首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nodal and internodal explants excised from the orthotropic shoots of Sesbania sesban var. bicolor elicited the development of shoots directly from the explants as well as via an intervening callus phase on Nitsch (N) medium. On benzyladenine (BA) supplemented media, the adventitious shoot buds developed involving a callus phase. An average of 8.9 ± 4.1 shoots developed per nodal explant on N medium containing 0.5 mg dm−3 BA in 95 % cultures, whereas 65 % cultures of internodal explants developed shoots with an average of 5.9 ± 3.6 shoots per explant on N medium supplemented with 1.0 mg dm−3 BA. On kinetin (Kn) supplemented medium shoots developed directly from the surface of both the explants at all the concentrations tried. Nodal explants on N medium supplemented with 1.5 mg dm−3 Kn developed an average of 12.5 ± 7.9 shoots per explant in 100 % cultures, while internodal explants induced an average of 11.6 ± 7.4 shoots per explant in 75 % explants at 0.5 mg dm−3 Kn. The in vitro regenerated shoots developed roots when implanted on N medium supplemented with 2 mg dm−3 indole-3-butyric acid (IBA), after 30 d of inoculation. The in vitro developed plantlets were initially acclimatized under controlled conditions for four months, prior to their transfer to the field. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Summary Leaf explants of Sinningia speciosa were cultured in vitro on Murashige and Skoog (MS) basal medium with various growth substances in order to regenerate shoots. On MS medium supplemented with indoleacetic acid (IAA) and kinetin, 80% of the explants produced green callus and 25 to 30 shoots with roots per explant. On MS supplemented with IAA and N6 benzyladenine (BA), 80% of the explants produced green callus and 40 to 50 shoots per explant but lacked roots. After 3–4 mo., these shoots were removed from the initial explants and transferred separately onto MS supplemented with indolebutyric acid for their elongation and successive rooting (3 mo.). Histological studies showed that the callus was associated with mesophyll cell layers, primarily with the spongy parenchyma. The shoots regenerated at the callus surface and were associated with newly differentiated vascular areas. Recurrent regenerations were obtained from leaf explants or apical meristems excised from shoots of the previous subcultures. These explants, as compared to initial cultures, had a high frequency of regeneration and also produced more shoots per explant. Chromosome numbers of root tip cells of the mother plant and of all in vitro-regenerated plants remained constant: 2n=26.  相似文献   

3.
Two efficient regeneration systems were developed in Cunninghamia lanceolata, the most important conifer for industrial wood production in China. Cotyledons and hypocotyls derived from greenhouse-grown seedlings were used as initial explants in our research. A high frequency (95.1?±?1.84%) of adventitious buds were initiated directly from cotyledons cultured on Douglas-fir cotyledon revised (DCR) medium supplemented with 1 mg l?1 benzyladenine (BA), 0.1 mg l?1 α-naphthaleneacetic acid (NAA), and 0.004 mg l?1 thidiazuron (TDZ) with a maximum mean number of adventitious buds per cotyledon explant of 3.76?±?0.08. In contrast, a high percentage (93.73?±?0.55%) of adventitious buds regenerated via callus produced from hypocotyls cultured on DCR medium supplemented with plant growth regulators with a maximum number of adventitious buds per explant (16.71?±?0.34). Adventitious buds elongated on DCR medium supplemented with 0.2 mg l?1 BA and 0.02 mg l?1 NAA. After liquid pretreatment with 50 mg l?1 indole-3-butyric acid (IBA), over 95% of the shoots successfully rooted on ½ DCR medium supplemented with 0.3 mg l?1 IBA. The innovated systems reported in this study will be useful tools for future genetic manipulation of C. lanceolata and may be adapted for large-scale propagation in other conifers.  相似文献   

4.
Summary Adventitious shoots were induced from the hypocotyl explants derived from 12–15-d-old seedlings of Sesbania rostrata on Nitsch's medium (Nitsch, 1969) supplemented with 1 mgl−1 (4.4 μM), of N6-benzylademine (BA). A maximum of 5.9±3.4 shoots per explant in 100% of cultures were obtained. The BA treatment for different time durations (1, 3, 5, 7, 10, 17, 21, or 30 d) exhibited significant variation in the caulogenic potential of the explants. BA treatment for 10–17 d proved optimum for the response. Although at all concentrations of kinetin the explants developed multiple shoots, they were malformed. Sucrose at 3% exhibited the development of the maximum of 3.5±0.9 shoots per explant with an average shoot length of 4.7±3.9 cm. Among the different carbon sources, i.e., fructose, galactose, maltose, mannose, and sucrose at 3% (w/v), sucrose supported the best caulogenic response. The role of various other factors (viz. size, orientation of explant, and seedling age) on the caulogenic response of the hypocotyl explants of S. rostrata were also studied. The shoot development in all cases was accompanied by the development of moderate to profuse callus at the basal cut end of the explant. The in vitro-regenerated shoots produced roots when transferred to half-strength MS medium (Murashige and Skoog, 1962) supplemented with 3% sucrose and 1 mgl−1 (4.9 μM) indole-3-butyric acid (IBA). The developed plantlets were transferred to the field after an initial acclimatization period of 3–4 mo. Such transferred plants produced flowers and fruits in the field and exhibited the development of prominent and organized stem nodules.  相似文献   

5.
Summary Adventitious bud regeneration from leaf and internode explants of Aloysia polystachya was achieved. Shoots from nodal segments grown in vitro were cut into pieces and used as sources of explants. Organogenesis was induced from both explants cultured on quarter-strength Murashige and Skoog (MS) semisolid medium (plus sucrose 5 g l−1) containing different combinations of 6-benzyladenine (BA) and α-naphthaleneacetic acid (NAA) under 116 μmol m−2 s−1 photosynthetic photon flux density (PPFD), 14-h photoperiod, and at a temperature of 27±2°C. The type of explant markedly influenced organogenesis and growth of the regenerated shoots. The regeneration frequencies were higher with leaf explants, while the number of shoots formed per responsive explant was greater with internode explants. However, the growth of regenerated shoots from internodes was seriously affected by vitrification. The number of shoots produced per responsive leaf explant increased from one to seven as the percentage of leaf explants producing shoots increased from 20 to more than 80%. NAA at 0.05 μM in combination with BA at 0.5μM induced the highest regeneration rate (87±8.8%) after 20 d of culture, yielding 5.9±0.8 shoots per responsive leaf explant. Histological examination confirmed the occurrence of direct organogenesis. The regenerated shoots from the best induction treatment were transferred to a fresh medium without plant growth regulators for 30 d. Finally, the elongated shoots were rooted by pre-treatment in an aqueous solution of NAA at 500 μM for 2 h and transferred to 1/4 MS. All plantlets raised in vitro were phenotypically normal and successfully hardened to ex vitro conditions. An experimental field plot with 2-yr-old in vitro-regenerated plants was established.  相似文献   

6.
Explants obtained from young sporophytes of Saccharina japonica were cultured in an artificial medium with different concentrations of Ca2+ (0–20?mM). The culture with 10?mM Ca2+ promoted the formation of unpigmented filamentous callus-like cells in the cortical layer. In contrast, explants cultured with 5?mM Ca2+ formed pigmented round callus-like cells in the epidermis at a high percentage. The thallus regeneration rate of explants in 5?mM Ca2+ was ten times higher than those of explants cultured in 10?mM Ca2+. Ambient Ca2+ concentrations also influenced the production of radical oxygen species (ROS) in explants. Explants cultured in 10?mM Ca2+ produced higher ROS than did those cultured in 5?mM. The ROS production was histologically observed mainly in the plasma membrane of callus-like cells using 2′, 7′-dichlorodihydrofluorescein diacetate. Moreover, a nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor, diphenyleneiodonium chloride, inhibited the ROS production with propagation of filamentous callus-like cells. These results suggest that Ca2+ concentration in medium influences the development of callus-like cells and thallus regeneration by affecting NADPH oxidase activity and ROS production in the plasma membrane of the callus-like cells. Therefore, the morphological form of callus-like cells and the development of thallus will be controlled by Ca2+ concentration in the medium.  相似文献   

7.
In vitro propagation protocol for Lilium oxypetalum, a high altitude Himalayan endemic lily, has been developed. Effect of explant types (i.e., callus and in vitro bulblet scales) and sucrose concentration [0–6.0% (w/v)] on in vitro bulblet regeneration of L. oxypetalum was tested in previously optimized Murashige and Skoog basal medium supplemented with 2.0 μM 6-benzyladenine and 0.1 μM α-naphthaleneacetic acid. Callus explants produced significantly (P < 0.01) higher number of bulblets per explant than bulblet scale explants. Of the different concentrations of sucrose tested, 4.5% (w/v) sucrose showed significantly (P < 0.01) higher percentage regeneration (i.e., 70.8 ± 4.2 and 79.2 ± 4.2% regeneration on callus and bulblet scale explants, respectively), and produced higher number of bulblets per explant (i.e., 9.0 ± 0.4 and 5.4 ± 0.5 bulblets on callus and bulblet scale explants, respectively). Regenerated bulblets developed 2–3 leaves when subcultured for 4 weeks and were subsequently transferred ex vitro with a survival rate of 66.7% after 6 weeks. Leaves of the survived plantlets became dry after growing ex vitro for 10 weeks, amongst which 86.4% re-sprouted after remaining dormant for 5–6 weeks and produced 1.5 bulblets per explant. Findings of the present study hold promise for efficiently multiplying the target species in view of its potential economic and conservation significance.  相似文献   

8.
Two axenic, in vitro liquid suspension cultures were established for Agardhiella subulata (C. Agardh) Kraft et Wynne, and their growth characteristics were compared. This study illustrated how reliable routes for the development of suspension cultures of macrophytic red algae of terete thallus morphology can be achieved for biotechnology applications. Undifferentiated filament clumps of 2–8 mm diameter were established by induction of callus-like tissue from thallus explants, and lightly branched microplantlets of 2–10 mm length were established by regeneration of filament clumps. The filament clumps were susceptible to regeneration. Adventitious shoot formation was reliably induced from 40% to 70% of the filament clumps by gentle mixing at 100 rev min?1 on an orbital shaker. The specific growth rate of the microplantlets was higher than the filament clumps in nonagitated well plate culture (4%–6% per day for microplantlets vs. 2%–3% per day for filament clumps) at 24° C and 8–36 μmol photons·m?2·s?1 irradiance (10:14 h LD cycle) when grown on ASP12 artificial seawater medium at pH 8.6–8.9 with 20%–25% per day medium replacement. Oxygen evolution rate vs. irradiance measurements showed that relative to the filament clumps, microplantlets had a higher maximum specific oxygen evolution rate (Po,max= 0.181 ± 0.035 vs. 0.130 ± 0.023 mmol O2·g?1 dry cell mass·h?1), but comparable respiration rate (Qo= 0.040 ± 0.013 vs. 0.033 ± 0.017 mmol O2·g?1 dry cell mass·h?1), compensation point (Ic= 3.8 ± 2.4 vs. 5.7 ± 1.2 μmol photons·m?2·s?1), and light intensity at 63.2% of saturation (Ik= 17.5 ± 3.9 vs. 14.9 ± 2.6 μmol photons·m?2·s?1). The microplantlet culture was more suitable for suspension culture development than the filament clump culture because it was morphologically stable and exhibited higher growth rates.  相似文献   

9.
As a basis for devising an in vitro screening programme, culture conditions were optimized so that tissue cultures from two resistant cultivars of Brassica napus ssp. oleifera (Mikado, Bienvenu) and two susceptible cultivars (Lesira, Ceres) could be differentiated using a disease scoring scheme, when inoculated with Leptosphaeria maculans. Tissues inoculated included thin cell layer explants from soil-grown plants and in vitro-grown shoot cultures and callus tissue formed on such explants. The period of incubation and the incubation temperature were of importance in the development of differential disease reactions. Increasing temperature generally resulted in an increase in infection and too great an incubation period resulted in total overgrowth of the tissue. Increasing concentrations (1 × 10?6 M-1 ×10?4 M) of the auxins 1-naphthylacetic acid (NAA), 2,4-dichlorophenoxyacetic acid (2,4-D) and mdole-3-acetic acid (IAA) in the culture medium, resulted in a decrease in disease score of the thin cell layer (TCL) explants from soil-grown plants. The cytokinins examined 6-benzyl-aminopurine (BAP) and 6-4-hydroxy-3-methyl-2-enylaminopurine (zeatin), reduced the extent of infection of the TCL explants when used in combination with the auxin NAA. Medium containing NAA at a concentration of 1 × 10?6 M in combination with BAP at a concentration of 1× 10?6 or 1 × 10?4 M allowed differentiation of the disease reactions of the resistant and susceptible cultivars, when the explants were incubated for 10 days at 20 °C after inoculation. Similar conditions of incubation and the addition of NAA (1 × 10?6 M) combined with BAP (1 × 10?6 M) to the medium also allowed the differentiation of the disease reactions on TCL explants from stems of in vitro shoot cultures of the cultivars Mikado and Lesira. Increasing concentrations of the auxin NAA and the cytokinin BAP resulted in a reduction in the mean disease score of the callus tissue produced on TCL explants from soil-grown plants, and NAA (1 × 10?5 M) combined with BAP (1 × 10?6 or 1 × 10?5 M) allowed differentiation of resistance and susceptibility in callus tissues when incubated for 5 days at 20 °C. 2,4-D did not allow differentiation of the cultivars. This was in contrast to the inoculation of callus tissue attached to TCL explants of in vitro shoot cultures, where combinations of 2,4-D and BAP at concentrations of 1 × 10?6 M allowed differentiation of the resistant and susceptible cultivars. These findings provide a basis for designing selection protocols of value in both traditional as well as in vitro breeding programmes to select lines of oilseed rape with resistance/novel resistance to L. maculans.  相似文献   

10.
An efficient protocol for in vitro organogenesis was achieved from callus-derived immature and mature petiole explants of West Indian gherkin (Cucumis anguria L.). Calluses were induced from immature petiole explants excised on 7-day-old in vitro seedlings and mature petiole explants of 40-day-old in vivo plants. The maximum frequency of immature petiole explants (98.0 %) and mature petiole (91.5 %) produced green, compact organogenic callus in Murashige and Skoog (MS) medium with Gamborg (B5) vitamins containing 30 g l?1 sucrose, 8.0 g l?1 agar and 4.0 μM naphthalene acetic acid (NAA) with 2.0 μM benzyl amino purine (BAP) after two successive subculture at 11 days interval. Adventitious shoots were produced from the organogenic callus when it was transferred to MSB5 medium supplemented with 3.0 μM TDZ, 1.0 μM NAA and 0.05 mM L-glutamine with shoot induction frequency of immature petiole 45 shoots and mature petiole 40 shoots per explant. The shoots were excised from callus and elongated in MSB5 medium fortified with 3.0 μM gibberellic acid (GA3). Then elongated shoots were rooted in half strength MSB5 medium supplemented with 3.0 μM indole 3-butyric acid (IBA). Histological analyses of the regeneration process confirmed the indirect organogenesis pattern. Plantlets with well-developed shoot and root systems were successfully acclimatized (95 %) in winter season and exhibited normal morphology and growth characteristics. The survival percentage differed with seasonal variations.  相似文献   

11.
The mechanism of ABA-induced callus formation was studied in sterile bud cultures of Citrus [Citrus sinensis (L.) Osbeck] on defined media. ABA was found to promote callus formation in the abscission zone between the petiole and the branch while inhibiting bud growth. The promoting effect of ABA was dependent on the physiological state of the shoot from which buds were excised, and on the size of the explant. Callus formation was highest in autumn and summer (i.e. younger) buds, and lowest in older buds excised from previous summer flush. GA was only slightly active in promoting callus formation when applied separately, but showed a highly synergistic effect when applied with ABA: maximal callus formation was attained at a combination of 10?5M ABA and 10?6 MGA in the medium. Subcultures of ABA-induced callus revealed that ABA inhibited the growth of isolated subcultured callus, while IAA and kinetin, and especially GA, promoted its rapid proliferation. A general decrease in protein synthesis was found in the abscission zone during the first 5 days of induction, while total protein content changed only slightly. The results suggest that ABA-induced callus formation in Citrus bud explants is a multiphasic phenomenon involving, at least, two stages: (1) activation of certain cells in the abscission zone by ABA, resulting in the formation of callus layers, and (2) subsequent proliferation of the callus tissue, which is dependent on the hormonal balance in the explant. This growth-promoting effect of ABA seems to be a general phenomenon in explants exposing a cut-surface.  相似文献   

12.
A new micropropagation system for Lycium barbarum (L.) was developed using root explants as starting material. Callus can be produced from root explants on Murashige and Skoog (MS) medium containing 0.2 mg dm−3 2,4-dichlorophenoxyacetic acid. After three subcultures on the same medium, callus was then transferred onto the MS medium supplemented with 500 mg dm−3 lactalbumin hydrolysate to induce somatic embryogenesis (SE). After 20 d, about 60 somatic embryos per 0.25 g(f.m.) of embryogenic callus were obtained but only about 10 % of embryos converted into plantlets. After acclimated in the greenhouse, all of the randomly selected plantlets had survived and were similar phenotypically to zygotic seedlings. In addition, the effects of irradiance, photoperiod, growth regulators, explant age and cold treatment on SE of root-derived callus were evaluated.  相似文献   

13.
Summary A system for micropropagation of Epimedium grandiflorum Morr. from rachis explants was developed. Explants were cultured onto Murashige and Skoog (MS) basal salts medium supplemented with (per L) 100 mg myo-inositol, 2 mg pyridoxine-HCl, 2 mg nicotinic acid, 0.40 mg thiamine-HCl, 30 g sucrose, and 2 g Phytagel. The medium also contained 2,4-dichlorophenoxyacetic acid (2,4-D) at 0.1, 0.2, or 0.25 mg/L (0.5, 0.9, or 1.1 μM) combined with either N6-benzyladenine (BA) or 2-isopentenyl adenine (2ip) at 2.5, 5, or 10 mg/L (11.1, 22.2, or 44.4 μM BA or 12.3, 24.6, or 49.2 μM 2iP). Cultures were maintained at a 16-h photoperiod (40 μmol/m2/s) and 23±2° C. Callogenesis preceded shoot regeneration. Callus formation increased with higher 2,4-D concentrations. The highest percent regeneration, 83% of explants, was obtained on 10 mg BA per L (44.4 μM) combined with 0.25 mg 2,4-D per L (1.1 μM). The maximum number of shoots, 15 per explant, was obtained from explants cultured on a medium containing 0.1 mg 2,4-D per L (0.45 μM) combined with 2.5 mg BA per L (11.1 μM). Maximum shoot length, 0.4 cm, was obtained on 5 mg BA per L (22.2 μM) combined with 0.2 mg 2,4-D per L (0.9 μM). To produce whole plants, shoots were separated and rooted on hormone-free medium containing 1 g activated charcoal per L. Rachises provided an excellent source of explants for Epimedium micropropagation and proved suitable for callus production.  相似文献   

14.
In vitro regeneration protocol for Anethum graveolens (Apiaceae) was developed using leaf explants. MS basal medium used in experiments was augmented with various hormones for caulogenic and rhizogenic response. The optimum callus induction (100%) was obtained by leaf explants on MS media fortified with BA (0.5 mg l−1) singly and in combination with NAA (0.1 and 0.2 mg l−1). BA at 0.5 mg l−1, KN at 1.0 mg l−1 and NAA at 0.1 mg l−1 induced highest number of multiple shoots (10.0 ± 0.25) per explant and they also showed in vitro flowering within 3 weeks of culture. Influence of adenine sulfate on regeneration frequency of callus was evaluated. The highest frequency of rooting (100%) with 6.0 ± 0.25 roots per explants was obtained in one-fourth strength MS medium supplemented with 1/4 MS + IBA 0.5 mg l−1 within 4 weeks of transfer to the rooting medium. In vitro flowering (35%) was obtained with MS fortified with BA alone and also in combination with KN and NAA (5.3 ± 0.42 flowers per explants). In vitro flowering response was tested with different carbohydrates (fructose, glucose, mannose and sorbitol) and optimized. Hardening was successfully attained under controlled conditions inside the plant tissue culture room. The proposed method could effectively be applied for the conservation and clonal propagation to meet the pharmaceutical demands of this medicinally important species.  相似文献   

15.
Phlomis armeniaca Willd. is a medicinal plant in the Lamiaceae family endemic to Turkey. The present study describes efficient plant regeneration and callus induction protocols for P. armeniaca and compares phenolic profiles, total phenol and flavonoid contents, and free radical scavenging activity of in vitro-derived tissues. Stem node explants from germinated seedlings were cultured on Murashige and Skoog medium (MS) supplemented with 75 plant growth regulator (PGR) combinations. The highest shoot number per explant, frequency of shoot proliferation, and frequency of highly proliferated, green, compact callus were obtained on MS medium containing 0.25 mg L?1 thidiazuron (TDZ) and 0.25 mg L?1 indole-3-acetic acid (IAA). The best root formation was on MS basal medium (control). Methanol extract of leaves obtained from regenerants contained higher total phenol and flavonoid contents than the callus extract. The callus extract showed stronger free radical scavenging activity than leaves with IC50 [concentration inhibiting 50% of 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical] values of 4.30 ± 0.08 and 2.21 ± 0.04 mg g?1 dry weight in leaves and callus, respectively. Apigenin, caffeic acid, p-coumaric acid, luteolin, rutin hydrate, vanillic acid, ferulic acid, salicylic acid, sinapic acid, and chlorogenic acid were detected by liquid chromatography–electrospray ionization multistage tandem mass spectrometry (LC-ESI-MS/MS) analysis in in vitro-grown leaves and callus tissue. Rutin hydrate, p-coumaric acid, and vanillic acid were found at approximately tenfold higher levels in callus than in leaves. This new micropropagation protocol, the first for P. armeniaca, could be used in industrial production for new herbal tea and germplasm conservation.  相似文献   

16.
Summary In vitro clonal propagation of 18–20-yr-old Holarrhena antidysenterica tress has been achieved by employing nodal explants. The tree explants showed marked seasonal variation in their morphogenic response under in vitro conditions. Maximum response was obtained from the beginning of May to the end of July, followed by a gradual decline, finally dropping to zero from October to February. The explants induced multiple shoots only on cytokinin-containing medium. Several cytokinins [N6-benzyladenine (BA), N6-(2-isopentenyl) adenine (2ip), 6-furfuryl aminopurine (Kn), and adenine sulfate (Ads)] were assayed. The best response was achieved with 15 μM BA in which 62.5% of cultures produced 2.75±0.2 shoots per explant with 3.56±0.2 cm average length. Amongsth the three heavy metals assayed, silver nitrate (AgNO3) significantly improved the response. This compound enhanced both the percentage of responding cultures (86.6%) and the average shoot number (4.73±0.2) at a concentration of 20mgl−1. Further improvement in the morphogenic response occurred when explants from in vitro shoots were employed instead of mature trees. In this case, the percentage of morphogenic cultures was increased to 100% at the third subculture with an average of 11.45±0.3 shoots per explant. Regenerated shoots were rooted in half-strength Murashige and Skoog medium with 10 μM indole-3-acetic acid. The plantlets were successfully acclimatized in soil.  相似文献   

17.
Procedures have been developed that increase the rate of shoot regeneration of hybrid seed geranium from month-old primary callus cultures. Hybrid geranium callus tissue covered with green nodular structures was initiated by placing shoot tip explants on solidified Murashige & Skoog medium (MS) supplemented with 2.0 mgl-1 zeatin and 1.9 mgl-1 indoleacetic acid. Hybrids Red Orbit, White Orbit and Scarlet Orbit were shown to produce 5–50 shoot primordia per explant when callus was initiated on this medium. Regal geranium callus was initiated by placing leaf explants on MS medium supplemented with 2.0 mgl-1 6-benzylaminopurine and 2.0 mgl-1 naphthaleneacetic acid. Regal geranium cultivars Tiny Tot and Lavender Grand Slam were shown to produce between 2–50 shoot primordia per explant when initiated on the same medium.  相似文献   

18.
An explant containing the primary shoot meristem was dissected from intact tomato seedlings after thawing from liquid nitrogen. Surviving explants produced shoots directly by normal meristem growth when cultured in the presence of gibberellic acid. Without gibberellic acid all surviving explants produced callus tissue and subsequently adventitious shoots, with no direct outgrowth of the primary meristem.Dimethyl sulphoxide (15%) in culture medium and a cooling rate changing continuously from 20 to 55 °C min?1 between 0 and ?120 °C were required for optimal survival.Nonfrozen material produced shoots directly without the requirement for gibberellic acid indicating that hormonal regulation of organised growth by the shoot meristem had been altered by the freeze/ thaw process.  相似文献   

19.
Two species of Curcuma (C. caesia and C. zedoaria) have been propagated through tissue culture using rhizome bud explant. The best response for shoot multiplication was obtained on MS basal medium supplemented with 4 mg l?1 BAP and 1.5 mg l?1 NAA for C. caesia (3.5 ± 0.79 shoots per explant) and 1 mg l?1 BAP + 0.5 mg l?1 NAA for C. zedoaria (4.5 ± 0.15 shoots per explant). A maximum of 9.2 ± 0.15 and 8.9 ± 0.09 roots per explant were obtained for C. caesia and C. zedoaria, respectively when MS was supplemented with 0.5 mg l?1 IAA. The rooted plants could be established in soil.  相似文献   

20.
Starting material for the tissue cultures was the meristematic basal zone of the blade. Pieces treated 30–60 sec in hypochlorite solution were rinsed and placed on agar plates made from the artificial seawater ASP6 F2 solidified with 6 g agar l?1. After 6 weeks colorless callus-like tissue grew out from some pieces. Treatment with activated charcoal removed some inhibiting substances from the agar medium as numbers of callus developing pieces increased on such plates. A combination of 10?5 M NAA and 5 · 10?7 M kinetin gave a yellow-brown tissue. A differentiation in the tissue from L. hyperborea was observed as well as the formation of meiospores, which grew out into male and female plants. Thalli of sporophytes were observed but they never reached a length of more than one mm before they died or changed to an irregular pattern of growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号