter plots of permeation rates versus junctional conductance did not show a strictly linear correlation of ionic versus dye permeance, as would have been expected for a simple pore. Instead, we found that the data scatter within a wide range of different single-channel permeances. In BICR/M1R(k) cells, the lower limiting single-channel permeance is 2.2 +/- 2.0 x 10(-12) mm3/s and the upper limit is 50 x 10(-12) mm3/s for calcein and 6.8 +/- 2.8 x 10(-12) mm3/s and 150 x 10(-12) mm3/s for Lucifer yellow, respectively. In HeLa-Cx43 transfectants we found 2.0 +/- 2.4 x 10(-12) mm3/s and 95 x 10(-12) mm3/s for calcein and 2.1 +/- 6.8 x 10(-12) mm3/s and 80 x 10(-12) mm3/s for Lucifer yellow, and in HeLa-Cx46 transfectants 1.7 +/- 0.3 x 10(-12) mm3/s and 120 x 10(-12) mm3/s for calcein and 1.3 +/- 1.1 x 10(-12) mm3/s and 34 x 10(-12) mm3/s for Lucifer yellow, respectively. This variability is most likely due to a yet unknown mechanism that differentially regulates single-channel permeability for larger molecules and for small inorganic ions.  相似文献   

7.
From equilibrium molecular dynamics simulations we have determined single-channel water permeabilities for Escherichia coli aquaporin Z (AqpZ) and aquaglyceroporin GlpF with the channels embedded in lipid bilayers. GlpF's osmotic water permeability constant pf exceeds by 2-3 times that of AqpZ and the diffusive permeability constant (pd) of GlpF is found to exceed that of AqpZ 2-9-fold. Achieving complete water selectivity in AqpZ consequently implies lower transport rates overall relative to the less selective, wider channel of GlpF. For AqpZ, the ratio pf/pd congruent with 12 is close to the average number of water molecules in the channel lumen, whereas for GlpF, pf/pd congruent with 4. This implies that single-file structure of the luminal water is more pronounced for AqpZ, the narrower channel of the two. Electrostatics profiles across the pore lumens reveal that AqpZ significantly reinforces water-channel interactions, and weaker water-water interactions in turn suppress water-water correlations relative to GlpF. Consequently, suppressed water-water correlations across the narrow selectivity filter become a key structural determinant for water permeation causing luminal water to permeate slower across AqpZ.  相似文献   

8.
VDAC provides the major permeability pathway through the mitochondrial outer membrane by forming voltage-gated channels with pore radius of 1.2-1.5 nm. We find that VDAC can select among comparably-charged molecules with a much smaller effective radius, 0.4-0.5 nm. The molecules studied were the nucleotides, ATP, UTP, NADH and synthetic anions, tetraglutamate (T-Glu) and 1-hydroxypyrene-3,6,8-trisulfonate (HPTS). VDAC channels were reconstituted into planar phospholipid membranes bathed in 1.0 M NaCl (buffered to pH 8.0). The nucleotides decreased the conductance of VDAC for NaCl demonstrating that they could permeate into the channel. In contrast, T-Glu and HPTS did not change the single-channel conductance, indicating exclusion from the channel. Reversal potential measurements report near ideal selectivity of Na + over T-Glu. The nucleotides increased single-channel noise as they penetrated into the channel, while T-Glu had no effect. HPTS increased noise, but unlike NADH, this was not voltage-dependent when HPTS was added asymmetrically, indicating no penetration into the channel. The differences in effective size and charge cannot explain the difference in permeation characteristics. Thus VDAC must select among these based on shape and charge distribution. We propose that the electrostatic environment within the channel has been evolutionarily selected to favor the passage of adenine nucleotides.  相似文献   

9.
The diffusional permeability of water across membranes from bovine and human erythrocyte ghosts was measured by a recently developed method which is based on the different indices of refraction of H2O and 2H2O. Resealed erythrocyte ghosts were prepared by a gel-filtration technique. Pd (2H2O/H2O) values of 1.2 X 10(-3) cm/s (human) and 1.7 X 10(-3) cm/s (bovine) were calculated at 20 degrees C. The activation energies of the water exchange were 23.5 kJ/mol (human) and 25.4 kJ/mol (bovine). Treatment of the ghosts with p-chloromercuribenzenesulfonic acid (PCMBS) led to a 60-70% inhibition of the diffusional water exchange. The pH equilibration across membranes of erythrocyte ghosts was measured by intracellular carboxyfluorescein. The rates of proton flux after pH-jumps (pH 7.3 to pH 6.1) were about 100-fold lower than those of the water exchange and dependent on the kind of anions present (Cl-, NO-3, SO2-4). The activation energies of proton flux were 60-70 kJ/mol. 4,4'-Diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) inhibited the exchange by 97-98% and lowered the activation energy. The inhibitor of water exchange, PCMBS, increased the proton-permeation rate by a factor of 4-5. It is assumed that the rate-limiting step for the proton permeation is determined by the anion exchange. Under this condition our results are not in accord with one channel as a common pathway for both the passive water and anion transport.  相似文献   

10.
The diffusional water permeability of human red cells and ghosts was determined by measuring the rate of tracer efflux by means of an improved version of the continuous flow tube method, having a time resolution of 2-3 ms. At 25 degrees C, the permeability was 2.4 x 10(3) and 2.9 x 10(3) cm s-1 for red cells and ghosts, respectively. Permeability was affected by neither a change in pH from 5.5 to 9.5, nor by osmolality up to 3.3 osmol. Manganous ions at an extracellular concentration of 19 mM did not change diffusional water permeability, as recently suggested by NMR measurements. A "ground" permeability of 1 x 10(3) cm s-1 was obtained by inhibition with 1 mM of either p- chloromercuribenzoate (PCMB) or p-chloromercuribenzene sulfonate (PCMBS). Inhibition increased temperature dependence of water permeability for red cells and ghosts from 21 to 30 kJ mol-1 to 60 kJ mol-1. Although diffusional water permeability is about one order of magnitude lower than osmotic permeability, inhibition with PCMB and PCMBS, temperature dependence both before and after inhibition, and independence of osmolality showed that diffusional water permeability has qualitative features similar to those reported for osmotic permeability, which indicates that the same properties of the membrane determine both types of transport. It is suggested that the PCMB(S)- sensitive permeability above the ground permeability takes place through the intermediate phase between integral membrane proteins and their surrounding lipids.  相似文献   

11.
At present, the three‐dimensional structure of the multimeric paracellular claudin pore is unknown. Using extant biophysical data concerning the size of the pore and permeation of water and cations through it, two three‐dimensional models of the pore are constructed in silico. Molecular Dynamics (MD) calculations are then performed to compute water and sodium ion permeation fluxes under the influence of applied hydrostatic pressure. Comparison to experiment is made, under the assumption that the hydrostatic pressure applied in the simulations is equivalent to osmotic pressure induced in experimental measurements of water/ion permeability. One model, in which pore‐lining charged is distributed evenly over a selectivity filter section 10–16 Å in length, is found to be generally consistent with experimental data concerning the dependence of water and ion permeation on channel pore diameter, pore length, and the sign and magnitude of pore lining charge. The molecular coupling mechanism between water and ion flow under conditions where hydrostatic pressure is applied is computationally elucidated. Proteins 2016; 84:305–315. © 2016 Wiley Periodicals, Inc.  相似文献   

12.
The competition of ion and water fluxes across gramicidin channels was assessed from the concentration distributions of both pore-impermeable and -permeable cations that were simultaneously measured by double-barreled microelectrodes in the immediate vicinity of a planar bilayer. Because water movement across the membrane led to accumulation of solutes on one side of the membrane and depletion on the other, the permeable cation was not only pushed by water across the channel (true solvent drag); it also flowed along its concentration gradient (pseudo-solvent drag). For the demonstration of true solvent drag, a difference between the bulk concentrations on the hypertonic and the hypotonic sides of the membrane was established. It was adjusted to get equal cation concentrations at both membrane/water interfaces. From the sodium and potassium fluxes measured along with membrane conductivity under these conditions, approximately five water molecules were found to be transported simultaneously with one ion through the channel. In diphytanoyl phosphatidylcholine membranes, a single-channel hydraulic permeability coefficient of 1.6 x 10(-14) cm(3) s(-1) was obtained.  相似文献   

13.
The aim of this work is to study pore protein denaturation inside a lipid bilayer and to probe current asymmetry as a function of the channel conformation. We describe the urea denaturation of alpha-hemolysin channel and the channel formation of alpha-hemolysin monomer incubated with urea prior to insertion into a lipid bilayer. Analysis of single-channel recordings of current traces reveals a sigmoid curve of current intensity as a function of urea concentration. The normalized current asymmetry at 29+/-4% is observed between 0 and 3.56M concentrations and vanishes abruptly down to 0 concentration exceeds 4M. The loss of current asymmetry through alpha-hemolysin is due to the denaturation of the channel's cap. We also show that the alpha-hemolysin pore inserted into a lipid bilayer is much more resistant to urea denaturation than the alpha-hemolysin monomer in solution: The pore remains in the lipid bilayer up to 7.2M urea. The pore formation is possible up to 4.66M urea when protein monomers were previously incubated in urea.  相似文献   

14.
Vasopressin (VP) increases the water permeability of the toad urinary bladder epithelium by inducing the cycling of vesicles containing water channels to and from the apical membrane of granular cells. In this study, we have measured several functional characteristics of the endosomal vesicles that participate in this biological response to hormonal stimulation. The water, proton, and urea permeabilities of endosomes labeled in the intact bladder with fluorescent fluid-phase markers were measured. The diameter of isolated endosomes labeled with horse-radish peroxidase was 90-120 nm. Osmotic water permeability (Pf) was measured by a stopped-flow fluorescence quenching assay (Shi, L.-B., and A. S. Verkman. 1989. J. Gen. Physiol. 94:1101-1115). The number of endosomes formed when bladders were labeled in the absence of a transepithelial osmotic gradient increased with serosal [VP] (0-50 mU/ml), and endosome Pf was very high and constant (0.08-0.10 cm/s, 18 degrees C). When bladders were labeled in the presence of serosal-to-mucosal osmotic gradient, the number of functional water channels per endosome decreased (at [VP] = 0.5 mU/ml, Pf = 0.09 cm/s, 0 osmotic gradient; Pf = 0.02 cm/s, 180 mosmol gradient). Passive proton permeability was measured from the rate of pH decrease in voltage-clamped endosomes in response to a 1 pH unit gradient (pHin = 7.5, pHout = 6.5). The proton permeability coefficient (PH) was 0.051 cm/s at 18 degrees C in endosomes containing the VP-sensitive water channel; PH was not different from that measured in vesicles not containing water channels. Measurement of urea transport by the fluorescence quenching assay gave a urea reflection coefficient of 0.97 and a permeability coefficient of less than 10(-6) cm/s. These results demonstrate: (a) VP-induced endosomes from toad urinary bladder have extremely high Pf. (b) In states of submaximal bladder Pf, the density of functional water channels in endosomes in constant in the absence of an osmotic gradient, but decreases in the presence of a serosal-to-mucosal gradient, suggesting that the gradient has a direct effect on the efficiency of packaging of water channels into endosomes. (c) The VP-sensitive water channel does not have a high proton permeability. (d) Endosomes that cycle the water channel do not contain urea transporters. These results establish a labeling procedure in which greater than 85% of labeled vesicles from toad urinary bladder are endosomes that contain the VP-sensitive water channel in a functional form.  相似文献   

15.
A modified Parsegian formula for the calculation of the mage force in a water pore, which takes into account nonlocal electrostatic effects, has been applied to the analysis of changes in the permeability of K+ channels. It has been shown that the channel permeability increases 3 x 10(3) times as the width of the pore increases from 4 to 10 angstroms when the energy is calculated by the modified Parsegian formula and only 16 times if the classical Parsegian formula is used. We conclude that the image force in a water pore within K+ channels plays an important part in the change of channel permeability. Accounting for nonlocal electrostatic effects indicates that the permeability of the K+ channel is more strongly related to the size of the water pore than previously assumed by the original Parsegian formula.  相似文献   

16.
N-methyl-D-aspartate (NMDA) receptor channels in cultured CA1 hippocampal neurons were studied using patch-clamp techniques. The purpose of the research was to determine the occupancy of the channel by permeant cations and to determine the influence of charged residues in or near the pore. The concentration dependence of permeability ratios, the mole-fraction dependence of permeability ratios, the concentration dependence of the single-channel conductance, and a single-channel analysis of Mg2+ block all independently indicated that the NMDA receptor behaves as a singly-occupied channel. More precisely, there is one permeant cation at a time occupying the site or sites that are in the narrow region of the pore directly in the permeation pathway. Permeability-ratio measurements in mixtures of monovalent and divalent cations indicated that local charges in or near the pore do not produce a large local surface potential in physiologic solutions. In low ionic strength solutions, a local negative surface potential does influence the ionic environment near the pore, but in normal physiologic solutions the surface potential appears too small to significantly influence ion permeation. The results indicate that the mechanism for the high Ca2+ conductance of the NMDA receptor channel is not the same as for the voltage-dependent Ca2+ channel (VDCC). The VDCC has two high affinity, interacting binding sites that provide high Ca2+ selectivity and conductance. The binding site of the NMDA receptor is of lower affinity. Therefore, the selectivity for Ca2+ is not as high, but the lower affinity of binding provides a faster off rate so that interacting sites are not required for high conductance.  相似文献   

17.
The incorporation of porin protein F from the outer membrane of Pseudomonas aeruginosa into artificial lipid bilayers results in an increase of the membrane conductance by many orders of magnitude. The membrane conductance is caused by the formation of large ion-permeable channels with a single-channel conductance in the order of 5 nS for 1 M alkali chlorides. The conductance has an ohmic current vs. voltage relationship. Further information on the structure of the pore formed by protein F was obtained by determining the single-channel conductance for various species differing in charge and size, and from zero-current potential measurements. The channel was found to be permeable for large organic ions (Tris+, N(C2H5)4+, Hepes-) and a channel diameter of 2.2 nm could be estimated from the conductance data (pore length of 7.5 nm). At neutral pH the pore is about two times more permeable for cations than for anions, possibly caused by negative charges in the pore. The consistent observation of large water filled pores formed by porin protein F in model membrane systems is discussed in the light of the known low permeability of the Ps. aeruginosa outer membrane towards antibiotics. It is suggested that this results from a relatively low proportion of open functional porin protein F pores in vivo.  相似文献   

18.
In an open circuit there can be no net cation flux through membranes containing only cation-selective channels, because electroneutrality must be maintained. If the channels are so narrow that water and cations cannot pass by each other, then the net water flux through those "single-file" channels that contain a cation is zero. It is therefore possible to determine the cation binding constants from the decrease in the average water permeability per channel as the cation concentration in the solution is increased. Three different methods were used to determine the osmotic water permeability of gramicidin channels in lipid bilayer membranes. The osmotic water permeability coefficient per gramicidin channel in the absence of cations was found to be 6 x 10(-14) cm3/s. As the cation concentration was raised, the water permeability decreased and a binding constant was determined from a quantitative fit to the data. When the data were fitted assuming a maximum of one ion per channel, the dissociation constant was 115 mM for Li+, 69 mM for K+, and 2 mM for Tl+.  相似文献   

19.
Naturally occurring pores show a variety of polarities and sizes that are presumably directly linked to their biological function. Many biological channels are selective toward permeants similar or smaller in size than water molecules, and therefore their pores operate in the regime of single-file water pores. Intrinsic factors affecting water permeability through such pores include the channel-membrane match, the structural stability of the channel, the channel geometry and channel-water affinity. We present an extensive molecular dynamics study on the role of the channel geometry and polarity on the water osmotic and diffusive permeability coefficients. We show that the polarity of the naturally occurring peptidic channels is close to optimal for water permeation, and that the water mobility for a wide range of channel polarities is essentially length independent. By systematically varying the geometry and polarity of model hydrophilic pores, based on the fold of gramicidin A, the water density, occupancy, and permeability are studied. Our focus is on the characterization of the transition between different permeation regimes in terms of the structure of water in the pores, the average pore occupancy and the dynamics of the permeating water molecules. We show that a general relationship between osmotic and diffusive water permeability coefficients in the single-file regime accounts for the time averaged pore occupancy, and that the dynamics of the permeating water molecules through narrow non single file channels effectively behaves like independent single-file columns.  相似文献   

20.
While selective for K+, K+ channels vary significantly among their rate of ion permeation. Here, we probe the effect of steric hindrance and electrostatics within the ion conduction pathway on K+ permeation in the MthK K+ channel using structure-based mutagenesis combined with single-channel electrophysiology and X-ray crystallography. We demonstrate that changes in side-chain size and polarity at Ala88, which forms the constriction point of the open MthK pore, have profound effects on single-channel conductance as well as open probability. We also reveal that the negatively charged Glu92s at the intracellular entrance of the open pore form an electrostatic trap, which stabilizes a hydrated K+ and facilitates ion permeation. This electrostatic attraction is also responsible for intracellular divalent blockage, which renders the channel inward rectified in the presence of Ca2+. In light of the high structural conservation of the selectivity filter, the size and chemical environment differences within the portion of the ion conduction pathway other than the filter are likely the determinants for the conductance variations among K+ channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号