首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plasminogen and plasminogen activators play important roles in liver regeneration. Previously, we found that plasminogen potentiates hepatocyte proliferation in the primary culture of rat hepatocytes. Here, we examined how exogenous plasminogen affects the downstream events leading to cell proliferation. The addition of plasminogen to hepatocytes increased urokinase-type plasminogen activator (uPA) activity, but did not affect matrix metalloproteinase (MMP)-9 or MMP-2 activities. To increase uPA activity, plasminogen was required to bind the hepatocyte surface through the lysine-binding site of plasminogen molecule, but neither uPA mRNA nor uPA receptor (uPAR) mRNA was affected by the exogenous plasminogen. In addition, treatment of hepatocytes with an uPA inhibitor, p-aminobenzamidine, inhibited the plasminogen-induced and even EGF-induced hepatocyte proliferation. These results suggest that plasminogen-related control of hepatocyte proliferation is exerted topically by producing a hyperfibrinolytic state on the cellular surface involving the activation of uPA.  相似文献   

2.
Hepsin, a type II transmembrane serine protease, is strongly up-regulated in prostate cancer. Hepsin overexpression in a mouse prostate cancer model resulted in tumor progression and metastasis, associated with basement membrane disorganization. We investigated whether hepsin enzymatic activity was linked to the basement membrane defects by examining its ability to initiate the plasminogen/plasmin proteolytic pathway. Because plasminogen is not processed by hepsin, we investigated the upstream activators, urokinase-type plasminogen activator (uPA) and tissue-type plasminogen activator. Enzymatic assays with a recombinant soluble form of hepsin demonstrated that hepsin did not cleave pro-tissue-type plasminogen activator but efficiently converted pro-uPA into high molecular weight uPA by cleavage at the Lys158-Ile159 (P1-P1') peptide bond. uPA generated by hepsin displayed enzymatic activity toward small synthetic and macromolecular substrates indistinguishable from uPA produced by plasmin. The catalytic efficiency of pro-uPA activation by hepsin (kcat/Km 4.8 x 10(5) m(-1) s(-1)) was similar to that of plasmin, which is considered the most potent pro-uPA activator and was about 6-fold higher than that of matriptase. Conversion of pro-uPA was also demonstrated with cell surface-expressed full-length hepsin. A stable hepsinoverexpressing LnCaP cell line converted pro-uPA into high molecular weight uPA at a rate of 6.6 +/- 1.9 nm uPA h(-1), which was about 3-fold higher than LnCaP cells expressing lower hepsin levels on their surface. In conclusion, the ability of hepsin to efficiently activate pro-uPA suggests that it may initiate plasmin-mediated proteolytic pathways at the tumor/stroma interface that lead to basement membrane disruption and tumor progression.  相似文献   

3.
This study evaluates the contribution of two types of plasminogen activators (PAs; tissue-type PA (tPA) versus urokinase-type PA (uPA) toward the invasiveness of human melanoma cells in a novel in vitro assay. We identified two human melanoma cell lines, MelJuso and MeWo, expressing uPA or tPA as shown at mRNA, protein, and enzyme activity level. MelJuso cells produced uPA as well as plasminogen activator inhibitor-1 (PAI-1). The latter was, however, not sufficient to neutralize the cell-associated or secreted uPA activity. MeWo cells secreted tPA, but the enzyme was not found to be cell-associated. PAI-1 production by these cells was not detectable. Plasminogen activation and fibrinolytic capacity of both cell lines were reduced by anticatalytic monoclonal antibodies specific for the respective type of PA or by aprotinin. In a novel in vitro invasion assay, antibodies to PA as well as aprotinin decreased the invasiveness of both cell lines into a fibrin gel, Matrigel, or intact extracellular matrix. Our results confirm the importance of uPA-catalyzed plasminogen activation in tumor cell invasiveness. Furthermore, we provide evidence that tPA, beyond its key role in thrombolysis, can also be involved in in vitro invasion of human melanoma cells.  相似文献   

4.
The amidolytic plasmin activity of a mixture of tissue plasminogen activator (tPA) and plasminogen is enhanced by heparin at therapeutic concentrations. Heparin also increases the activity in mixtures of urokinase-type plasminogen activator (uPA) and plasminogen but has no effect on streptokinase or plasmin. Direct analyses of plasminogen activation by polyacrylamide gel electrophoresis demonstrate that heparin increases the activation of plasminogen by both tPA and uPA. Binding studies show that heparin binds to various components of the fibrinolytic system, with tight binding demonstrable with tPA, uPA, and Lys-plasminogen. The stimulation of tPA activity by fibrin, however, is diminished by heparin. The ability of heparin to promote plasmin generation is destroyed by incubation of the heparin with heparinase, whereas incubation with chondroitinase ABC or AC has no effect. Also, stimulation of plasmin formation is not observed with dextran sulfate or chondroitin sulfate A, B, or C. Analyses of heparin fractions after separation on columns of antithrombin III-Sepharose suggest that both the high-affinity and the low-affinity fractions, which have dramatically different anticoagulant activity, have similar activity toward the fibrinolytic components.  相似文献   

5.
Interaction between the urokinase-type plasminogen activator (uPA) and its receptor (uPAR) localizes cellular proteolysis and promotes cellular proliferation and migration. The interaction between uPA and uPAR at the surface of epithelial cells thereby contributes to the pathogenesis of lung inflammation and neoplasia. In this study, we sought to determine if uPA itself alters uPAR expression by lung epithelial cells. uPA enhanced uPAR expression as well as (125)I-uPA binding in Beas2B lung epithelial cells in a time- and concentration-dependent manner. The uPA-mediated induction of uPAR is not accomplished through its receptor and requires enzymatic activity. The low molecular weight fragment of uPA, lacking the receptor binding domain, was as potent as intact two-chain uPA in inducing expression of uPAR at the cell surface. Plasmin, the end product of plasminogen activation, did not alter uPA-mediated uPAR expression. Induction of uPAR by uPA represents a novel pathway by which epithelial cells can regulate uPAR-dependent cellular responses that may contribute to stromal remodeling in lung injury or neoplasia.  相似文献   

6.
Urokinase-type plasminogen activator (uPA) is a proteolytic enzyme able to convert the zymogen plasminogen into the strong protease plasmin. The availability of very sensitive tests to measure the enzymatic activity of a plasminogen activator renders the corresponding gene an ideal candidate for the detection of promoter activity. In this paper we describe the utilization of the human uPA gene as detector of tissue-specificity of the murine whey acidic protein (WAP) expression signals in transgenic mice. The WAP promoter has been previously investigated for the production of foreign proteins in the milk of transgenic animals. In our genetic constructions, the human uPA cDNA was linked to the promoter region as well as to 3'-end distal sequences of the WAP gene. Five transgenic lines were obtained in which, however, expression levels of human uPA in the milk were still quite low. Surprisingly, four of these five positive transgenic mice show a consistent activity of the WAP promoter in brain extracts compared to other tissues.  相似文献   

7.
Inhibition of receptor-bound urokinase by plasminogen-activator inhibitors   总被引:17,自引:0,他引:17  
Urokinase-type plasminogen activator (uPA) binds to a specific receptor on various cell types, the bound molecule retaining its enzymatic activity against plasminogen. We have now investigated whether receptor-bound uPA also retains the ability to react with and be inhibited by plasminogen activator inhibitors (PAI-1 and PAI-2). uPA bound to its receptor on human U937 monocyte-like cells was inhibited by PAI-1 (in its active form in the presence of vitronectin fragments) with an association rate constant of 4.5 x 10(6) M-1 s-1, which was 40% lower than that obtained for uPA in solution (7.9 x 10(6) M-1 s-1). The inhibition of uPA by PAI-2 was decreased to a similar extent by receptor binding, falling from 5.3 x 10(5) to 3.3 x 10(5) M-1 s-1. Stimulation of U937 cells with phorbol 12-myristate 13-acetate was accompanied by a further reduction in receptor-bound uPA inhibition by PAI-1 and PAI-2 to 1.7 x 10(6) and 1.1 x 10(5) M-1 s-1, respectively. These constants although lower than those for uPA in solution still represent rather rapid inhibition of the enzyme, and demonstrate that uPA bound to its specific cellular receptor remains available for efficient inhibition by PAI's, which may therefore play a major role in controlling cell-surface plasminogen activation and extracellular proteolytic activity.  相似文献   

8.
Urokinase plasminogen activator (uPA) belongs to a family of proteins that contains kringle domain and plays an important role in inflammation, tissue remodeling, angiogenesis, and tumor metastasis by pericellular plasminogen activation. Kringle domains of plasminogen have been shown to demonstrate anti-angiogenic and anti-tumor activities. Here, we report our investigation of the kringle domain of uPA for anti-angiogenic activity and a possible cellular mechanism of action. The recombinant kringle domain of uPA (Asp(45)-Lys(135)) (UK1) inhibited endothelial cell proliferation stimulated by basic fibroblast growth factor, vascular endothelial growth factor (VEGF), or epidermal growth factor. It also inhibited migration of endothelial cells induced by VEGF or uPA, and in vivo angiogenesis on the chick chorioallantoic membrane. It did not block plasminogen activation by activated uPA in clot lysis and chromogenic substrate assays. Neither binding of UK1 to immobilized uPA receptor nor competitive inhibition of uPA binding were confirmed by real-time interaction analysis. However, internalization of UK1 followed by translocation from cytosol to nucleus was determined to be specific to endothelial cells. It also elicited a transient increase of Ca(2+) flux of more than 2-fold within 2 min of exposure in an endothelial cell-specific manner. These results suggest that the kringle domain of uPA exhibits anti-angiogenic activity and that its anti-angiogenic activity may occur through a different mechanism from inhibition of uPA-uPA receptor interaction or uPA proteolytic activity and may be associated with endothelial-cell specific internalization not mediated by the uPA receptor.  相似文献   

9.
Previous studies have shown that the urokinase-type plasminogen activator receptor (uPAR) is localized to the adherence sites of leukocytes and tumor cells suggesting that pericellular proteolysis may accompany focal activation of adherence. To assess for focused pericellular proteolytic activity, we prepared two-dimensional substrates coated with FITC-casein or Bodipy FL-BSA. These molecules are poorly fluorescent, but become highly fluorescent after proteolytic degradation. Fluorescent peptide products were observed at adherence sites of stationary human neutrophils and at lamellipodia of polarized neutrophils. During cell migration, multiple regions of proteolysis appeared sequentially beneath the cell. Similarly, proteolytic action was restricted to adherence sites of resting HT1080 tumor cells but localized to the invadopodia of active cells. Using an extracellular fluorescence quenching method, we demonstrate that these fluorescent peptide products are extracellular. The uPA/uPAR system played an important role in the observed proteolytic activation. Plasminogen activator inhibitor-1 significantly reduced focal proteolysis. Sites of focal proteolysis matched the membrane distribution of uPAR. When uPA was dissociated from uPAR by acid washing, substantially reduced pericellular proteolysis was found. uPAR-negative T47D tumor cells did not express significant levels of substrate proteolysis. However, transfectant clones expressing uPAR (for example, T47D-26) displayed high levels of fluorescence indicating proteolysis at adherence sites. To provide further evidence for the role of the uPA/uPAR system in pericellular proteolysis, peritoneal macrophages from uPA knock-out (uPA–/–) and control (uPA+/+) mice were studied. Pericellular proteolysis was dramatically reduced in uPA-negative peritoneal macrophages. Thus, we have: (1) developed a novel methodology to detect pericellular proteolytic function, (2) demonstrated focused activation of proteolytic enzymatic activity in several cell types, (3) demonstrated its usefulness in real-time studies of cell migration, and (4) showed that the uPA/uPAR system is an important contributor to focal pericellular proteolysis.  相似文献   

10.
A proenzyme from chicken plasma similar to human plasma prekallikrein   总被引:2,自引:0,他引:2  
We report the isolation of a specific protease zymogen from chicken plasma. The purification procedure involves barium citrate precipitation, ammonium sulfate fractionation, removal of plasminogen and plasmin on lysine-Sepharose, followed by anion and cation exchange, and gel permeation chromatography. Based on quantitative radioimmunoassay the zymogen is present in plasma at a concentration of 160 mg/liter, and it is obtained by our procedure in highly purified form with a yield of 1.4%. The single polypeptide chain contains an NH2-terminal alanine residue. The native molecule migrates in sodium dodecyl sulfate-polyacrylamide gel electrophoresis with an apparent molecular weight of 84,000 under reducing conditions. It can be identified as an inactive proenzyme because it has very low amidolytic activity, does not react with the fluorescent active site titrant 4-methyl-lumbelliferyl p-guanidinobenzoate, and does not incorporate radioactive [3H]diisopropylfluorophosphate. It is very susceptible to limited proteolysis which converts it to an active enzyme with trypsin-like specificity. The active enzyme, likewise a single polypeptide chain, migrates as a doublet with apparent molecular weights of 39,000 and 40,000. Its amidolytic activity with synthetic peptide substrates is at least 40-fold higher than that of the proenzyme, it reacts efficiently with 4-methylumbelliferyl p-guanidinobenzoate, and incorporates [3H]diisopropylfluorophosphate while undergoing irreversible inactivation. The enzyme appears to be a reasonably efficient plasminogen activator in zymographic gels, but not in solution. With human high molecular weight kininogen as substrate the enzyme was about 25% as efficient as human plasma kallikrein. It lacks any plasminogen-independent proteolytic activity with other protein substrates, and it hydrolyzes small peptide substrates designed for both human kallikrein and urinary urokinase, respectively. Inhibition studies with peptide chloromethyl ketones indicate enzymatic properties closer to human plasma kallikrein than to the human plasminogen activator urokinase (EC 3.4.21.31). The chicken plasma enzyme and the plasminogen activator from the conditioned media of Rous sarcoma virus-transformed chick embryo fibroblasts treated with tumor promoter are different by criteria of tryptic peptide maps, and amino acid composition and enzymatic specificity. The designations chicken plasma prekallikrein plasminogen proactivator and chicken plasma kallikrein plasminogen activator are proposed for the zymogen and enzyme forms, respectively. Using rabbit antibodies against the proenzyme we developed a solid phase immunoadsorption procedure that allowed us to isolate the protein with an overall yield of 11.4%.  相似文献   

11.
12.
13.
Two types of plasminogen activator (tissue-type, tPA; urokinase-type, uPA) have been demonstrated in ovarian granulosa cells, but only tPA activity was found in denuded oocytes. Immature rats were treated subcutaneously with 20 IU pregnant mare's serum gonadotropin (PMSG) to stimulate follicle maturation, followed 2 days later by an injection of 10 IU human chorionic gonadotropin (hCG) to induce ovulation. Cellular plasminogen activator activities were determined by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis followed by a fibrin-overlay technique. Cumulus-oocyte complexes from rats before and after PMSG treatment contained low amounts of tPA, but not uPA, activity. After hCG treatment, tPA activity showed a time-dependent increase, reaching a maximum at 24 h after injection. At 12 and 24 h after hCG treatment, uPA activity was also detected. The appearance of high molecular weight lysis zones further suggested the formation of plasminogen activator-inhibitor complexes. Morphological analysis indicated that the increases in oocyte tPA activity were correlated with the extent of cumulus cell expansion and dispersion. In denuded oocytes, tPA activity also progressively increased during the periovulatory period to a maximum at 24 h after hCG treatment. In contrast, neither uPA activity nor activator-inhibitor complex was detected. Secretion of the proteases was measured in the conditioned media of cumulus-oocyte complexes cultured for 24 h in vitro. Substantial increases in tPA release were found in complexes obtained at 8 and 12 h after hCG injection, with lower secretion from complexes obtained at 24 h after hCG treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
15.
The cellular receptor for urokinase-type plasminogen activator (uPAR) is a glycolipid-anchored three-domain membrane protein playing a central role in pericellular plasminogen activation. We have found that urokinase (uPA) can cleave its receptor between domains 1 and 2 generating a cell-associated uPAR variant without ligand-binding properties. In extracts of U937 cells there are two uPAR variants which after complete deglycosylation have apparent molecular masses of 35,000 and 27,000. Analysis with monoclonal antibodies showed that these variants represented the intact uPAR and a two-domain form, uPAR(2+3), lacking ligand-binding domain 1. Trypsin treatment showed that both variants are present on the outside of the cells. Addition to the culture medium of an anticatalytic monoclonal antibody to uPA inhibited the formation of the uPAR(2+3), indicating that uPA is involved in its generation. Purified uPAR can be cleaved directly by uPA as well as by plasmin. The uPA-catalyzed cleavage does not require binding of the protease to the receptor through its epidermal growth factor-like receptor-binding domain, since low molecular weight uPA that lacks this domain also cleaves uPAR. This unusual reaction in which a specific binding protein is proteolytically inactivated by its own ligand may represent a regulatory step in the plasminogen activation cascade.  相似文献   

16.
Urokinase-type plasminogen activator (uPA) plays a ubiquitous role in cell migration and invasiveness. Amiloride, a competitive inhibitor of uPA, can inhibit endothelial cell (EC) outgrowth during angiogenesis. To address the question of whether amiloride blocked angiogenesis by inhibiting uPA, we undertook a study of uPA expression in sprouting EC in vitro and the effects of amiloride on both enzymatic and morphogenetic activity. As expected, amiloride inhibited soluble uPA (suPA) with an IC(50) of 45-85 microm, however, receptor-bound uPA (rbuPA) from the sprouting EC was insensitive to amiloride. Removal of uPA from its receptors confers sensitivity to inhibition by amiloride suggesting that a reversible conformational change may mediate the insensitivity of rbuPA to amiloride and its analogs. In summary, we found no evidence to support the hypothesis that amiloride blocks capillary outgrowth by inhibition of uPA, but were able to successfully demonstrate a functional difference between two physiological forms of this important matrix-degrading enzyme.  相似文献   

17.
Skin extracellular matrix (ECM) molecules regulate a variety of cellular activities, including cell movement, which are central to wound healing and metastasis. Regulated cell movement is modulated by proteases and their associated molecules, including the serine proteases urinary-type plasminogen activator (uPA) and tissue-type plasminogen activator (tPA) and their inhibitors (PAIs). As a result of wounding and loss of basement membrane structure, epidermal keratinocytes can become exposed to collagen. To test the hypothesis that during wounding, exposed collagen, the most abundant ECM molecule in the skin, regulates keratinocyte PA and PAI gene expression, we utilized an in vitro model in which activated keratinocytes were cultured in dishes coated with collagen or other ECM substrates. tPA, uPA, and PAI-1 mRNA and enzymatic activity were detected when activated keratinocytes attached to fibronectin, vitronectin, collagen IV, and RGD peptide. In contrast, adhesion to collagen I and collagen III completely suppressed expression of PAI-1 mRNA and protein and further increased tPA expression and activity. Similarly, keratinocyte adhesion to laminin-1 suppressed PAI-1 mRNA and protein expression and increased tPA activity. The suppressive effect of collagen I on PAI-1 gene induction was dependent on the maintenance of its native fibrillar structure. Thus, it would appear that collagen- and laminin-regulated gene expression of molecules associated with plasminogen activation provides an additional dimension in the regulation of cell movement and matrix remodeling in skin wound healing.  相似文献   

18.
The urokinase plasminogen activator (uPA) and tissue plasminogen activator (tPA) are very similar serine proteases with the same physiological function, the activation of plasminogen. An increased amount or activity of uPA but not tPA has been detected in human cancers. The PAs are weak proteolytic enzymes, but they activate plasminogen to plasmin, a strong proteolytic enzyme largely responsible for the malignant properties of cancers. It has been shown recently that the administration of uPA inhibitors can reduce tumor size. Inhibitors of uPA could therefore be used as anti-cancer and anti-angiogenesis agents. It has been found that amiloride competitively inhibits the catalytic activity of uPA but not tPA. Modification of this chemical could therefore produce a new class of uPA specific inhibitors and a new class of anti-cancer agents. The X-ray structure of the uPA complex with amiloride is not known. There are structural differences in the specificity pocket of uPA and tPA. However, the potential energy of binding amiloride is lower outside this cavity in the case of tPA. A region responsible for binding amiloride to tPA has been proposed as the loop B93-B101, reached in negatively charged amino acids present in tPA but not uPA.  相似文献   

19.
The serine proteinase urokinase-type plasminogen activator (uPA) is widely recognized as a potential target for anticancer therapy. Its association with cell surfaces through the uPA receptor (uPAR) is central to its function and plays an important role in cancer invasion and metastasis. In the current study, we used systematic evolution of ligands by exponential enrichment (SELEX) to select serum-stable 2'-fluoro-pyrimidine-modified RNA aptamers specifically targeting human uPA and blocking the interaction to its receptor at low nanomolar concentrations. In agreement with the inhibitory function of the aptamers, binding was found to be dependent on the presence of the growth factor domain of uPA, which mediates uPAR binding. One of the most potent uPA aptamers, upanap-12, was analyzed in more detail and could be reduced significantly in size without severe loss of its inhibitory activity. Finally, we show that the uPA-scavenging effect of the aptamers can reduce uPAR-dependent endocytosis of the uPA-PAI-1 complex and cell-surface associated plasminogen activation in cell culture experiments. uPA-scavenging 2'-fluoro-pyrimidine-modified RNA aptamers represent a novel promising principle for interfering with the pathological functions of the uPA system.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号