首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Neuropeptide Y (NPY) appears to be involved in the sympathetic regulation of vascular tone. To assess the putative role of NPY in mesenteric circulation, the release and biological effect of NPY were examined after electrical stimulation of perimesenteric arterial nerves. Nerve stimulation with trains of 2–30 Hz increased the perfusion pressure of the arterially perfused rat mesenteric bed in a frequency- and time-dependent fashion. Trains of 15–30 Hz significantly displaced to the left, approximately threefold, the noradrenaline (NA)-induced pressor concentration-response curve, in addition to increasing significantly its efficacy. Perfusion with 10 nM exogenous NPY mimicked the electrical stimulation effect, causing a threefold leftward shift of the NA concentration-response curve and increasing the maximal NA response. These effects were antagonized by 100 nM BIBP 3226, indicating the activity of NPY-Y1 receptors. Electrical stimulation of the perimesenteric nerves released immunoreactive NPY (ir-NPY) in a frequency-dependent fashion; the ir-NPY coelutes with synthetic NPY as confirmed by HPLC. Both the electrically induced pressor response and the calcium-dependent release of NPY were obliterated in preparations perfused with 1 µM guanethidine or in rats pretreated intravenously for 48 h with 6-hydroxydopamine, thus revealing the sympathetic origin of these phenomena. Only a small proportion of the total NPY content in the perimesenteric arterial nerves is released after electrical stimulation. Chromatographic studies of the physiological sources of the ir-NPY support that NPY fragments are generated via peptidase degradation. The present findings demonstrate that NPY is released from the perimesenteric arterial sympathetic nerves and acts, via the activation of NPY-Y1 receptors, as the mediator responsible for the potentiation of NA's effect on perfusion pressure in the isolated rat mesenteric bed.  相似文献   

2.
Transmural electrical stimulation of the sympathetic nerve endings of human saphenous vein biopsies released two forms of NPY identified chromatographically as native and oxidized peptide. The release process is dependent on extracellular calcium, the frequency, and the duration of the stimuli. While guanethidine reduced the overflow of ir-NPY, phenoxybenzamine did not augment NPY release, but increased that of noradrenaline. Oxidized NPY, like native NPY, potentiated the noradrenaline and adenosine 5'-triphospahate-induced vasoconstriction, an effect blocked by BIBP 3226 and consonant with the RT-PCR detection of the mRNA encoding the NPY Y1 receptor. These results highlight the functional role of NPY in human vascular sympathetic reflexes.  相似文献   

3.
The electrically evoked release of radioactivity from mouse vas deferens and rat hypothalamic slices preloaded with [3H]noradrenaline was measured. In addition the release of [3H]acetylcholine from longitudinal muscle strip of guinea-pig ileum was also measured. Neurochemical evidence has been obtained that neuropeptide Y (NPY), although it co-exists and is released with (-)-noradrenaline (NA), it behaves differently as far as its effect on presynaptic modulation of chemical neurotransmission is concerned. It exerts a frequency-dependent presynaptic inhibitory effect on noradrenaline release from mouse vas deferens but has no effect on the electrically evoked release of NA from rat hypothalamus. Unlike NA, NPY does not influence the release of [3H]acetylcholine from the longitudinal muscle strip of guinea-pig ileum and does not potentiate the presynaptic effect of NA. It seems very likely, that the inhibitory effect of NPY is mediated via receptors. Its action is concentration dependent. While exogenous noradrenaline inhibited the release of noradrenaline by 91%, the maximum inhibition reached with NPY was not higher than 60%, indicating that either the intrinsic activity of NPY is lower or much less axon terminals are equipped with NPY receptors. Peptide YY (PYY) also reduced the release of NA from mouse vas deferens.  相似文献   

4.
In this study 3H-noradrenaline (NA) release from rat neocortex slices evoked by electrical field-stimulation (1 Hz, 12 mA, 2 msec) was compared with that induced by K+-depolarization (13–30 mM K+) under similar experimental conditions, with a particular emphasis on the role of external Ca2+ and the releasable transmitter pool(s). Not only 3H-NA release evoked by electrical stimulation but also that induced by 13 mM K+ was almost completely blocked by 0.3 μM tetrodotoxin (TTX). Release induced by 20 mM K+ appeared to be less sensitive to TTX. Thus, under relatively mild stimulation conditions, the activation of sodium channels appears to be involved in 3H-NA release elicited by both stimuli.The electrically evoked 3H-NA release increased sigmoidally with the external Ca2+-concentration up to 1.2 mM. In contrast, 3H-NA release induced by 13–20 mM K+ reached a maximal value at 0.6–0.9 mM Ca2+ and gradually decreased at higher Ca2+-concentrations. The Ca2+-antagonist D-600 (1–30 μM) did not inhibit electrically evoked release, while K+-induced 3H-NA release was dose-dependently reduced. Upon repetitive K+-depolarization a strong depression of 3H-NA release could be demonstrated, while this phenomenon did not occur with repeated electrical stimulation. Moreover, a previous K+-induced (partial) depletion of 3H-NA stores did not affect the release evoked by electrical pulses and vice versa. Taken together these data are compatible with a much stronger activation of Ca2+-channels and a larger vesicle mobilizing capacity in case of electrical stimulation at physiological frequencies compared to sustained depolarization with moderate K+-concentrations.  相似文献   

5.
The effects of electrical stimulation of the stellate ganglia on the arterio-venous concentration differences of neuropeptide Y (NPY)-like immunoreactivity (LI) over the pig heart were studied in vivo in relation to changes in heart rate and left ventricular pressure. Furthermore, the effects of NPY on coronary vascular tone were analysed in vivo and in vitro. Stellate ganglion stimulation at a high frequency (10 Hz) caused a clear-cut, long lasting increase in plasma levels of NPY-LI in the coronary sinus compared to the aorta, suggesting release of this peptide from sympathetic terminals within the heart. The stimulation-evoked overflow of NPY-LI from the heart was enhanced about 3-fold by alpha-adrenoceptor blockade using phenoxybenzamine, suggesting that NPY release is under prejunctional inhibitory control by noradrenaline (NA). Combined alpha- and beta-adrenoceptor blockade abolished most of the positive inotropic response of the heart upon stellate ganglion stimulation, while a considerable positive chronotropic effect remained. After guanethidine treatment, stellate ganglion stimulation still produced a small positive inotropic and chronotropic effect on the heart. The stimulation evoked NPY overflow was markedly reduced by guanethidine indicating an origin from sympathetic nerve terminals. Injection of NPY into the constantly perfused left anterior descending artery in vivo caused a long lasting, adrenoceptor antagonist resistant increase in perfusion pressure, suggesting coronary vasoconstriction. NPY contracted coronary arteries in vitro via a nifedipine-sensitive mechanism. NA dilated coronary vessels both in vivo and in vitro via beta-adrenoceptor activation. It is concluded that sympathetic nerve stimulation increases overflow of NPY-LI from the heart suggesting release from cardiac nerves in vivo.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The pre-synaptic sympathetic modulator role of adenosine was assessed by studying transmitter release following electrical depolarization of nerve endings from the rat mesenteric artery. Mesentery perfusion with exogenous adenosine exclusively inhibited the release of norepinephrine (NA) but did not affect the overflow of neuropeptide Y (NPY), establishing the basis for a differential pre-synaptic modulator mechanism. Several adenosine structural analogs mimicked adenosine's effect on NA release and their relative order of potency was: 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine hydrochloride = 1-[2-chloro-6-[[(3-iodophenyl)methyl]amino]-9H-purin-9-yl]-1-deoxy-N-methyl-beta-d-ribofuranuronamide = 5'-(N-ethylcarboxamido)adenosine > adenosine > N(6)-cyclopentyladenosine. The use of selective receptor subtype antagonists confirmed the involvement of A(2A) and A(3) adenosine receptors. The modulator role of adenosine is probably due to the activation of both receptors; co-application of 1 nM 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine hydrochloride plus 1 nM 1-[2-chloro-6-[[(3-iodophenyl)methyl]amino]-9H-purin-9-yl]-1-deoxy-N-methyl-beta-D-ribofuranuronamide caused additive reductions in NA released. Furthermore, while 1 nM of an A(2A) or A(3) receptor antagonist only partially reduced the inhibitory action of adenosine, the combined co-application of the two antagonists fully blocked the adenosine-induced inhibition. Only the simultaneous blockade of the adenosine A(2A) plus A(3) receptors with selective antagonists elicited a significant increase in NA overflow. H 89 reduced the release of both NA and NPY. We conclude that pre-synaptic A(2A) and A(3) adenosine receptor activation modulates sympathetic co-transmission by exclusively inhibiting the release of NA without affecting immunoreactive (ir)-NPY and we suggest separate mechanisms for vesicular release modulation.  相似文献   

7.
The influence of A II and PGE2 on the rise of perfusion pressure induced by periarterial stimulation and NA were studied in the rabbit isolated perfused kidney. Periarterial stimulation produced an increase in perfusion pressure and the venous outflow superfusing the rabbit aortic strip caused the muscle to contract. Both effects were found to be frequency dependent. NA induced similar effect when given into the renal artery. A II and its N-terminal analogs produced equal potentiation to periarterial stimulation without altering the effect of exogenous NA when added to the perfusion medium. DMGIA II which is a competitive inhibitor of A II inhibited the potentiating affect of A II. PGE2 also inhibited the effect of A II without altering the effect of exogenous NA. Addition of aspirin to the perfusion medium caused a potentiation to periarteral stimulation but did not change the effect of NA. A II added to the perfusion fluid containing aspirin still caused potentiation. From these results it was concluded that: (i) A II-induced potentiation to periarterial stimulation is mediated via specific receptors and probably due to facilitation of the release of transmitter from sympathetic nerve ending. (ii) PGE2 inhibited the release of transmitter. The effect of A II and PGE2 seemed to be mediated by independent mechanisms.  相似文献   

8.
The release of noradrenaline (NA) together with its possible cotransmitter neuropeptide Y (NPY) was investigated in the perfused dog spleen. The splenic nerve was stimulated electrically at high frequency with bursts, which evoked a simultaneous release of both substances. Infusion of the alpha 2-adrenergic blocking agents idazoxan or hydergine enhanced the amount of NA and NPY in the venous effluent. The present results demonstrate the concomitant release of a classical neurotransmitter and a neuropeptide, and suggest that at high frequency stimulation, regulation of their release operates very similarly.  相似文献   

9.
The environmental contaminants methylmercury (MeHg) and mercuric chloride (HgCl2) stimulated the spontaneous release of [3H]noradrenaline ([3H]NA) from hippocampal slices in a time- and concentration-dependent manner. Both MeHg and HgCl2 were similarly potent, with an EC50 of 88.4 microM and 75.9 microM, respectively. The releasing effects of MeHg and HgCl2 increased in the presence of desipramine, showing that the mechanism does not involve reversal of the transmitter transporter, and were completely blocked by reserpine preincubation, indicating a vesicular origin of [3H]NA release. The voltage-gated Na+ channel blocker tetrodotoxin (TTX) did not affect the response to mercury compounds. [3H]NA release elicited by MeHg was partially dependent on extracellular Ca2+, since it decreased significantly in a Ca2+-free EGTA-containing medium whereas HgCl2 induced a release of [3H]NA independent of extracellular Ca2+. Neither Ca2+-channels blockers, cobalt chloride (CoCl2) and (omega-conotoxin-GVIA, nor the Na+/Ca2+-exchanger inhibitor benzamil reduced MeHg-evoked [3H]NA release. Moreover, thapsigargin or caffeine, endoplasmic reticulum Ca2+-depletors, did not modify metal-evoked [3H]NA release, whereas ruthenium red, which inhibits the mitochondrial Ca2+ transport, decreased the effect of both MeHg and HgCl2. All these data indicate that, in hippocampal slices, mercury compounds release [3H]NA from the vesicular pool by a mechanism involving Ca2+ mobilization from mitochondrial stores.  相似文献   

10.
The role of neuropeptide tyrosine (NPY) on adrenergic neurotransmission was assessed in the rat vas deferens transmurally stimulated with square pulses of 0.15 or 15 Hz. Nanomoles of NPY inhibited the electrically-induced contractions on the prostatic half but not on the epididymal end of the ductus. NPY was at least 200-fold more potent than norepinephrine or adenosine to produce an equivalent inhibition. Complete amino acid sequence of NPY is required for full agonist activity; deletion of tyrosine at the amino terminus, i.e., NPY fragment 2-36 was 3-fold less potent than the native peptide. NPY fragment 5-36, 11-36 or 25-36 were proportionally less potent than NPY. Avian pancreatic polypeptide was inactive. The presynaptic nature of the NPY activity was established measuring the outflow of 3H-norepinephrine from the adrenergic varicosities of the vas deferens electrically stimulated. In this assay, NPY was more potent than NPY 2-36 or NPY fragment 5-36. No inhibitory action of NPY was detected in K+ depolarized tissues. The inhibitory effect of NPY on the rat vas deferens neurotransmission was not significantly modified by yohimbine, theophylline or naloxone, indicating that the effect of NPY is not due to the activation of alpha 2-adrenoceptors, adenosine receptors or opiate receptors respectively. Picrotoxin or apamin did not modify the inhibitory potency of NPY; verapamil or methoxyverapamil significantly reduced its potency. The inhibitory action of NPY is best explained through the activation of presynaptic NPY receptors that regulate norepinephrine release via a negative feedback mechanism. Structure activity studies give support to the notion of NPY receptors.  相似文献   

11.
The regulation of noradrenaline (NA) release by endogenous endothelium-derived compounds was investigated in the isolated guinea pig pulmonary artery preloaded with [3H]NA. The radioactivity uptake, the basal and electrical field stimulation (10 Hz, 2 ms, 360 shocks) evoked release of [(3)H]NA was similar in arteries with intact endothelium and after removal of the endothelium. The wide selectivity nitric oxide (NO) synthase inhibitor N-omega-nitro-L-arginine (100 microM) did not affect significantly the basal and stimulation-evoked release of [(3)H]NA in control and endothelium-denuded preparations. These results indicate that neither endogenous NO nor other compounds derived from the endothelium have substantial influence on the NA outflow from sympathetic nerves innervating the pulmonary artery.  相似文献   

12.
Whim MD 《PloS one》2011,6(4):e19478

Background

In addition to polypeptide hormones, pancreatic endocrine cells synthesize a variety of bioactive molecules including classical transmitters and neuropeptides. While these co-transmitters are thought to play a role in regulating hormone release little is known about how their secretion is regulated. Here I investigate the synthesis and release of neuropeptide Y from pancreatic beta cells.

Methodology/Principal Findings

NPY appears to be an authentic co-transmitter in neonatal, but not adult, beta cells because (1) early in mouse post-natal development, many beta cells are NPY-immunoreactive whereas no staining is observed in beta cells from NPY knockout mice; (2) GFP-expressing islet cells from an NPY(GFP) transgenic mouse are insulin-ir; (3) single cell RT-PCR experiments confirm that the NPY(GFP) cells contain insulin mRNA, a marker of beta cells. The NPY-immunoreactivity previously reported in alpha and delta cells is therefore likely to be due to the presence of NPY-related peptides. INS-1 cells, a beta cell line, are also NPY-ir and contain NPY mRNA. Using the FMRFamide tagging technique, NPY secretion was monitored from INS-1 beta cells with high temporal resolution. Peptide release was evoked by brief depolarizations and was potentiated by activators of adenylate cyclase and protein kinase A. Following a transient depolarization, NPY-containing dense core granules fused with the cell membrane and discharged their contents within a few milliseconds.

Conclusions

These results indicate that after birth, NPY expression in pancreatic islets is restricted to neonatal beta cells. The presence of NPY suggests that peptide co-transmitters could mediate rapid paracrine or autocrine signaling within the endocrine pancreas. The FMRFamide tagging technique may be useful in studying the release of other putative islet co-transmitters in real time.  相似文献   

13.
Neuropeptide Y (NPY)-immunoreactive nerve fibers were numerous around arteries and few around veins. NPY probably co-exists with noradrenaline in such fibers since chemical or surgical sympathectomy eliminated both NPY and noradrenaline from perivascular nerve fibers and since double staining demonstrated dopamine-beta-hydroxylase, the enzyme that catalyzes the conversion of dopamine to noradrenaline, and NPY in the same perivascular nerve fibers. Studies on isolated blood vessels indicated that NPY is not a particularly potent contractile agent in vitro. NPY greatly enhanced the adrenergically mediate contractile response to electrical stimulation and to application of adrenaline, noradrenaline or histamine, as studied in the isolated rabbit gastro-epiploic and femoral arteries. The potentiating effect of NPY on the response to electrical stimulation is probably not presynaptic since NPY affected neither the spontaneous nor the electrically evoked release of [3H]noradrenaline from perivascular sympathetic nerve fibers.  相似文献   

14.
Interrelations between ouabain, a Na+-K+ ATPase inhibitor, and monensin, a Na+ ionophore, on noradrenaline liberation and contractile activity were evaluated in the guinea-pig vas deferens. Monensin (1 microM) per se elicited a small contraction of the tissue. However, amplitude and time to the peak of large and sustained contractions evoked by 10 microM ouabain were potentiated and markedly shortened, respectively, by monensin. Contractions elicited by ouabain with or without monensin were prevented by 3 microM phentolamine or by pretreatment with reserpine. Contractions evoked by K+-free solution were augmented by monensin. In an HPLC study, noradrenaline outflow from the vas deferens was moderately and considerably increased by monensin (10 microM) and ouabain (100 microM), respectively. The ouabain-evoked output of noradrenaline was enhanced in the presence of monensin and the time course for maximum noradrenaline release was shortened, as was the contractile activity. This enhanced outflow after ouabain plus monensin was reserpine sensitive but not tetrodotoxin sensitive. Furthermore, this noradrenaline outflow was roughly halved in Na+-deficient medium, but was unaltered in Ca2+-free medium. These findings suggest that the synergistic effect of ouabain and monensin on noradrenaline liberation from the guinea-pig vas deferens may be due to an elevation of cytoplasmic Ca2+ concentrations, presumably resulting from a stimulation of intracellular Na+-Ca2+ exchange system, but not enhanced Ca2+ entry.  相似文献   

15.
The effects of 6-hydroxydopamine (6-OHDA) and reserpine on the storage of neuropeptide Y (NPY) in noradrenergic cardiovascular nerves were examined with both immunohistochemistry and radioimmunoassay (RIA). Immunohistochemical double-labelling techniques demonstrated that NPY was located only in noradrenergic axons in the guinea-pig carotid artery, mitral valve, thoracic inferior vena cava, thoracic aorta, superior mesenteric artery and small saphenous vein. Treatment with 6-OHDA in vivo eliminated noradrenergic, NPY-containing axon terminals from all tissues, but preterminal axons were still prominent in the superior mesenteric artery. The greatest depletion of NPY detected by RIA after 6-OHDA treatment was found in tissues with a predominance of terminal noradrenergic axons, such as the small saphenous vein, whereas NPY accumulating in preterminal axons masked the loss of NPY from terminal axons in the superior mesenteric artery. After treatment with doses of reserpine that led to a rapid depletion of noradrenaline (NA) from perivascular nerves, NPY was still detected histochemically at all times although levels sometimes appeared to be reduced. RIA demonstrated that the partial depletion of NPY after reserpine consisted of a rapid phase seen in the vena cava and saphenous vein after the highest doses, and a slower phase of NPY depletion from all tissues after all doses of reserpine. The greatest depletion of NPY from terminal axons by reserpine (in small saphenous vein) was 85-90%. These results demonstrate that some NPY can be stored in noradrenergic perivascular axons in the absence of noradrenaline, but that partial depletion of NPY from axon terminals results when NA stores are depleted by reserpine. The variation in extent of NPY depletion between tissues after drug treatments can be explained by variation in the ratio of preterminal to terminal axons.  相似文献   

16.
分别向杏仁内侧核(MAN)内微量注射去甲肾上腺素(NA)或神经肽Y(NPY)。NA引起血压升高,心率加快;而NPY引起血压降低,心率减慢。如果注入不能改变血压的小剂量NPY,则可抑制NA引起的升压作用,反映NPY与NA共同参与心血管活动的中枢性调节过程。向MAN中注射NPY后血中NA的含量也相应降低,表明在MAN中注射NPY引起的血压、心率反应是通过降低血浆中NA含量而实现的。  相似文献   

17.
The impact of syntaxin and SNAP-25 cleavage on [3H]noradrenaline ([3H]NA) and [3H]dopamine ([3H]DA) exocytotic release evoked by different stimuli was studied in superfused rat synaptosomes. The external Ca2+-dependent K+-induced [3H]catecholamine overflows were almost totally abolished by botulinum toxin C1 (BoNT/C1), which hydrolyses syntaxin and SNAP-25, or by botulinum toxin E (BoNT/E), selective for SNAP-25. BoNT/C1 cleaved 25% of total syntaxin and 40% of SNAP-25; BoNT/E cleaved 40% of SNAP-25 but left syntaxin intact. The GABA uptake-induced releases of [3H]NA and [3H]DA were differentially affected: both toxins blocked the former, dependent on external Ca2+, but not the latter, internal Ca2+-dependent. BoNT/C1 or BoNT/E only slightly reduced the ionomycin-evoked [3H]catecholamine release. More precisely, [3H]NA exocytosis induced by ionomycin was sensitive to toxins in the early phase of release but not later. The Ca2+-independent [3H]NA exocytosis evoked by hypertonic sucrose, thought to release from the readily releasable pool (RRP) of vesicles, was significantly reduced by BoNT/C1. Pre-treating synaptosomes with phorbol-12-myristate-13-acetate, to increase the RRP, enhanced the sensitivity to BoNT/C1 of [3H]NA release elicited by sucrose or ionomycin. Accordingly, cleavage of syntaxin was augmented by the phorbol-ester. To conclude, our results suggest that clostridial toxins selectively target exocytosis involving vesicles set into the RRP.  相似文献   

18.
Nitric oxide (NO) inhibits the release of acetylcholine and cholinergic contractions in the small intestine of several species, but no information is available about the mouse ileum. This study examines the effects of NO on the electrically evoked release of [3H]acetylcholine and smooth muscle contraction in myenteric plexus-longitudinal muscle preparations of wild-type mice and of neuronal NO synthase (nNOS) and endothelial NOS (eNOS) knockout mice. The NOS inhibitor N(G)-nitro-L-arginine (L-NNA) and the guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-alpha]quinoxalin-1-one (ODQ) concentration dependently increased the evoked [3H]acetylcholine release and cholinergic contractions in preparations from wild-type mice and from eNOS knockout mice. Effects of L-NNA were specifically antagonized by L-arginine. In contrast, L-NNA and ODQ did not modify the release and contractions in preparations from nNOS knockout mice. The NO donor S-nitroso-N-acetyl-DL-penicillamine inhibited the electrically evoked release of [3H]acetylcholine and longitudinal muscle contractions in a quantitatively similar manner in wild-type preparations as well as in nNOS and eNOS knockout preparations. We conclude that endogenous NO released by electrical field stimulation tonically inhibits the release of acetylcholine. Furthermore, data suggest that nNOS and not eNOS is the enzymatic source of NO-mediating inhibition of cholinergic neurotransmission in mouse ileum.  相似文献   

19.
In the rat brain, the presynaptic 5-hydroxytryptamine (5-HT) autoreceptors located on 5-HT terminals correspond to the 5-HT1B subtype. The presence of a 5-HT receptor probably located on 5-HT nerve endings and modulating transmitter release in the human neocortex has been reported, but its detailed pharmacological characterization is not yet available. On the other hand, receptor binding and autoradiographic results indicate that the 5-HT1B receptor subtype is not present in the human brain. We, therefore, studied the modulation of the electrically evoked release of [3H]5-HT by various 5-HT receptor agonists and antagonists in preloaded slices of human neocortex obtained from 18 patients undergoing neurosurgery. The nonselective 5-HT1A/1B/1D receptor agonist 5-carboxamidotryptamine produced a potent inhibition (70% at 0.03 microM) of the electrically evoked release of [3H]5-HT which was blocked by 5-HT receptor antagonists with the following relative order of potency: methiothepin greater than metergoline = methysergide greater than propranolol. The selective 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin at 0.1 microM did not modify the electrically evoked release of [3H]5-HT. The 5-HT1A/1B receptor agonist RU 24969 was 10 times more potent at inhibiting [3H]5-HT overflow in the rat frontal cortex than in the human neocortex. The potent 5-HT1B receptor antagonist cyanopinodolol did not modify the 5-carboxamidotryptamine-induced inhibition of the electrically evoked release of [3H]5-HT in slices of the human neocortex, but produced by itself a small inhibition of [3H]5-HT overflow.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Adenosine and adenosine analogues inhibited electrically evoked 3H-noradrenaline (3H-NA) release from slices of the rat hippocampus in vitro in a dose -dependent manner in the concentration range 0.01–100 M. L-phenylisopropyladenosine (L-PIA) was more potent than 5′-N-carboxamidoadenosine (NECA), which was more potent than adenosine. The adenosine uptake blocker dipyridamole (3 M) enhanced the effect of exogenous adenosine, and had a slight inhibitory effect per se. The effect of L-PIA on NA release was competitively antagonized by 8-phenyltheopylline; pA2=7.1. Enprophylline (300 M), theophylline (300 M) and 8-phenyltheophylline (1–10 M) enhanced the evoked 3H-NA release per se, while no such enhancement was seen with the non-xanthine phosphodiesterase inhibitor ZK 62.711 (Rolipram) (30 M).It is concluded that adenosine, at physiologically relevant concentrations, inhibits electrically evoked NA release from terminals in the central nervous system. Alkylxanthines increase evoked NA release from hippocampal terminals, wich probably not related to cyclic AMP but may partly involve inhibition of endogenous adenosine acting as a modulator of transmitter release in the hippocampal slice preparation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号