首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Contact guidance was studied by light, scanning (SEM) and transmission electron microscopy (TEM) in cultures of human gingival fibroblasts cultured on grooved surfaces. The grooves were originally produced in silicon wafers by micromachining, a process which is based on the methods used to fabricate microelectronic components, and the grooved surfaces were then replicated in Epon. Micromachining enables precise control of groove depth, groove spacing, and groove shape to be obtained. In silicon wafers with appropriate crystal orientation, a second smaller set of grooves, called the minor grooves, is found on the floor of the major grooves. The minor grooves are oriented at a 54 degree angle to the major grooves, so that cells cultured on such surfaces are concurrently exposed to grooves of different dimensions which direct cell migration in different directions. Marked fibroblast alignment with the major grooves was observed both within the grooves and in the intervening flat ridges between the grooves. In addition, shallow and closely spaced grooves in epon or titanium-coated polymer or silicon were also capable of orienting fibroblasts. Although the minor grooves were able to orient fibroblasts in the absence of any other orienting influence, when fibroblasts were concurrently exposed to major and minor grooves the cells aligned themselves with the major grooves. TEM showed that the cellular filamentous cytoskeletal elements reflected the orientation of the cell as a whole. Fibroblasts on grooved substrata appeared to have more filopodia and to round up more frequently than fibroblasts cultured on flat substrata. It is suggested that both the mechanical properties of the cytoskeleton as well as the durability of the cellular attachment to groove edges may play a role in the contact guidance effected by grooved surfaces produced by micromachining.  相似文献   

2.
Topographical control of cell behaviour: II. Multiple grooved substrata   总被引:8,自引:0,他引:8  
Electronics miniaturization techniques have been used to fabricate substrata to study contact guidance of cells. Topographical guidance of three cell types (BHK, MDCK and chick embryo cerebral neurones) was examined on grooved substrata of varying dimensions (4-24 microns repeat, 0.2-1.9 microns depth). Alignment to within 10 degrees of groove direction was used as our criterion for guidance. It was found that repeat spacing had a small effect (alignment is inversely proportional to spacing) but that groove depth proved to be much more important in determining cell alignment, which increased with depth. Measurements of cell alignment and examination by scanning electron microscopy showed that BHK cells and MDCK cells interacted differently with grooved substrata, and also that the response of MDCK cells depended on whether or not the cells were isolated or part of an epithelial cell island. Guidance by a multiple topographical cue is greater than could be predicted from cells' reactions to a single cue (Clark et al. Development 99: 439-448, 1987). Substratum topography is considered to be an important cue in many developmental processes. Cellular properties such as cytoskeletal organisation, cell adhesion and the interaction with other cells are discussed as being factors determining a cells susceptibility to topography.  相似文献   

3.
Contact guidance was studied in cultures of chick heart fibroblasts and kidney epithelium by observing the relation of these cells to fine grooves ruled in plastic culture dishes, and also to ridges or grooves in plastic replicas moulded from rulings made in metal. The relation of the cells to the regularly arranged collagen fibers of fish scales was also studied by scanning and transmission electron microscopy (SEM and TEM). On the rulings with groove periodicity in the range of 5 μm about 75% of the cells were aligned, but on grooves separated about 30 μm only 60% of cells were aligned. Cytoplasmic components of the cells such as microfilaments maintained a constant relation to the axis of the cell as a whole, but they, and also any cytoplasmic extensions, such as filopodia, bore no consistent relation to any features of the substratum, whether or not the cells were aligned. The cells were not guided to become aligned by filopodia or lamellipodia. The most remarkable and consistent finding was that cells bridged over grooves without contacting their surfaces, whether the grooves were 2 or 10 μm wide. The bridging was a characteristic of cells growing on any of the substrates, including those with grooves or ridges, and also of collagen substrates made from fish scales. A hypothesis is proposed to explain the contact guidance seen on ridged or grooved substrata and on the orientated collagen fibers involving the observed cell bridging and the fact that linear cell-to-substrate contacts (focal contacts) are known to be vital for cell movement. The cell is considered to be stiff so that as it bridges over much of the substratum there is only a limited area available for contact. Assuming that focal contacts need to be of a certain length to provide adhesion, a cell orientation that presents the maximum linear contact would be favoured. An examination of the results of this study and of the reports in the literature shows that cells on these types of substrata take on an orientation such that linear contacts would be expected to predominate.  相似文献   

4.
Surface properties, including topography and chemistry, are of prime importance in establishing the response of tissues to biomaterials. Microfabrication techniques have enabled the production of precisely controlled surface topographies that have been used as substrata for cells in culture and on devices implanted in vivo. This article reviews aspects of cell behavior involved in tissue response to implants with an emphasis on the effects of topography. Microfabricated grooved surfaces produce orientation and directed locomotion of epithelial cells in vitro and can inhibit epithelial downgrowth on implants. The effects depend on the groove dimensions and they are modified by epithelial cell-cell interactions. Fibroblasts similarly exhibit contact guidance on grooved surfaces, but fibroblast shape in vitro differs markedly from that found in vivo. Surface topography is important in establishing tissue organization adjacent to implants, with smooth surfaces generally being associated with fibrous tissue encapsulation. Grooved topographies appear to have promise in reducing encapsulation in the short term, but additional studies employing three-dimensional reconstruction and diverse topographies are needed to understand better the process of connective-tissue organization adjacent to implants. Microfabricated surfaces can increase the frequency of mineralized bone-like tissue nodules adjacent to subcutaneously implanted surfaces in rats. Orientation of these nodules with grooves occurs both in culture and on implants. Detailed comparisons of cell behavior on micromachined substrata in vitro and in vivo are difficult because of the number and complexity of factors, such as population density and micromotion, that can differ between these conditions.  相似文献   

5.
We studied the influence of substrata topography on the behaviour of murine P388D1 macrophage cell line. Cells were plated on plain fused silica substrata or substrata with microfabricated grooves of varying depth and width. Cell spread area, elongation, orientation and F-actin content were measured on plain substratum and 6 sets of gratings. The speed and persistence of cell movement were also studied. We found that patterned substrata substantially activated cell spreading and elongation and significantly increased the persistence and speed of cell movement, shallow grooves being more effective than deep ones. The contact of cells with micropatterned substrata significantly increased the F-actin content in cells. The sensitivity of LPS (lipopolisaccharide) stimulated and unstimulated macrophages to topographical cues was also compared.  相似文献   

6.
 Fusion of mononucleated myoblasts into parallel arrays of mutinucleated myotubes is an essential step in skeletal myogenesis. The formation of such a highly ordered structure requires myoblasts to come together, orient and align in the correct location prior to fusion. We report here that fetal and neonatal myoblasts can use topographical features as strong guidance cues in vitro. Myoblasts were cultured on multiple grooved substrata of varying dimensions, and the axial orientations of individual cells were recorded. Both fetal and neonatal myoblasts aligned parallel with the direction of deep grooves (2.3–6.0 μm), which is correlated well with the location of myoblasts in similar sized grooves during secondary myogenesis. Fetal myoblasts also responded to shallower grooves (0.04–0.14 μm) by aligning parallel or perpendicular to the direction of the grooves, indicating the ability of these cells to respond to fine elements normally encountered within the developing muscle architecture. In contrast, neonatal myoblasts failed to respond to shallow grooves, adding to the suggestion that fetal and neonatal myoblasts may represent separate populations of myoblasts. Overall, the results demonstrate that myoblasts respond to large and small features of the physical topography in vitro and indicate that structural elements in the microenvironment of the muscle may play a critical role in myoblast spatial organization during myogenesis. Received: 29 May 1998 / Accepted: 17 February 1999  相似文献   

7.
We studied the guidance and activation of macrophages from the P388D1 cell line and rat peritoneum by topographic features on a nanometric scale. Cells were plated on plain fused silica substrata or substrata with microfabricated grooves and steps, 30–282 nm deep. The contact of cells with the patterned surface activated cell spreading and adhesion and increased the number of protrusions of the cell membrane. These changes were accompanied by an increase in the amount of F-actin in cells. The accumulation of F-actin and vinculin in cells was observed along the edges of single steps or grooves. Formation of focal contacts along discontinuities in the substratum was accompanied by the phosphorylation of tyrosine colocalized with F-actin and vinculin. A similar pattern of staining was seen in cells stained for vitronectin receptor, αV integrin, but not for integrins α5β1 or α3β1. Cells cultured on nanogrooves showed a higher phagocytotic activity than cells cultured on plain substrata. We show that macrophages can react to ultrafine features of topography of a size comparable to that of a single collagen fiber and become activated by the contact with topographic features.  相似文献   

8.
Nanofabricated model surfaces and digital image analysis of cell shape were used to address the importance of a continuous sharp edge in the alignment of cells to shallow surface grooves. The grooved model surfaces had either continuous or discontinuous edges of various depths (40-400 nm) but identical surface chemistry and groove/ridge dimensions (15 microm wide). Epithelial cells were cultured on the model surfaces for 10 and 24 h. Fluorescence microscopy combined with image analysis were used to quantify cell area and alignment and to make cell shape classifications of individual cells. The degrees of alignment of cells and the percentages of elongated cell classes increased with groove depth on samples with continuous grooves. Two main differences, with regard to cell response, were observed between the continuous and discontinuous grooved surfaces. First, significantly fewer cells aligned to surface grooves with discontinuous edges than to grooves with continuous edges. Second, there were lower percentages of the elongated cell classes on discontinuous grooves than on continuous ones. We concluded that grooved surfaces with continuous edges are more potent in aligning and inducing elongated cells. The results from the present study suggest that a mechanism of alignment involving orientation along a continuous edge is likely.  相似文献   

9.
Fibroblasts alter their shape, orientation, and direction of movement to align with the direction of micromachined grooves, exhibiting a phenomenon termed topographic guidance. In this study we examined the ability of the microtubule and actin microfilament bundle systems, either in combination with or independently from each other, to affect alignment of human gingival fibroblasts on sets of micromachined grooves of different dimensions. To assess specifically the role of microtubules and actin microfilament bundles, we examined cell alignment, over time, in the presence or absence of specific inhibitors of microtubules (colcemid) and actin microfilament bundles (cytochalasin B). Using time-lapse videomicroscopy, computer-assisted morphometry and confocal microscopy of the cytoskeleton we found that the dimensions of the grooves influenced the kinetics of cell alignment irrespective of whether cytoskeletons were intact or disturbed. Either an intact microtubule or an intact actin microfilament-bundle system could produce cell alignment with an appropriate substratum. Cells with intact microtubules aligned to smaller topographic features than cells deficient in microtubules. Moreover, cells deficient in microtubules required significantly more time to become aligned. An unexpected finding was that very narrow 0.5-μm-wide and 0.5-μm-deep grooves aligned cells deficient in actin microfilament bundles (cytochalasin B-treated) better than untreated control cells but failed to align cells deficient in microtubules yet containing microfilament bundles (colcemid treated). Thus, the microtubule system appeared to be the principal but not sole cytoskeletal substratum-response mechanism affecting topographic guidance of human gingival fibroblasts. This study also demonstrated that micromachined substrata can be useful in dissecting the role of microtubules and actin microfilament bundles in cell behaviors such as contact guidance and cell migration without the use of drugs such as cytochalasin and colcemid.  相似文献   

10.
Nerve cell growth is influenced by guiding properties of its substratum. Microfabricated cell culture substrata were used to determine whether rat dorsal root ganglia (DRG) nerve cells could detect and integrate simultaneous model adhesive and topographic guidance cues. Interference reflection microscopy demonstrated strips of surface contact under the marginal zone of growth cones on planar surfaces which were coincident with actin immunostaining at the periphery of the C-domain. Clusters of focal contacts below the growth cone C-domain delineated the track edges on adhesive gratings. Neurite extension was guided most effectively by adhesive gratings of 25-μm period where highly aligned cells were typically bipolar. Nanometric steps and differences in surface texture between the adhesive tracks was detected using atomic force microscopy (AFM). Neurites did not align to 12- to 100-μm pitch grooves which were less than 1 μm deep. The proportion of aligned neurites increased with groove depth. Maximum neurite alignment was seen when 6-μm-deep, 25-μm-wide grooves contained superimposed parallel adhesive tracks of matched pitch. Neurites aligned preferentially to adhesive tracks superimposed orthogonally over shallow grooves (1 μm deep). Primary neurites aligned increasingly to grooves with orthogonal adhesive tracks as their depth increased. These neurites frequently had highly branched terminal arbours aligned to the orthogonal adhesive tracks. We conclude that morphogenetic guidance cues can interact synergistically and hierarchically to steer nerve cell growth.  相似文献   

11.
Guided cell movement is a fundamental process in development and regeneration. We have used microengineered culture substrates to study the interaction between model topographic and adhesive guidance cues in steering BHK cell orientation. Grooves 0.1, 0.5, 1.0, 3.0, and 6.0 μm deep together with pitch-matched aminosilane tracks 5, 12, 25, 50, and 100 μm wide were fabricated on fused silica substrates using photolithographic and dry-etching techniques. The cues were presented to the cells individually, simultaneously in parallel and orthogonally opposed. Cells aligned most strongly to 25-μm-wide adhesive tracks and to 5-μm-wide, 6-μm-deep grooves. Stress fibers and vinculin were found to align with the adhesive tracks and to the grooves and ridges. Cell alignment was profoundly enhanced on all surfaces that presented both cues in parallel. Cells were able to switch alignment from ridges to grooves, and vice versa, depending on the location of superimposed adhesive tracks. Cells aligned preferentially to adhesive tracks superimposed orthogonally over grooves of matched pitch, traversing numerous grooves and ridges. The strength of the cues was more closely matched on narrower 3- and 6-μm-deep gratings with cells showing evidence of alignment to both cues. Confocal fluorescence microscopy revealed two groups of mutually opposed f-actin stress fibers within the same cell, one oriented with the topographic cues and the other with the adhesive cues. However, the adhesive response was consistently dominant. We conclude that cells are able to detect and respond to multiple guidance cues simultaneously. The adhesive and topographic guidance cues modeled here were capable of interacting both synergistically and hierarchically to guide cell orientation.  相似文献   

12.
The cytoskeleton of murine peritoneal macrophages has been examined by a combination of morphological techniques, including phase-contrast light microscopy, scanning electron microscopy (SEM), and several transmission electron microscopic (TEM) methods. The cytoskeleton of cells spreading on glass, Formvar-carbon, and polystyrene substrata was exposed by brief extraction with non-ionic detergent, and stabilized by exposure to heavy meromyosin, myosin subfragment-1 or tropomyosin. In the spreading lamellae and lamellipodia the cytoskeleton is principally composed of filamentous actin, which appears as dense foci, interconnected by radiating filaments and filament bundles. The actin of the foci, as well as individual actin filaments, are connected to the substratum by transmembrane linkages which appear as filaments that pass through the plane of the (extracted) plasma membrane. Thus, the results of this study indicate that the adhesion of macrophages to substrata for the purposes of spreading and motility may be a function of transmembrane elements which link actin to substrata. Further, the formation of actin foci may serve to stiffen and stabilize the cytoskeleton, conditioning it to function in cell adhesion, spreading and locomotion.  相似文献   

13.
Locomotion of sponges and its physical mechanism   总被引:6,自引:0,他引:6  
Active locomotion by individual marine and freshwater sponges across glass, plastic and rubber substrata has been studied in relation to the behavior of the sponges' component cells. Sequential tracing of sponge outlines on aquarium walls shows that sponges can crawl up to 160 microns/hr (4 mm/day). Time-lapse cinemicrography and scanning electron microscopy reveal that moving sponges possess distinctive leading edges composed of motile cells. Sponge locomotion was found to be mechanically similar to the spreading of cell sheets in tissue culture both with respect to exertion of traction (which causes the wrinkling of rubber substrata) and with respect to the patterns of adhesive contacts formed with the substratum (as observed by interference reflection microscopy). Other similarities include the orientation of sponge locomotion along grooves and the preferential extension onto more adhesive substrata. Neither the patterns of wrinkling produced in rubber substrata nor the distributions of adhesive contacts seen by interference reflection microscopy show evidence of periodic, propagating waves of surface contractions, such as would be expected if the sponges' mechanism of locomotion were by peristalsis or locomotory waves. Our observations suggest that the displacement of sponges is achieved by the cumulative crawling locomotion of the cells that compose the sponge's lower surface. This mode of organismal locomotion suggests new explanations for the plasticity of sponge morphology, seems not to have been reported from other metazoans, and has significant ecological implications.  相似文献   

14.
A SEM and TEM evaluation of adhesion of HeLa-S3 cells to suspensions of culture microcarriers coated with various substrata revealed two unique cell morphologies. One is similar to that for cells attaching to culture dishes and the other one only appeared with microcarriers stirred under high shear conditions. The usual appearance of a spreading cell is to change from a sphere to the shape of a 'fried egg'. This proceeded in HeLa cells by a radial extension of the filopodia in between which the cytoplasm subsequently filled. Fluorescent antibody staining of actin suggested that more actin was present at the periphery of the spreading edges of the cell than inwards. The above morphology was characteristic of HeLa cell attachment to gelatin-coated microcarriers. However, the morphology of the attachment to microcarriers coated with non-biological substances such as negatively charged sulfonate groups or positively charged polyethyleneimine or even with the attachment protein laminin was quite different. Here the cells attached and began to spread as with gelatin-microcarriers, however, the spreading was not radial but occurred from one or two major regions of the cell periphery. The cell then appeared to constrict with the formation of a substratum attached pedestal upon which the cell body was perched. With time the cell pinched-off from pedestal. Evidence indicated that the pedestal was quite fragile. Furthermore, fluorescent antiactin staining indicated that the initial spreading region contained abundant actin which was depleted upon pedestal formation and detachment. The above in addition to previous kinetic measurements provided the information to classify cell substrate attachment materials into two distinct types. One is specific substrata which promote normal attachment and spreading and appear to interact with specific cell surface proteins. The other is non-specific substrata which in high shear conditions induces pedestal formation followed by pinching-off of the cells. Had previous attachment assays been done under high shear as done with the microcarriers and HeLa cells it is likely that substrata classified as specific might be reclassified into non-specific.  相似文献   

15.
Thermodynamic aspects of cell spreading on solid substrata   总被引:1,自引:0,他引:1  
To verify the validity of thermodynamic approaches to the prediction of cellular behavior, cell spreading of three different cell types on solid substrata was determined in vitro. Solid substrata as well as cell types were selected on the basis of their surface free energies, calculated from contact angle measurements. The surface free energies of the solid substrata ranged from 18-116 erg cm-2. To measure contact angles on cells, a technique was developed in which a multilayer of cells was deposited on a filter and air dried. Cell surface free energies ranged from 60 erg cm-2 for fibroblasts, and 57 for smooth muscle cells, to 91 for HeLa epithelial cells. After adsorption of serum proteins, cell surface free energies of all three cell types converged to approx 74 erg cm-2. The spreading of these cell types from RPMI 1640 medium on the various solid substrata showed that both in the presence and in the absence of serum proteins in the medium, cells spread poorly on low energy substrata (Ys less than 50 erg cm-2), whereas good cell spreading was observed on the higher energy substrata. Calculations of the interfacial free energy of adhesion (delta Fadh) show that delta Fadh decreases with increasing Ys, and equals zero around 45 erg cm-2 for all three cell types in the presence of serum proteins and for HeLa epithelium cells in the absence of serum proteins. This explains the spreading of these cells on the various substrata upon a thermodynamic basis. The results clearly show that substratum surface free energy has a predictive value with respect to cell spreading in vitro, both in the presence and absence of serum proteins. It is noted, however, that interfacial thermodynamics fail to explain the behavior of fibroblasts and smooth muscle cells in the absence of serum proteins, most likely because of the relatively high surface charges of these two cell types.  相似文献   

16.
This study aimed to investigate the effects of submicron‐grooved topography and surface cell affinity on the attachment, proliferation and collagen synthesis of anterior cruciate ligament (ACL) cells. Two grooved polystyrene (PS) surfaces (equal groove/ridge width of 800 nm) with a groove depth of 100 or 700 nm were fabricated and modified by oxygen plasma treatment, dopamine deposition and conjugation of RGD‐containing peptides to enhance cell affinity. The elongation and alignment of ACL cells was enhanced by grooved structures with increasing groove depths regardless of surface chemistry. On the other hand, cell spreading and proliferation mainly depended on surface chemistry, in accordance with surface cell affinity: O2 plasma < dopamine deposition < RGD conjugation. The synthesis of type I collagen was the highest by the ACL cells cultured on the 700 nm grooved surface conjugated with RGD peptides, indicating that both surface grooved topography and chemistry play a role in modulating collagen production of ACL cells. Furthermore, the type I collagen deposited on the 700 nm PS surface was aligned with grooves/ridges. Our results indicated that both ligand presentation and cell alignment are important in the physiological activities of ACL fibroblasts. Such information is critical for design of biomaterials for ACL tissue engineering. Biotechnol. Bioeng. 2013; 110: 327–337. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
The spreading and locomotion of cells on substrata can be regarded as a result of the interaction of two groups of processes: pseudopodial attachment and stabilization. Stabilization processes integrate the results of previous pseudopodial reactions and determine the sites of further extensions. Stabilization mechanisms are probably based on the changes in the distribution of cytoskeletal elements. Usually the direction of pseudopodial extensions is approximately parallel to the predominant orientation of actin microfilaments in the nearby cortex. Two variants of stabilization can be distinguished: microtubule-independent and microtubule-dependent processes. Contact paralysis of the upper surfaces of epithelial sheets is possibly a special case of microtubule-independent stabilization. In the course of spreading, the cell may acquire a polarized or discoid shape depending on the efficiency of attachment.  相似文献   

18.
Effects of substratum morphology on cell physiology   总被引:3,自引:0,他引:3  
Among the host of substratum properties that affect animal cell behavior, surface morphology has received relatively little attention. The earliest effect of surface morphology on animal cells was discovered almost a century ago when it was found that cells became oriented in response to the underlying topography. This phenomenon is now commonly known as contact guidance. From then until very recentrly, little progress has been made in understanding the role of surface morphology on cell behavior, primarily due to a lack of defined surfaces with uniform morphologies. This problem has been solved recently with the development of photolithographic techniques to prepare substrata with well defined and uniform surface morphologies. Availability of such surfaces has facilitated systematic in vitro experiments to study influence of surface morphology on diverse cell physiological aspects such as adhesion, growth, and function. For example, these studies have shown that surfaces with uniform multipls parallel grooves can enhance cell adhesion by confining cells in grooves and by mechanically interlocking them. Several independent studies have demosterated that cell shape is a major determinant of cell growth and function. Because surface morphology has been shown to modulate the extent of cell spreading and cell shape, its effects on cell growth and function appear to be mediated via this biological coupling between cell shape and function. New evidence in the cell biology literature is emerging to suggest that surface morphology could affect other cell behavioral properties such as post-translational modifications. Further elucidation of such effects will enable better designs for implant and cell culture substrata.  相似文献   

19.
In manganese-containing medium, tissue cells can spread on albumin and other substrata typically nonadhesive for cells in calcium/magnesium-containing medium. To learn whether integrin receptors play a role in Mn-dependent adhesion, we tested the effects of RGD peptides and polyclonal anti-fibronectin receptor antibodies on BHK cell spreading on fibronectin and albumin-coated substrata. In Ca/Mg-containing medium on fibronectin substrata, the RGD-related peptides GRG-DSP and GRGDS but not RGDS inhibited cell spreading. In Mn-containing medium, spreading on albumin was inhibited by GRGDSP and GRGDS and also by RGDS. GRGESP, on the other hand, did not inhibit cell spreading under any condition tested. Antibodies directed against fibronectin receptors also inhibited Mn-dependent cell spreading on albumin substrata, but higher levels of antibody were required than were necessary to inhibit Ca/Mg-dependent spreading on fibronectin. On the basis of these results, we suggest that integrin receptors, but probably not fibronectin receptors, mediate Mn-dependent BHK cell spreading on albumin.  相似文献   

20.
Spreading of mouse fibroblasts on the substrate with multiple spikes   总被引:1,自引:0,他引:1  
Mouse embryo fibroblasts were cultivated on special substrates with discontinuous surfaces. The substrates were silicon plates with multiple vertical (65-90 microns height) spike-like silicon microcrystals evenly distributed on the plate surfaces. It was shown that the cells were successfully spread and flattened on these substrates. The spread cells formed several discrete attachment zones at the tops and side surfaces of the spikes; these zones were separated from one another by distances considerably greater than the diameter of the unspread cell. At early stages of spreading the unspread cells attached to the tops of single spikes and extended long filopodia attached to the distant spikes. At later stages the lamellae were formed between the filopodia: probably these filopodia served as guidelines for extension of lamellae and progressive cell spreading. These experiments demonstrated that continuity of substrate surface is not a necessary condition for advanced cell spreading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号