首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
We show that changes in the nucleotide sequence alter the DNA conformation in the crystal structures of p63 DNA-binding domain (p63DBD) bound to its response element. The conformation of a 22-bp canonical response element containing an AT spacer between the two half-sites is unaltered compared with that containing a TA spacer, exhibiting superhelical trajectory. In contrast, a GC spacers abolishes the DNA superhelical trajectory and exhibits less bent DNA, suggesting that increased GC content accompanies increased double helix rigidity. A 19-bp DNA, representing an AT-rich response element with overlapping half-sites, maintains superhelical trajectory and reveals two interacting p63DBD dimers crossing one another at 120°. p63DBD binding assays to response elements of increasing length complement the structural studies. We propose that DNA deformation may affect promoter activity, that the ability of p63DBD to bind to superhelical DNA suggests that it is capable of binding to nucleosomes, and that overlapping response elements may provide a mechanism to distinguish between p63 and p53 promoters.  相似文献   

5.
DNA Photolyase is a flavoprotein that uses light to repair cyclobutylpyrimidine dimers in DNA. From considerations of the crystal structure of the protein, it has been hypothesized that the dimer lesion is flipped out of the DNA double helix into the substrate binding pocket. We have used a fluorescent adenine analog, 2-aminopurine (2-Ap), as a probe of local double helical structure upon binding of the substrate to the protein. Our results show that the local structure around the thymidine lesion changes dramatically upon binding to Photolyase. This is consistent with base flipping of the lesion into the protein binding cavity with concomitant destacking of the opposing complementary 2-Ap nucleotide.  相似文献   

6.
7.
8.
9.
DNA damage-dependent signaling by the DNA mismatch repair (MMR) system is thought to mediate cytotoxicity of the anti-tumor drug cisplatin through molecular mechanisms that could differ from those required for normal mismatch repair. The present study investigated whether ATP-dependent biochemical properties of Escherichia coli MutS protein differ when the protein interacts with a DNA oligonucleotide containing a GT mismatch versus a unique site specifically placed cisplatin compound lesion, a cisplatin 1,2-d(GpG) intrastrand cross-link with a mispaired thymine opposite the 3' platinated guanine. MutS exhibited substantial affinity for this compound lesion in hydrolytic and in non-hydrolytic conditions of ATP, contrasting with the normal nucleotide inhibition effect of mispair binding. The cisplatin compound lesion was also shown to stimulate poorly MutS ATPase activity to approach the hydrolysis rate induced by nonspecific DNA. Moreover, MutS undergoes distinct conformation changes in the presence of the compound lesion and ATP under hydrolytic conditions as shown by limited proteolysis. In the absence of MutS, the cisplatin compound lesion was shown to induce a 39 degrees rigid bending of the DNA double helix contrasting with an unbent state for DNA containing a GT mispair. Furthermore, an unbent DNA substrate containing a monofunctional adduct mimicking a cisplatin residue failed to form a persistent nucleoprotein complex with MutS in the presence of adenine nucleotide. We propose that DNA bending could play a role in MutS biochemical modulations induced by a compound lesion and that cisplatin DNA damage signaling by the MMR system could be modulated in a direct mode.  相似文献   

10.
11.
12.
Escherichia coli SSB (EcSSB) is a model single-stranded DNA (ssDNA) binding protein critical in genome maintenance. EcSSB forms homotetramers that wrap ssDNA in multiple conformations to facilitate DNA replication and repair. Here we measure the binding and wrapping of many EcSSB proteins to a single long ssDNA substrate held at fixed tensions. We show EcSSB binds in a biphasic manner, where initial wrapping events are followed by unwrapping events as ssDNA-bound protein density passes critical saturation and high free protein concentration increases the fraction of EcSSBs in less-wrapped conformations. By destabilizing EcSSB wrapping through increased substrate tension, decreased substrate length, and protein mutation, we also directly observe an unstable bound but unwrapped state in which ∼8 nucleotides of ssDNA are bound by a single domain, which could act as a transition state through which rapid reorganization of the EcSSB–ssDNA complex occurs. When ssDNA is over-saturated, stimulated dissociation rapidly removes excess EcSSB, leaving an array of stably-wrapped complexes. These results provide a mechanism through which otherwise stably bound and wrapped EcSSB tetramers are rapidly removed from ssDNA to allow for DNA maintenance and replication functions, while still fully protecting ssDNA over a wide range of protein concentrations.  相似文献   

13.
Members of the ISWI family of chromatin remodeling factors hydrolyze ATP to reposition nucleosomes along DNA. Here we show that the yeast Isw2 complex interacts with DNA in a nucleotide-dependent manner at physiological ionic strength. Isw2 efficiently binds DNA in the absence of nucleotides and in the presence of a nonhydrolyzable ATP analog. Conversely, ADP promotes the dissociation of Isw2 from DNA. In contrast, Isw2 remains bound to mononucleosomes through multiple cycles of ATP hydrolysis. Solution studies show that Isw2 undergoes nucleotide-dependent alterations in conformation not requiring ATP hydrolysis. Our results indicate that during an Isw2 remodeling reaction, hydrolysis of successive ATP molecules coincides with cycles of DNA binding, release, and rebinding involving elements of Isw2 distinct from those interacting with nucleosomes. We propose that progression of the DNA-binding site occurs while nucleosome core contacts are maintained and generates a force dissipated by disruption of histone-DNA interactions.  相似文献   

14.
Base excision DNA repair (BER) is necessary for removal of damaged nucleobases from the genome and their replacement with normal nucleobases. BER is initiated by DNA glycosylases, the enzymes that cleave the N-glycosidic bonds of damaged deoxynucleotides. Human endonuclease VIII-like protein 2 (hNEIL2), belonging to the helix–two-turn–helix structural superfamily of DNA glycosylases, is an enzyme uniquely specific for oxidized pyrimidines in non-canonical DNA substrates such as bubbles and loops. The structure of hNEIL2 has not been solved; its closest homologs with known structures are NEIL2 from opossum and from giant mimivirus. Here we analyze the conformational dynamics of free hNEIL2 using a combination of hydrogen/deuterium exchange mass spectrometry, homology modeling and molecular dynamics simulations. We show that a prominent feature of vertebrate NEIL2 – a large insert in its N-terminal domain absent from other DNA glycosylases – is unstructured in solution. It was suggested that helix–two-turn–helix DNA glycosylases undergo open–close transition upon DNA binding, with the large movement of their N- and C-terminal domains, but the open conformation has been elusive to capture. Our data point to the open conformation as favorable for free hNEIL2 in solution. Overall, our results are consistent with the view of hNEIL2 as a conformationally flexible protein, which may be due to its participation in the repair of non-canonical DNA structures and/or to the involvement in functional and regulatory protein–protein interactions.  相似文献   

15.
MeCP2 is a highly abundant chromatin architectural protein with key roles in post-natal brain development in humans. Mutations in MeCP2 are associated with Rett syndrome, the main cause of mental retardation in girls. Structural information on the intrinsically disordered MeCP2 protein is restricted to the methyl-CpG binding domain; however, at least four regions capable of DNA and chromatin binding are distributed over its entire length. Here we use small angle X-ray scattering (SAXS) and other solution-state approaches to investigate the interaction of MeCP2 and a truncated, disease-causing version of MeCP2 with nucleosomes. We demonstrate that MeCP2 forms defined complexes with nucleosomes, in which all four histones are present. MeCP2 retains an extended conformation when binding nucleosomes without extra-nucleosomal DNA. In contrast, nucleosomes with extra-nucleosomal DNA engage additional DNA binding sites in MeCP2, resulting in a rather compact higher-order complex. We present ab initio envelope reconstructions of nucleosomes and their complexes with MeCP2 from SAXS data. SAXS studies also revealed unexpected sequence-dependent conformational variability in the nucleosomes themselves.  相似文献   

16.
Dynamics of nucleosomes and spontaneous unwrapping of DNA are fundamental property of the chromatin enabling access to nucleosomal DNA for regulatory proteins. Probing of such dynamics of nucleosomes performed by single molecule techniques revealed a large scale dynamics of nucleosomes including their spontaneous unwrapping. Dissociation of nucleosomes at low concentrations is a complicating issue for studies with single molecule techniques. In this paper, we tested the ability of 3-[(3-Cholamidopropyl)dimethylammonio]-l-propanesulfonate (CHAPS) to prevent dissociation of nucleosomes. The study was performed with mononucleosome system assembled with human histones H2A, H2B, H3 and H4 on the DNA substrate containing sequence 601 that provides the sequencespecific assembly of nucleosomes. We used Atomic Force Microscopy (AFM) to directly identify nucleosomes and analyze their structure at the nanometer level. These studies showed that in the presence of CHAPS at millimolar concentrations, nucleosomes, even at sub-nanomolar concentrations, remain intact over days compared to a complete dissociation of the same nucleosome sample over 10 min in the absence of CHAPS. Importantly, CHAPS does not change the conformation of nucleosomes as confirmed by the AFM analysis. Moreover, 16 µM CHAPS stabilizes nucleosomes in over one hour incubation in the solution containing as low as 0.4 nM in nucleosomes. The stability of nucleosomes is slightly reduced at physiological conditions (150 mM NaCl), although the nucleosomes dissociate rapidly at 300 mM NaCl. The sequence specificity of the nucleosome in the presence of CHAPS decreased suggesting that the histone core translocates along the DNA substrate utilizing sliding mechanism.  相似文献   

17.
Nucleotide excision repair (NER) is a major DNA repair mechanism that recognizes a broad range of DNA damages. In Escherichia coli, damage recognition in NER is accomplished by the UvrA and UvrB proteins. We have analysed the structural properties of the different protein-DNA complexes formed by UvrA, UvrB and (damaged) DNA using atomic force microscopy. Analysis of the UvrA(2)B complex in search of damage revealed the DNA to be wrapped around the UvrB protein, comprising a region of about seven helical turns. In the UvrB-DNA pre-incision complex the DNA is wrapped in a similar way and this DNA configuration is dependent on ATP binding. Based on these results, a role for DNA wrapping in damage recognition is proposed. Evidence is presented that DNA wrapping in the pre-incision complex also stimulates the rate of incision by UvrC.  相似文献   

18.
DNA gyrase negatively supercoils DNA in a reaction coupled to the binding and hydrolysis of ATP. Limited supercoiling can be achieved in the presence of the non-hydrolysable ATP analogue, 5'-adenylyl beta,gamma-imidodiphosphate (ADPNP). In order to negatively supercoil DNA, gyrase must wrap a length of DNA around itself in a positive sense. In previous work, the effect of ADPNP on the gyrase-DNA interaction has been assessed but has produced conflicting results; the aim of this work was to resolve this conflict. We have probed the wrapping of DNA around gyrase in the presence and in the absence of ADPNP using direct observation by atomic force microscopy (AFM). We confirm that gyrase indeed generates a significant curvature in DNA in the absence of nucleotide and we show that the addition of ADPNP leads to a complete loss of wrap. These results have been corroborated using a DNA relaxation assay involving topoisomerase I. We have re-analysed previous hydroxyl-radical footprinting and crystallography data, and highlight the fact that the gyrase-DNA complex is surprisingly asymmetric in the absence of nucleotide but is symmetric in the presence of ADPNP. We suggest a revised model for the conformation of DNA bound to the enzyme that is fully consistent with these AFM data, in which a closed loop of DNA is stabilised by the enzyme in the absence of ADPNP and is lost in the presence of nucleotide.  相似文献   

19.
The Mre11–Rad50 nuclease–ATPase is an evolutionarily conserved multifunctional DNA double‐strand break (DSB) repair factor. Mre11–Rad50's mechanism in the processing, tethering, and signaling of DSBs is unclear, in part because we lack a structural framework for its interaction with DNA in different functional states. We determined the crystal structure of Thermotoga maritima Rad50NBD (nucleotide‐binding domain) in complex with Mre11HLH (helix‐loop‐helix domain), AMPPNP, and double‐stranded DNA. DNA binds between both coiled‐coil domains of the Rad50 dimer with main interactions to a strand‐loop‐helix motif on the NBD. Our analysis suggests that this motif on Rad50 does not directly recognize DNA ends and binds internal sites on DNA. Functional studies reveal that DNA binding to Rad50 is not critical for DNA double‐strand break repair but is important for telomere maintenance. In summary, we provide a structural framework for DNA binding to Rad50 in the ATP‐bound state.  相似文献   

20.
The Escherichia coli single-stranded DNA binding protein (SSB) binds selectively to single-stranded (ss) DNA intermediates during DNA replication, recombination and repair. Each subunit of the homo-tetrameric protein contains a potential ssDNA binding site, thus the protein can bind to ssDNA in multiple binding modes, one of which is the (SSB)(65) mode, in which a 65 nucleotide stretch of ssDNA interacts with and wraps around all four subunits of the tetramer. Previous stopped-flow kinetic studies of (SSB)(65) complex formation using the oligodeoxynucleotide, (dT)70, were unable to resolve the initial binding step from the rapid wrapping of ssDNA around the tetramer. Here we report a laser temperature-jump study with resolution in the approximately 500 ns to 4 ms time range, which directly detects these ssDNA wrapping/unwrapping steps. Biphasic time courses are observed with a fast phase that is concentration-independent and which occurs on a time-scale of tens of microseconds, reflecting the wrapping/unwrapping of ssDNA around the SSB tetramer. Analysis of the slower binding phase, in combination with equilibrium binding and stopped-flow kinetic studies, also provides evidence for a previously undetected intermediate along the pathway to forming the (SSB)(65) complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号