首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synthetic activity and existence of ppGpp and pppApp in an anthracycline-producing strain Streptomyces galilaeus were determined by radioimmunoassay and 32P-labeling method during cultivation under both the antibiotic productive and non-productive conditions. The cellular ppGpp(pppGpp)-synthesizing activity was highest at the end of exponential growth, and 3-fold higher in the antibiotic-productive cultivation than in non-productive cultivation. The intracellular level of ppGpp determined by radioimmunoassay was high at the end of exponential growth, and afterwards its level decreased by one fifth. The low level of cellular ppGpp during the period of intense antibiotic production suggests that ppGpp consumption may play an important role in antibiotic production of S. galilaeus. The concentration of pppApp was not determined intracellularly by radioimmunoassay.  相似文献   

2.
31P NMR chemical shifts of salts of adenosine 5′-triphosphate and diphosphate: ATPH2?22(Me4N+) · H2O, ATPH2?22 Na+ · 3.5 H2O, ATPH2?2Mg2+ · 4 H2O, ATPH2?2Ca2+ · 2 H2O, ADPH2?2(Me4N+) · H2O and ADPH2?Mg2+ · 4 H2O have been measured in 0.02 M 2H2O solutions at 145.7 MHz (22° C) at constant p2H values (8.20 and 6.20). The results are compared with those obtained from salts of adenosine 5′-monophosphate and other simpler phosphomonoesters, e.g. AMP2?2(Me4N+), AMP2?Mg2+, AMPH?Me4N+ and (AMPH?)2Mg2+. It is concluded that the effects exerted by Mg2+ and Ca2+ on the 31P NMR shifts of dipoly- and tripolyphosphates relative to monovalent cations are due mainly to changes in conformation of the polyphosphate chain rather than to purely electronic factors associated with the binding of divalent cations to the phospho-oxyanions. The data are consistent with the existence of the following complexes at p2H 8.20: (MgPαPβ)ADP? and (MgPαPγ)ATP2?af (MgPαPβ)ATP2?af (MgPβPγ)ATP2? with the latter equilibrium relatively fast in the NMR time scale. Monoprotonation of the terminal phosphate appears to weaken the Mg2+-polyphosphate binding, particularly at Pβ of MgADPH and at Pβ and Pγ of MgATPH?. The Mg2+-polyphosphate binding weakens further at p2H 3.70, i.e. in MgATPH2. Possible implications of the results in the mechanism of actomyosin Mg2+-ATPase in muscle contraction are discussed.  相似文献   

3.
Uridine 5′-diphosphate N-acetylglucosamine (UDP-GlcNAc) is a natural UDP-monosaccharide donor for bacterial glycosyltransferases, while uridine 5′-diphosphate N-trifluoacetyl glucosamine (UDP-GlcNTFA) is its synthetic mimic. The chemoenzymatic synthesis of UDP-GlcNAc and UDP-GlcNTFA was attempted by three recombinant enzymes. Recombinant N-acetylhexosamine 1-kinase was used to produce GlcNAc/GlcNTFA-1-phosphate from GlcNAc/GlcNTFA. N-acetylglucosamine-1-phosphate uridyltransferase from Escherichia coli K12 MG1655 was used to produce UDP-GlcNAc/GlcNTFA from GlcNAc/GlcNTFA-1-phosphate. Inorganic pyrophosphatase from E. coli K12 MG1655 was used to hydrolyze pyrophosphate to accelerate the reaction. The above enzymes were expressed in E. coli BL21 (DE3) and purified, respectively, and finally mixed in one-pot bioreactor. The effects of reaction conditions on the production of UDP-GlcNAc and UDP-GlcNTFA were characterized. To avoid the substrate inhibition effect on the production of UDP-GlcNAc and UDP-GlcNTFA, the reaction was performed with fed batch of substrate. Under the optimized conditions, high production of UDP-GlcNAc (59.51?g/L) and UDP-GlcNTFA (46.54?g/L) were achieved in this three-enzyme one-pot system. The present work is promising to develop an efficient scalable process for the supply of UDP-monosaccharide donors for oligosaccharide synthesis.  相似文献   

4.
5.
Exogenous adenosine 5′-triphosphate 3′-diphosphate (pppApp) had interesting effects on the cell cycle of B. subtilis IFO 3027. The growth rate was reduced by the addition of 1 mm pppApp, and the vegetative cell form was significantly changed. Moreover, the sporulation frequency was increased by 100 times or more as compared with the culture without pppApp. The sporulation process seemed to be stimulated around t0. pppGpp and ppGpp also showed the same effects as pppApp. Among these effects, depression in growth rate was restored by Mg2+ and Ca2+, and stimulation of sporulation was inhibited by Mg2+, Ca2+ and certain carbon sources, such as glucose and glycerol. On the other hand, casamino acids or monovalent cations showed no influence on the pppApp effects. pppApp was not incorporated into cells in experiments with radioactive pppApp.  相似文献   

6.
Addition of ammonium to N2 fixing cultures of Azotobacter vinelandii, Klebsiella pneumoniae and Clostridium pasteurianum rapidly reduced the intracellular levels of guanosine 5-diphosphate 3-diphosphate (ppGpp) by 70–90%. This change might reflect a regulatory role of ppGpp in nitrogen metabolism.Abbreviations ppGpp guanosine 5-diphosphate 3-diphosphate  相似文献   

7.
8.
9.
1. Extracts of Landschutz ascites-tumour cells have been fractionated by treatment with acid, alumina Cγ gel and Sephadex G-100 to yield purified preparations of thymidine phosphokinase, thymidine 5′-monophosphate phosphokinase and thymidine 5′-diphosphate phosphokinase. 2. These results clearly demonstrate the existence in Landschutz ascites tumour of three phosphokinases each of which catalyses one step in the reaction sequence: thymidinethymidine 5′-monophosphatethymidine 5′-diphosphatethymidine 5′-triphosphate. Though these results do not preclude the participation of other enzymes in the formation of thymidine 5′-triphosphate from thymidine by Landschutz ascites-tumour cells, they provide strong support for the view that thymidine 5′-diphosphate is an intermediate in the formation of thymidine 5′-triphosphate from thymidine 5′-monophosphate by this system.  相似文献   

10.
11.
12.
Steady-state kinetic tests for enzymic memory were carried out with nucleoside-5′-diphosphate kinase (EC 2.7.4.6). The results were positive, with differences as large as 10-fold in the dTDP reactivities of phosphoryl enzymes obtained with five different nucleoside triphosphates as donor substrates. It was shown that these differences were not caused either by donor substrate inhibition or by the occurrence of separate active sites for the alternative donors. Guidelines for selecting enzymes for steady-state kinetic memory study are presented.  相似文献   

13.
14.
We describe concise and efficient synthesis of biologically very important 3′-O-tetraphosphates namely 2′-deoxyadenosine-3′-O-tetraphosphate (2′-d-3′-A4P) and 2′-deoxycytidine-3′-O-tetra-phosphate (2′-d-3′-C4P). N6-benzoyl-5′-O-levulinoyl-2′-deoxyadenosine was converted into N6-benzoyl-5′-O-levulinoyl-2′-deoxyadenosine-3′-O-tetraphosphate in 87% yield using a one-pot synthetic methodology. One-step concurrent deprotection of N6-benzoyl and 5′-O-levulinoyl groups using concentrated aqueous ammonia resulted 2′-d-3′-A4P in 74% yield. The same synthetic strategy was successfully employed to convert N4-benzoyl-5′-O-levulinoyl-2′-deoxycytidine into 2′-d-3′-C4P in 68% yield.  相似文献   

15.
Red algae (Rhodophyceae) are photosynthetic eukaryotes that accumulate starch granules in the cytosol. Starch synthase activity in crude extracts of Gracilaria tenuistipitata Chang et Xia was almost 9-fold higher with UDP[U-14C]glucose than with ADP[U-14C]glucose. The activity with UDP[U-14C]glucose was sensitive to proteolytic and oxidative inhibition during extraction whilst the activity with ADP[U-14C]glucose appeared unaffected. This indicates the presence of separate starch synthases with different substrate specificities in G. tenuistipitata. The UDPglucose: starch synthase was purified and characterised. The enzyme appears to be a homotetramer with a native Mr of 580 kDa and displays kinetic properties similar to other α-glucan synthases such as stimulation by citrate, product (UDP) inhibition and broad primer specificity. We propose that this enzyme is involved in cytosolic starch synthesis in red algae and thus is the first starch synthase described that utilises UDPglucose in vivo. The biochemical implications of the different compartmentalisation of starch synthesis in red algae and green algae/plants are also discussed. Received: 29 January 1999 / Accepted: 11 March 1999  相似文献   

16.
Abstract

The molecular conformations of 3′- and 5′-azido and amino derivatives of 5-methoxymethyl-2′-deoxyuridine, 1, were investigated by nmr. The glycosidic conformation of 5-methoxymethyl-5′-amino-2′,5′-dideoxy-uridine, 5 had a considerable population of the syn form. The 5′-derivatives show a preference for the S conformation of the furanose ring as in 1. In contrast, the 3′-derivatives show preference for the N conformation. For 5-methoxymethyl-3′-amino-2′,3′-dideoxyuridine, 3, the shift towards the N state is pH dependent. The preferred conformation for the exocyclic (C4′,C5′) side chain is g+ for all compounds except 5 which has a strong preference for the t rotamer (79%). Compounds 1, 3 and 5 inhibited growth of HSV-1 by 50% at 2, 18 and 70 μg/ml respectively, whereas 2 and 4 were not active up to 256 μg/ml (highest concentration tested). The compounds were not cytotoxic up to 3,000 μM.  相似文献   

17.
Abstract

The deuterations of 2′-deoxyguanosine in the 4′ and 5′ positions have been described elsewhere (1). The starting material is the 5′-aldehyde formed by mild oxidation with N,N-dicyclohexyl carbodiimide in dimethyl sulphoxide of the fully protected nucleoside with free 5′-alcoholic function. The 5′4euteration was achieved by reduction with deuterated sodium borohydride. Incorporation of deuterium in the 4′-position was achieved v i a an enhanced keto-enol tautomerim by heating the aldehyde in 50/50 D20/pyridine, with subsequent reduction of the aldehyde with NaBH4. The 6-furanoid form was isolated from the I-lyxo by-product by reverse phase HPLC. Applied to pyrimidine 2′-deoxyribonucleosides, this method was shown to give deuterated 2′-deoxycytidine and thymidine in good yield.  相似文献   

18.
Reported is an efficient synthesis of adenyl and uridyl 5′-tetrachlorophthalimido-5′-deoxyribonucleosides, and guanylyl 5′-azido-5′-deoxyribonucleosides, which are useful in solid-phase synthesis of phosphoramidate and ribonucleic guanidine oligonucleotides. Replacement of 5′-hydroxyl with tetrachlorophthalimido group was performed via Mitsunobu reaction for adenosine and uridine. An alternative method was applied for guanosine which replaced the 5′-hydroxyl with an azido group. The resulting compounds were converted to 5′-amino-5′-deoxyribonucleosides for oligonucleotide synthesis. Synthetic intermediates were tested as antimicrobials against six bacterial strains. All analogs containing the 2′,3′-O-isopropylidine protecting group demonstrated antibacterial activity against Neisseria meningitidis, and among those analogs with 5′-tetrachlorophthalimido and 5′-azido demonstrated increased antibacterial effect.  相似文献   

19.
Uridine 5′-diphosphate glucose 4-epimerase (EC 5.1.3.2) from Ehrlich ascites carcinoma cells was purified to apparent homogeneity using conventional procedures and NAD-hexane-agarose affinity chromatography. The protein had a molecular weight of 96,000. The ascites enzyme had an absolute requirement for exogenously added NAD (10 ΜM) for stability. This appears to be a unique feature of ascites epimerase since epimerase from other mammalian sources did not exhibit such a dependence. Exogenously added NAD was also needed for catalysis with an apparentK m value of 2.5 ΜM. NADH was a very potent competitive inhibitor (K i = 0.11 ΜM with respect to NAD) of the enzyme activity at pH values close to intracellular pH. The dependence of the enzyme on NAD for stability and its inhibition by NADH may have some potential significance in tumor metabolism  相似文献   

20.
Abstract

2′-Azido-2′-deoxyuridine and 2′-azido-2′-deoxycytidine were evaluated for their inhibitory activity against ribonucleotide reductase and for subsequent cell growth inhibition. Their mono-and di-phosphates were synthesized and their inhibitory activities against the reductase were also determined in a permeabilized cell system, along with the two nucleosides. The results of the present study identify the first phosphorylation step involved in the conversion of the two azidonucleosides to the corresponding diphosphates to be rate-limiting in the overall activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号