首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shellfish aquaculture is a growing industry in Scotland, dominated by the production of the mussel Mytilus edulis, the native species. Recently the discovery of Mytilus galloprovincialis and Mytilus trossulus together with M. edulis and all 3 hybrids in cultivation in some Scottish sea lochs led to questions regarding the distribution of mussel species in Scotland. The establishment of an extensive sampling survey, involving the collection of mussels at 34 intertidal sites and 10 marinas around Scotland, motivated the development of a high-throughput method for identification of Mytilus alleles from samples. Three Taqman®-MGB probes and one set of primers were designed, based on the previously described Me 15/16 primers targeting the adhesive protein gene sequence, and samples were screened for the presence of M. edulis, M. galloprovincialis and M. trossulus alleles using real-time PCR. Mytilus edulis alleles were identified in samples from all 44 sites. Mytilus galloprovincialis alleles were found together with M. edulis alleles extensively in northern parts of the west and east coasts. Mytilus trossulus alleles were identified in samples from 6 sites in the west and south-west of Scotland. Because M. trossulus is generally undesirable in cultivation and therefore preventing the geographical spread of this species across Scotland is considered beneficial by the shellfish aquaculture industry, these 6 samples were further analysed for genotype frequencies using conventional PCR. Although distribution of the non-native species M. galloprovincialis and M. trossulus have proven to be more widespread than previously thought, there is no evidence from our study of either M. trossulus or M. galloprovincialis acting as an invasive species in Scotland. The real-time PCR method developed in this study has proven to be a rapid and effective tool for the identification of M. edulis, M. galloprovincialis and M. trossulus alleles from samples and should prove useful in future surveys, ecological or aquaculture management related studies in both unispecific and mixed species areas of these species.  相似文献   

2.
Three species of the mussel, Mytilus, occur in the North Atlantic region, M. edulis, M. galloprovincialis and M. trossulus, and hybrid zones are present where their distributions overlap. M. edulis is a native species in the UK. M. galloprovincialis originated in the Mediterranean and its distribution extends northwards along the Atlantic seaboard to Scotland. Baltic Sea mussels have a M. trossulus ancestry but are highly introgressed by M. edulis. In recent decades, farming of mussels on long-line rope culture systems has been introduced into Scotland. On farms in Loch Etive, a form of mussel with a fragile shell and a different shape to either M. edulis or M. galloprovincialis has been increasing in frequency over recent years. Samples of fragile shelled, normal strong shelled and intermediate mussel types were sampled from two farms in 2006 and compared with samples of M. edulis, M. galloprovincialis and M. trossulus from other sources where their species identity is well established. Abundance relative to depth, shell strength, condition index and shell morphology were analysed together with 5 allozyme loci and one nuclear DNA genetic marker (Me 15/16). The fragile shelled mussels, and many of those classed as intermediate, were identified as a mixture of M. trossulus and M. trossulus x M. edulis hybrids. This identification was strongly supported by both morphological and genetic data and is the first record of the presence of M. trossulus in UK waters. M. trossulus in Loch Etive are most likely to be a post-glacial relict population restricted to the low salinity area of the Loch that has recently increased in abundance due to commercial mussel growing activity. In addition, individual mussels of all three species and their hybrids were detected amongst Loch Etive mussels. This is the first genetic demonstration of all three species and their hybrids occurring together in one location in the Atlantic region and provides a unique opportunity to study the processes of speciation, divergence, and introgression in the genus Mytilus.  相似文献   

3.
Semi-sessile Mytilus mussels are used as indicators of climate changes, but their geographic distribution is not sufficiently known in the Arctic. The aim of this study was to investigate the taxonomic status and genetic differentiation of Mytilus populations in a Northwest Greenlandic fjord at Maarmorilik, impacted by contaminations from a former mine. In this study, mussels were collected at three sites differing in exposure to environmental factors. A total of 54 polymorphic SNPs found in the Mytilus EST and DNA sequences analyzed were successfully applied to 256 individuals. The results provided the first evidence for the existence of M. trossulus in Greenland. The mussel from M. trossulus and M. edulis taxa are shown to coexist and hybridize in the fjord. The three studied sites were found to differ significantly in the distribution of taxa with a higher prevalence of M. trossulus in the inner fjord. The identified M. edulis × M. trossulus hybrids mostly had a hybrid index score of about 0.5, indicating a similar number of alleles characteristic for M. trossulus and M. edulis. There was a low number of backcrosses between ‘pure’ taxa and hybrids. This newly discovered hybrid zone between the two taxa is unique in comparison with the Canadian populations. As Mytilus mussels in Greenland hitherto have been regarded as the one taxon M. edulis, the results have importance for biogeography and future monitoring and environmental studies.  相似文献   

4.
Genetic and some ecophysiological traits of mussels collected in the European Arctic, up to their northeastern distribution limit in the Barents Sea, were studied and compared with traits of mussels from the Mediterranean, Atlantic and Baltic. The genetic traits of these populations were analysed by isoenzyme electrophoresis on seven loci in order to assess the Mytilus complex to which populations in the Arctic region belong. Ecophysiological variables, the weight-index and glycogen were analysed to assess the physiological fitness of the populations. Three distinct groups were recognised: (1) Mytilus (edulis) galloprovincialis in the Mediterranean and Spain, (2) M. (edulis) edulis along the Atlantic coast from the Netherlands northwards into Russia, and (3) the Baltic Mytilus (edulis) trossulus. The mussels from populations in the Russian Arctic all belong to the Atlantic Mytilus (edulis) edulis group. The genetic variability and ecophysiological measures indicated that the sub-Arctic White Sea mussel populations have a relatively lower performance capacity, whereas those in the Arctic at the edge of their northern distribution showed a surprisingly strong performance. Accepted: 14 June 2000  相似文献   

5.
Smooth‐shelled blue mussels of the Mytilus edulis species complex are widely distributed bivalve molluscs whose introductions threaten native marine biodiversity (non‐indigenous species – NIS). The aim of the present study was to identify the species and hybrids of Mytilus present in the Magellan Region (southern Chile). Results indicate that three mussel species of the Mytilus edulis complex are found in the region – M. edulis, M. chilensis (or the Southern Hemisphere lineage of Mytilus galloprovincialis), and M. galloprovincialis of Northern Hemisphere origin. For the first time, alleles of the introduced M. trossulus are reported from the Southern Hemisphere. In the Strait of Magellan the native Pacific blue mussel, Mytilus chilensis and the native Atlantic blue mussel, Mytilus edulis, meet and mix at a natural hybrid zone (about 125 km in length). This is the first record of a natural Mytilus hybrid zone in the Southern Hemisphere and is also the first record of the co‐occurrence of genes from all four Mytilus species in any one region. These results contribute to the knowledge of the biodiversity and delimitation of mussel species in southern South America, and highlight how introduced species may threaten the genetic integrity of native species through hybridization and introgression.  相似文献   

6.
Doubly uniparental inheritance of mtDNA (DUI) is commonly observed in several genera of bivalves. Under DUI, female offspring inherit mtDNA from their mothers, while male offspring inherit mtDNA from both parents but preferentially transmit the paternally inherited mtDNA to their sons. Several studies have shown that the female- and male-specific mtDNA lineages in blue mussels, Mytilus spp., vary by upward of 20% at the nucleotide level. In addition to high levels of nucleotide substitution, the present study observed substantial gender-based length polymorphism in the presumptive mitochondrial control region (=large unassigned region; LUR) of North American M. trossulus. In this species, female lineage LUR haplotypes are over 2 kb larger than male lineage LUR haplotypes. Analysis of sequence data for these length variants indicates that the F LUR haplotypes of North American M. trossulus contain sequences similar to the F lineage control region in the congeners M. edulis and M. galloprovincialis. Relative to the F LUR in the latter two species, however, the F lineage LUR haplotypes in M. trossulus contain two large sequence insertions, each nearly 1 kb in size. One of these insertions has high sequence similarity to the male lineage LUR of M. trossulus. The tandem arrangement of F and M control region sequences in the F lineage LUR of M. trossulus is most likely the result of nonhomologous recombination between the male and the female mitochondrial genomes in M. trossulus, a finding that has important implications regarding the transmission and evolution of blue mussel mitochondrial genomes. [Reviewing Editor: Dr. Martin Kreitman]  相似文献   

7.
Three species of mussel (genus Mytilus) occur in Europe: M. edulis (Linnaeus 1758), M. galloprovincialis (Lamarck 1819) and M. trossulus (Gould, Boston Society of Natural History 3: 343?C348, 1850). Although these species are indigenous to the North Sea, the Mediterranean and the Baltic Sea, respectively, they form an extended patchy species complex along the coasts of Europe (??the Mytilus edulis complex??) and are able to hybridize where their distributions overlap. Recent studies examining the taxonomic status and genetic composition of Mytilus populations in the Netherlands and the British Isles have revealed introgressive hybridization processes within this species complex, with hints of an invasion of nonindigenous M. galloprovincialis into the North Sea. Furthermore, an extensive international mussel fishery industry in Europe (i.e., Great Britain, the Netherlands, Denmark, and Germany) is also in discussion for a possibly anthropogenically induced bioinvasion of nonindigenous Mytilus traits into the Wadden Sea area. Although it is assumed that the Wadden Sea of Germany comprises M. edulis only, this has never been confirmed in a molecular genetic study. To assess the situation for the Wadden Sea of Lower Saxony, we conducted the first molecular study of the Mytilus genus in the region. Taxonomic identification of 504 mussels from 13 intertidal mussel banks using the nDNA marker Me15/16 revealed a population composition of 99% M. edulis and 1% M. edulis X M. galloprovincialis hybrids. Hence, the Wadden Sea population is unaffected by range expansion of nonindigenous Mytilus traits. The genetic structure of the M. edulis populations was investigated using the phylogenetic and population genetics analyses of the mitochondrial DNA cytochrome-c-oxidase subunit I (COI) and the first variable domain of the control region (VD1), which were sequenced for >120 female individuals. These results showed a heterogeneous, panmictic population due to unrestricted gene flow. This can be attributed to extensive larval dispersal linked to the tidal circulation system in the back barrier basins of the Wadden Sea.  相似文献   

8.
The mussel Mytilus trossulus is an important component of the Baltic brackish water ecosystem. The genetic structure of mussel (M. trossulus) populations was studied in sites along the Polish coast, Southern Baltic for two segments of mitochondrial DNA (mtDNA). The mode of inheritance of Mytilus mtDNA is termed doubly uniparental; two genomes are passed independently down the female (the F genome) and male (the M genome) lines of descent. The M genome has not been detected at high frequency in M. trossulus, thus the present study focuses on the F genome. PCR and RFLP analysis was used to characterise haplotypes in the coding region ND2-COIII; PCR was used to detect length variants in a major noncoding region. Significant differentiation between populations was observed in the frequency of 24 coding region haplotypes and 14 different length variants. For the three most frequent coding region haplotypes, two (I and III) are associated with the length variants, whereas the third (II) is monomorphic for a single variant of short length. It is suggested that variant II is derived by introgression from a related species, M. edulis, and may be resistant to expansion in the noncoding region. In both regions studied, the Ewens–Watterson test reveals significant deviations from neutrality with an excess of rare variants. This might be due to selection against slightly deleterious variants and is consistent with previously published results for Mytilus taxa. The present study also points towards the potential utility of mtDNA length variation in studies of population differentiation of Mytilus.  相似文献   

9.
The influence of geography and genotype on shell shape (outline) and trait (morphometric) variation among North Atlantic blue mussels and their hybrids has been examined. Shape differences among reference taxa (Mytilus trossulus, Mytilus edulis and Mytilus galloprovincialis) were consistent with an association between taxon‐specific genes and shape genes. Newfoundland M. edulis × M. trossulus populations and northern Quebec M. trossulus populations exhibited an uncoupling of taxon‐specific genes from shape genes, whereas Nova Scotia M. trossulus populations and SW England M. edulis × M. galloprovincialis populations exhibited an association between taxon‐specific genes and shape genes. We found no evidence of a geographic effect (NE versus NW Atlantic) for shape variation, indicating that the genotype effect is stronger than any geographic effect at macrogeographic scales. Pronounced differences were observed in trait variability consistent with an association between taxon‐specific genes and trait genes in European populations, and trait divergence of New York M. edulis from all European mussels. Trait variability in mussels from Newfoundland, Nova Scotia and northern Quebec indicated an uncoupling of taxon genes from trait genes, whereas trait variability in SW England M. edulis × M. galloprovincialis populations was consistent with background genotype, indicating a strong association between taxon genes and trait genes. A pronounced macrogeographic split (NE versus NW Atlantic) regardless of taxonomy was observed, indicating that geography exerts a greater influence than genotype on trait variation at the macrogeographic scale. This is consistent with pronounced within‐taxon genetic divergence, indicative of different selection regimes or more likely of different evolutionary histories of mussels on either side of the North Atlantic. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 96 , 875–897.  相似文献   

10.
Mussels of the genus Mytilus have been used to assess the circumglacial phylogeography of the intertidal zone. These mussels are representative components of the intertidal zone and have rapidly evolving mitochondrial DNA, suitable for high resolution phylogeographic analyses. In Europe, the three Mytilus species currently share mitochondrial haplotypes, owing to the cases of extensive genetic introgression. Genetic diversity of Mytilus edulis, Mytilus trossulus and Mytilus galloprovincialis was studied using a 900-bp long part of the most variable fragment of the control region from one of their two mitochondrial genomes. To this end, 985 specimens were sampled along the European coasts, at sites ranging from the Black Sea to the White Sea. The relevant DNA fragments were amplified, sequenced and analyzed. Contrary to the earlier findings, our coalescence and nested cladistics results show that only a single M. edulis glacial refugium existed in the Atlantic. Despite that, the species survived the glaciation retaining much of its diversity. Unsurprisingly, M. galloprovincialis survived in the Mediterranean Sea. In a relatively short time period, around the climatic optimum at 10 ky ago, the species underwent rapid expansion coupled with population differentiation. Following the expansion, further contemporary gene flow between populations was limited.  相似文献   

11.
Bivalve mollusks of the genus Mytilus(M. trossulusand M. galloprovincialis) occurring in Peter the Great Bay of the Sea of Japan were first studied in Russia. A region of nonrepetitive sequences of the gene encoding the polyphenolic adhesive protein bissus was used as a species-specific genetic marker. After amplification using specific primers, a 126-bp fragment was found to amplify in all representatives ofM. galloprovincialiscollected from driftwood in the gulf Posset (the southwestern part of Peter the Great Bay). M. trossulusspecimens from the same region were shown to have a 168-bp fragment. In Vostok Gulf (the eastern part of Peter the Great Bay), both artificially grown mussels and those from natural habitats contained a 168-bp fragment or two fragments (126- and 168-bp) that corresponded to a hybrid form between the above species. The possibility of using this genetic marker to identify closely related Mytilusstrains and their hybrids in similar habitats, near the Primorye coast in particular, was demonstrated. The presence of approximately 9% of hybrid specimens confirms that a zone of hybridization between M. trossulusand M. galloprovincialismay exist in this region.  相似文献   

12.
The taxonomic status of smooth shelled blue mussels of the genus Mytilus has received considerable attention in the last 25 years. Despite this, the situation in the southern hemisphere remains uncertain and is in need of clarification. Recent work suggests that contemporary New Zealand mussels from two cool/cold temperate locations are M. galloprovincialis. However, the distribution of Mytilus in New Zealand ranges from 35 ° to 52 ° south (~ 1800 km), meaning that large areas of the subtropical/warm temperate north and the subantarctic south remain unsampled, an important consideration when species of this genus exhibit pronounced macrogeographical differences in their distributions which are associated with environmental variables such as water temperature, salinity, wave action and ice cover. This study employed multivariate morphometric analyses of one fossil, 83 valves from middens, and 92 contemporary valves from sites spanning the distributional range of blue mussels to determine a historical and contemporary perspective of the taxonomic status of Mytilus in New Zealand. The findings indicated that all fossil and midden mussels are best regarded as M. galloprovincialis and confirmed that contemporary mussels, with one possible regional exception, are also best regarded as M. galloprovincialis. Contemporary mussels from the Bay of Islands (warm temperate/subtropical) exhibited much greater affinity to M. edulis than they did to M. galloprovincialis, indicating that mussels from this area require detailed genetic examination to determine their taxonomic status. The analyses revealed a significant difference between the fossil/midden mussels and the contemporary mussels, consistent with levels of present day differentiation among intraspecific populations and not thought to reflect any substantive temporal change between mussels of the two groups. The continuous distribution of M. galloprovincialis in New Zealand from the warm north to the subantarctic south indicates that the physiology of this species is adapted to a wide range of water temperature conditions. Therefore, the distribution of this species on a worldwide scale is unlikely to be restricted by its adaptation to warm water alone, as has previously been widely assumed. © 2004 The Linnean Society of London, Biological Journal of the Linnean Society, 2004, 82 , 329–344.  相似文献   

13.
Samples of Mytilus were collected at eight sites located in and around Bergen, Norway, and analysed by starch gel electrophoresis for the two highly polymorphic loci PGM* and PGI*. The genotype distribution and allele frequencies varied significantly among samples from the different locations. The variations were most significant between localities with full strength seawater and brackish water, and this difference was so large that it indicated the presence of two populations, possibly representing two species. The brackish water mussels may represent the species Mytilus trossulus, while the species Mytilus edulis may be distributed on the outer shores where salinity is normally around 30. Differential survival, as a result of specific adaptation to different salinities, may be the mechanism that maintains the populations (or species) and prevents gene flow between them.Communicated by H.-D. Franke  相似文献   

14.
Abstract.—Mytilus edulis and M. galloprovincialis are two blue mussel species that coexist in western Europe. Previously, we reported that M. galloprovincialis populations contain female and male haplotypes that are fixed in M. edulis populations as well as unique haplotypes. This study assesses whether paraphyly for these species is due to introgression or incomplete lineage extinction. The lineage extinction hypothesis predicts that the shared mtDNA haplotypes in M. galloprovincialis will be significantly diverged from those in M. edulis and form distinct sequence clades. In contrast, the introgression hypothesis proposes that M. edulis haplotypes have only recently been introduced into M. galloprovincialis through hybridization with relatively little divergence accumulating between the shared RFLP haplotypes. We examined 80 mtl6S gene sequences for both the maternal and paternal mtDNA lineages from mussels sampled from various European populations and found strong support for the introgression hypothesis. In addition, we found that M. edulis mtDNA haplotypes appear to be introgressing into mussel populations in the Baltic Sea, which have predominantly M. trossulus nuclear genotypes, indicating that introgressive hybridization is prevalent among European mussel populations.  相似文献   

15.
Starch gel electrophoresis was used to study variation at 11 loci in mussels sampled mainly from British coastal sites. Two types of mussel were identified, Mytilus edulis, the common mussel and its southern relative Mytilus galloprovincialis. Several partially diagnostic loci were used to map the distribution of the two forms. Mytilus edulis was present at all sites sampled in Britain and Ireland but was at low frequency in SW England; M. galloprovincialis was detected in SW England, the south and west of Ireland. Scotland and NE England, but was absent from south Wales, the Irish sea coasts of Wales and Ireland, and SE England. Apart from the occurrence of M. galloprovincialis in NE England, this distribution conforms with the results of studies using morphological characters and parallels the distribution of many other southern species in Britain. At the microgeographical level, M. edulis was found to prefer more sheltered and estuarine conditions than M. galloprovincialis. Analysis using the best diagnostic loci showed that hybridization is occurring between M. edulis and M. galloprovincialis at all localities where they occur sympatrically but that the extent of hybridization varies considerably between localities. The distribution of localities having high proportions of hybrid individuals is best interpreted by assuming that hybrids have higher fitness than parental types at these localities. A study was made of variation within and between those localities where only M. edulis individuals were observed. Little significant geographic variation in allele frequency was detected, but significant deficits of heterozygotes compared with Hardy-Weinberg expectations were seen for most loci. Analysis suggests that the Wahlund effect is not involved and that the most likely cause of the deficit is low frequencies of null alleles. In M. edulis no differences in phenotypic variance in shell height and width were observed between samples of multiply heterozygous and multiply homozygous individuals and no genetic differences were found between juveniles and adults. Overall little evidence was found that balancing selection is responsible for maintenance of the polymorphisms studied in M. edulis. The pattern of geographic variation in gene frequencies in Mytilus in the British Isles is discussed in relation to variation in the south and north of Europe and North America. It is concluded that steep clines in gene frequencies in M. edulis observed by other workers in the Baltic and in Long Island Sound cannot be attributed to the presence of M. galloprovincialis.  相似文献   

16.
Aim We performed the first test of predictions from the abundant‐centre model using north‐west Atlantic coastal organisms. We tested the hypotheses that the density of intertidal mussels (Mytilus edulis and M. trossulus) and dogwhelks (Nucella lapillus) and mussel age and size would peak at an intermediate location along their distribution range. We also assessed the latitudinal variation in critical aerial exposure time. Location North‐west Atlantic coast between Newfoundland (Canada) and New York (USA), covering 1800 km of shoreline. Methods Using a nested design, we measured mussel density, age and size and dogwhelk density in 60 wave‐exposed rocky intertidal sites spread evenly in six regions. Critical aerial exposure times were determined using online data. Results Mytilus edulis peaked in abundance in Maine and was much less abundant in the other regions. Mytilus trossulus peaked in abundance in southern Nova Scotia and Maine, was less abundant in the other regions to the north, and was absent in the southernmost region (New York). Both mussel species were least abundant in a northern region (Cape Breton), although not in the northernmost region (Newfoundland). Critical aerial exposure times were negatively correlated with overall mussel density. Mussel age and size were similar among regions. Dogwhelks peaked in abundance in Maine and were much less abundant in the other regions, being positively correlated with overall mussel density across regions. Main conclusions Density data for M. edulis and N. lapillus provide limited support for an abundant‐centre pattern, while M. trossulus shows a clear ramped‐south distribution. Critical aerial exposure times suggest that physiological stress during summer and winter low tides may be lowest in Maine and southern Nova Scotia, which might partially explain mussel predominance in those regions. Winter ice scour in Cape Breton may explain the abundance trough observed there. Mussel size and age may be more limited by wave exposure at our sites (as they all face open waters) than by regional differences in environmental stress. Dogwhelks, which prey on mussels, seem to respond positively to prey density at the regional scale. Our study supports the notion that, while the abundant‐centre model is a useful starting point for research, it often represents an oversimplification of reality.  相似文献   

17.
Blue mussels of the genus Mytilus form extensive hybrid zones in the North Atlantic and elsewhere where the distributions of different species overlap. Mytilus species transmit both maternal and paternal mtDNA through egg and sperm, respectively, a process known as doubly uniparental inheritance (DUI), and some females produce offspring with extremely biased sex ratios. These two traits have been shown to be linked and maternally controlled, with sex determination involving nuclear–cytoplasmic interactions. Hybridization has been shown to disrupt DUI mitochondrial inheritance and sex ratio bias; however, the effect of hybridization on reproductive fitness has not previously been examined. We investigated this effect in M. edulis × M. trossulus crosses through histological examination of mature F1 progeny, and spawning of F1 hybrids to monitor survival of their progeny through to the D stage of larval development. For progeny produced from mothers with a strong bias toward female offspring (often 100%) in pure-bred crosses, there was a clear breakdown in female dominance of progeny and significantly more hermaphrodites in the hybrid crosses produced from sperm with the M-tr1 mitotype. We also found significant sex-specific differences among hybrid progeny, with females producing normal eggs while males and hermaphrodites evidenced impaired gonadal development with significantly greater numbers of Sertoli cells, phagocytic hemocytes, and degenerating germ cells, all associated with gonad resorption. Males from crosses where DUI was disrupted and where male progeny were homoplasmic for the female mtDNA were the most severely compromised. Allelic incongruity between maternal and paternal mitotypes in hybrid crosses was associated with significant disruption of male gonadal development.  相似文献   

18.
The cylotaxonomical characteristics of Mytilus tros-sulus, M.edulis and M. galloprovincialis were studied using karyometricanalysis and silver staining. The karyotype of M. trossulus,reported here for the first time, consists of six metacentricand eight submetacentric-subtelocentric chromosome pairs. Theoccurrence of five metacentric chromosome pairs in M. galloprovincialisdifferentiates this taxon from M. trossulus and M. edulis whichboth have six meta-centrics. The number of submetacentric tosubtelo-centric chromosome pairs was variable between populationsand between taxa. We suggest that this variability has arisenfrom differential chromosome condensation rather than from structuralchange. Intercomparison of chromosome relative length showedstrong similarity among the three taxa. Chromosomal nucleolarorganizer regions (NORs) were identically located on two submetacentric-subtelocentricchromosome pairs in all three taxa. However, M. trossulus showeda characteristic difference in the occurrence of NORs on onemetacentric pair, which was absent in M. galloprovincialis andM. edulis. Variability in the number of NORs per cell was observedin all populations studied. We conclude that the three taxaof Mytilus studied here cannot be differentiated by asinglekaryological character, but that a combination of karyologicalcharacters is virtually diagnostic * To whom correspondence should be sent (Received 24 January 1994; accepted 9 March 1994)  相似文献   

19.
The diatom genus Pseudo-nitzschia (Peragallo) associated with the production of domoic acid (DA), the toxin reposnsible for amnesic shellfish poisoning, is abundant in Scottish waters. A two year study examined the relationship between Pseudo-nitzschia cells in the water column and DA concentration in blue mussels (Mytilus edulis) at two sites, and king scallops (Pecten maximus) at one site. The rate of DA uptake and depuration differed greatly between the two species with M. edulis whole tissue accumulating and depurating 7 μg g−1 (now expressed as mg kg−1) per week. In contrast, it took 12 weeks for DA to depurate from P. maximus gonad tissue from a concentration of 68 μg g−1 (now mg kg−1) to <20 μg g−1 (now mg kg‐1). The DA depuration rate from P. maximus whole tissue was <5% per week during both years of the study. Correlations between the Pseudo-nitzschia cell densities and toxin concentrations were weak to moderate for M. edulis and weak for P. maximus. Seasonal diversity on a species level was observed within the Pseudo-nitzschia genus at both sites with more DA toxicity associated with summer/autumn Pseudo-nitzschia blooms when P. australis was observed in phytoplankton samples. This study reveals the marked difference in DA uptake and depuration in two shellfish species of commercial importance in Scotland. The use of these shellfish species to act as a proxy for DA in the environment still requires investigation.  相似文献   

20.
Mitochondrial DNA was long believed to be purely clonal and free from recombination. Major phylogenetic studies still depend on such assumptions. The peculiar genetic system of marine mussels Mytilus in which two divergent mitochondrial genomes exist provides a unique opportunity to study mtDNA recombination. Previous reports showed the existence of a few haplotypes having very strong recombination signal in the control region of mtDNA. Those recombinant variants have been found in a Baltic Sea population of Mytilus trossulus as well as in Mytilus galloprovincialis from the Black Sea. In both cases the mosaic genomes switched their transmission route and have been inherited paternally. In the present study rearranged mtDNA genomes found in all three European Mytilus species are described. The structure of their control region is a result of intra- and intermolecular recombination between mitochondrial genomes. Together with the phylogenetic reconstruction and geographic distribution, this suggests that two interlineage recombination events have occurred in the control region of mtDNA of European mussels Mytilus. Contrary to earlier observations, some of the mosaic genomes do not show any gender bias, which has important implications regarding the transmission and evolution of blue mussel mitochondrial genomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号