首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
[3H]Mannose-labeled glycopeptides in the slices after partial hepatectomy were characterized by column chromatography using Sephadex G-50, DE-52 and Con A-Sepharose, and further by digestion with alpha-mannosidase and endo-beta-N-acetylglucosaminidase H. They contained both 'complex type' and 'high-mannose type' oligosaccharides. A higher proportion of 'complex type' oligosaccharides was contained in regenerating liver 24 h after partial hepatectomy than in control. This tendency was increased gradually with time and was most pronounced at 144 h. In our previous studies, the activities of microsomal N-acetylglucosaminyltransferase towards endogenous and exogenous acceptors at 144 h after partial hepatectomy were shown to exceed most prominently that in control. No differences in the oligosaccharides were observed at 240 h when the deficit of liver had been restored. The oligosaccharides of glycopeptides in the incubation media were mostly 'complex type' and the differences between regenerating liver and control were observed only at 144 h. These results suggest that oligosaccharide processing of glycoproteins is regulated at the transfer step of peripheral N-acetylglucosamine to core oligosaccharides 144 h after partial hepatectomy, and that these alterations in oligosaccharides of glycoproteins may be related to hypertrophy and hyperplasia of hepatic cells in liver regeneration.  相似文献   

2.
In the preceding paper (Roux, L., Holojda, S., Sundblad, G., Freeze, H. H., and Varki, A. (1988) J. Biol. Chem. 263, 8879-8889) we described the metabolic labeling and isolation of sulfated N-linked oligosaccharides from mammalian cell lines. All cell lines studied contained a class of sulfated sialylated complex-type chains with 2-6 negative charges. In this paper, we show that bovine pulmonary arterial endothelial (CPAE) and human erythroleukemia (K562) cell lines also contain a class of more highly charged sulfated but less sialylated oligosaccharides. These molecules were further characterized by ion exchange chromatography and various enzymatic and chemical treatments. In both cell lines they contained greater than 6 negative charges, but those from K562 were even more highly charged than those from CPAE. Nitrous acid, heparinase, and heparitinase degradation of K562 oligosaccharides released 88, 64, and 78%, respectively, of 35S label. Combined digestion with the two enzymes resulted in 87% release. The corresponding values for CPAE were 48, 25, and 50% (60% for the two enzymes together). Chondroitinase ABC (or AC) digestion of K562 and CPAE oligosaccharides released 10 and 5%, respectively. About 30% of the 35S-labeled oligosaccharides from CPAE were sensitive to endo-beta-galactosidase, indicating that poly-N-acetyl-lactosamine structures were present on some chains. Highly charged [3H]mannose-labeled sulfated oligosaccharides from CPAE cells became neutral after treatment with heparinase/heparitinase but were resistant to Pronase, further proving that glycosaminoglycan (GAG)-like chains were directly attached to N-linked oligosaccharides. Such neutralized oligosaccharides did not bind to concanavalin A-Sepharose, but some interacted with phytohemagglutinin L4, indicating that they were bi-, tri-, or tetra-antennary complex-type chains. Thus, K562 and CPAE cells contain different types of GAG chains directly attached to asparagine-linked oligosaccharides. Such molecules were not found in many other cell lines that synthesize the more typical O-linked GAG chains. This suggests that the occurrence of these novel N-linked chains is not a random event resulting from accidental initiation of GAG chain synthesis on N-linked intermediates in the Golgi apparatus.  相似文献   

3.
[3H]Mannose-labelled glycopeptides in the slices of livers from neonatal and 1-, 2-, 3- and 5-week-old rats were characterized by column chromatographies on Sephadex G-50 and concanavalin A-Sepharose and by endo-beta-N-acetylglucosaminidase H digestion. The proportion of complex-type glycopeptides was increased with time until 2 weeks post partum and then returned to the neonatal level. This was mainly due to the increased proportion of concanavalin A-bound (biantennary) species. These changes were accompanied by consistent changes in the activities of processing enzymes in liver microsomal fraction, especially of N-acetylglucosaminyltransferase I. Complex-type glycopeptides from neonatal and 2- and 5-week-old rat livers were further characterized by column chromatographies on Bio-Gel P-6 and DE 52 DEAE-cellulose in combination with neuraminidase digestion. No significant difference was found between concanavalin A-bound species from neonatal liver and those from liver 5 weeks post partum, most of which were sialylated. Concanavalin A-bound species 2 weeks post partum were comparatively smaller in size and less sialylated. On the other hand, there was no significant difference among concanavalin A-unbound species from the three different sources, most of which were sialylated. Since glycoproteins from regenerating rat liver also contain a higher proportion of complex-type oligosaccharides, as previously reported, such changes in N-linked oligosaccharides of glycoproteins may be related to control of the growth of liver cells.  相似文献   

4.
Porcine pancreatic alpha-amylase was shown by interaction analyses using a resonance mirror detector and alpha-amylase-immobilized Sepharose to bind with glycoproteins possessing N-glycans but not O-linked mucin-type glycans. Direct binding of three types of N-glycans to the alpha-amylase was demonstrated by surface plasmon resonance. Binding with biotin-polymer sugar probes revealed that the alpha-amylase has affinity to alpha-mannose, alpha-N-acetylneuraminic acid, and beta-N-acetyllactosamine, which are components of N-glycans. The binding of glycoproteins or carbohydrates enhanced the enzyme activity, indicating that the recognition site for N-glycans is different from its catalytic site. The binding activity was unique to porcine pancreatic alpha-amylase and was not observed for alpha-amylase from saliva, wheat, and fungus.  相似文献   

5.
Protocols have been developed for the characterization of carbohydrate covalently attached (N-linked) to an asparagine residue in glycoproteins, after separation by two-dimensional polyacrylamide gel electrophoresis (2-D PAGE). Mixtures of proteins (each at a level from 0.5 to 50 microg) were resolved in the first dimension according to their isoelectric points (pI), followed by separation in the orthogonal axis on the basis of their molecular weights. Glycans were released directly from excised gel spots after digestion with PNGase F, with or without prior treatment with trypsin. In a third method, glycoproteins were electroblotted onto poly(vinylidene difluoride) before glycans were released by PNGase F. For all these procedures profiles of the neutral and sialic acid-containing oligosaccharide mixtures were obtained after derivatization with 3-acetamido-6-aminoacridine, and analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and/or high-performance liquid chromatography. Potential applications to proteomics are discussed.  相似文献   

6.
The structures of N-linked sugar chains of glycoproteins expressed in tobacco BY2 cultured cells are reported. Five pyridylaminated (PA-) N-linked sugar chains were derived and purified from hydrazinolysates of the glycoproteins by reversed-phase HPLC and size-fractionation HPLC. The structures of the PA-sugar chains purified were identified by two-dimensional PA-sugar chain mapping, ion-spray MS/MS analysis, and exoglycosidase digestions. The five structures fell into two categories; the major class (92.5% as molar ratio) was a xylose containing-type (Man3Fuc1 Xyl1GlcNAc2 (41.0%), GlcNAc2Man3Fuc1Xyl1GlcNAc2 (26.5%), GlcNAc1Man3Fuc1Xyl1GlcNAc2 (21.7%), Man3 Xyl1GlcNAc2 (3.3%)), and the minor class was a high-mannose type (Man5GlcNAc2 (7.5%)). This is the first report to show that alpha(1-->3) fucosylation of N-glycans does occur but beta(1-->4) galactosylation of the sugar chains does not in the tobacco cultured cells.  相似文献   

7.
The structures of sugar chains of the glycoproteins from the microsomal fraction of developing castor bean endosperms have been analyzed. The structural analyses were done by a fluorescence method combined with component analysis, exoglycosidase digestions, partial acetolysis, Smith degradation, and 1H-NMR spectroscopy. The estimated structures fell into three categories; the first was oligomannose-type, the second xylomannose-type, the third complex-type. Among these oligosaccharides, Man3Fuc1Xyl1GlcNAc2 (M3FX) and Man6GlcNAc2 (M6B) were the major structures. The structures of Man4GlcNAc2 (M4C) and Man4Xyl1GlcNAc2 (M4X) have also been found in the microsomal glycoproteins of the developing bean endosperms. These results could indicate that the structures of M4C, M4X, and M3FX are formed in the stage of sugar chain processing in the microsomal fraction, in which oligomannose-type sugar chains are modified into complex-type ones by several kinds of processing enzymes.  相似文献   

8.
The pollen of Ginkgo biloba is one of the allergens that cause pollen allergy symptoms. The plant complex type N-glycans bearing beta1-2 xylose and/or alpha1-3 fucose residue(s) linked to glycoallergens have been considered to be critical epitopes in various immune reactions. In this report, the structures of N-glycans of total glycoproteins prepared from Ginkgo biloba pollens were analyzed to confirm whether such plant complex type N-glycans occur in the pollen glycoproteins. The glycoproteins were extracted by SDS-Tris buffer. N-Glycans liberated from the pollen glycoprotein mixture by hydrazinolysis were labeled with 2-aminopyridine and the resulting pyridylaminated (PA-)N-glycans were purified by a combination of size-fractionation HPLC and reversed-phase HPLC. The structures of the PA-sugar chains were analyzed by a combination of two-dimensional sugar chain mapping, IS-MS, and MS/MS. The plant complex type structures (GlcNAc2Man3Xyl1Fuc1GlcNAc2 (31%), GlcNAc2Man3Xyl1GlcNAc2 (5%), Man3Xyl1Fuc1GlcNAc2 (13%), GlcNAc1Man3Xyl1Fuc1GlcNAc2 (8%), and GlcNAc1Man3Xyl1GlcNAc2 (17%)) have been found among the N-glycans of the glycoproteins of Ginkgo biloba pollen, which might be candidates for the epitopes involved in Ginkgo pollen allergy. The remaining 26% of the total pollen N-glycans have the typical high-mannose type structures: Man8GlcNAc2 (11%) and Man6GlcNAc2 (15%).  相似文献   

9.
As characterization of glycosylation is required for the licensing of recombinant glycoprotein therapeutics, technique comparability must be assessed. Eleven UK laboratories (seven industrial, two regulatory or government, two academic) participated in an inter-laboratory study to analyze N-glycans present in four mixtures prepared by PNGase F cleavage of commercial glycoproteins: human alpha1-acid glycoprotein (H alpha1), bovine alpha1-acid glycoprotein (B alpha1), bovine pancreatic ribonuclease B (RNaseB), and human serum immunoglobulin G (hIgG). Participants applied their routine glycan mapping methodology using predominantly chromatography and mass spectrometry to identify and quantify components. Data interpretation focused on the relative amounts of different glycan structures present, the degree of sialylation, antennary and the galactosylation profiles, fucosylation and bisecting GlcNAc content, and the number of glycan components identified. All laboratories found high levels of sialylation for H alpha1 and B alpha1 (Z-numbers 271 +/- 24 and 224 +/- 18, respectively), but varying ratios of di-, tri-, and tetra-antennary chains. The Z-score for hIgG glycans had high variability as values obtained from mass spectrometric and chromatographic methods clustered separately. The proportion of the major penta-mannosyl chain from RNaseB was between 29 and 62%. Proportions of fucosylated and bisected GlcNAc chains from hIgG were between 58 and 96% and 9 and 23%, respectively. Mass spectrometric approaches consistently identified more glycan species, especially when both N-glycolylneuraminic acid (Neu5Gc) and N-acetylneuraminic acid (Neu5Ac) were present. These data highlight the need for well-characterized reference standards to support method validation and regulatory guidance on selection of approaches. Pharmacopoeial specifications must acknowledge method variability.  相似文献   

10.
Binding specificities of ABO blood group-recognizing lectins toward blood group antigens on neoglycoproteins, glycoproteins and complex-type oligosaccharides were studied by lectin-blotting analysis, enzyme linked immunosorbent assay and lectin-conjugated agarose column chromatography. Human serum albumin conjugated with A- and B-trisaccharides was clearly recognized by Helix pomatia (HPA), Phaseolus lunatus, Dolichos biflorus agglutinins, and Griffonia simplicifolia I agglutinin B(4), respectively. Almost the same results were obtained for human group A and B ovarian cyst and A-active hog gastric mucins, but Glycine max agglutinin only reacted to the group A hog mucin. When human plasma von Willebrand factor (vWF), having Asn-linked blood group antigens, was tested, HPA was highly sensitive to blood group A antigen on the vWF. Ulex europaeus agglutinin I (UEA-I) preferentially bound to the vWF from blood group O plasma. Within the GalNAc-recognizing lectins examined, a biantennary complex-type oligosaccharide having the blood group A structure retarded on an HPA-agarose column, and the affinity was diminished after digestion with alpha-N-acetylgalactosaminidase. This product bound to UEA-I agarose column. These results indicate that HPA and UEA-I are most sensitive for detection of glycoproteins possessing small amounts of blood group A and H antigens and also useful for fractionation of complex-type oligosaccharides with blood group A and H antigens, respectively.  相似文献   

11.
Papac  DI; Briggs  JB; Chin  ET; Jones  AJ 《Glycobiology》1998,8(5):445-454
This report describes a convenient method for the rapid and efficient release of N-linked oligosaccharides from low microgram amounts of glycoproteins. A 96-well MultiScreen assay system containing a polyvinylidene difluoride (PVDF) membrane is employed to immobilize glycoproteins for subsequent enzymatic deglycosylation. Recombinant tissue-type plasminogen activator (rt-PA) is used to demonstrate the deglycosylation of 0.1-50 micrograms of a glycoprotein. This method enabled the recovery of a sufficient amount of N-linked oligosaccharides released enzymatically with peptide N-glycosidase F (PNGaseF) from as little as 0.5 microgram rt-PA for subsequent analysis by matrix-assisted laser desorption/ionization time-of-flight (MALDI- TOF) mass spectrometry. The immobilization of rt-PA to the PVDF membrane did not sterically inhibit the PNGaseF-mediated release of oligosaccharides from rt-PA as determined by tryptic mapping experiments. Comparison of the oligosaccharides released from 50 micrograms of rt-PA by either the 96-well plate method or by a standard solution digestion procedure showed no significant differences in the profiles obtained by high-pH anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD). Both neutral and sialylated oligosaccharide standards spiked into wells were recovered equally as determined by HPAEC-PAD. One advantage of this approach is that reduction and alkylation can be performed on submicrogram amounts of glycoproteins with easy removal of reagents prior to PNGaseF digestion. In addition, this method allows 60 glycoprotein samples to be deglycosylated in 1 day with MALDI-TOF or HPAEC-PAD analysis being performed on the following day.   相似文献   

12.
Preference for the beta-anomer of galactose attributed to the bovine heart 14 kDa galectin-1 (BHL-14) was re-examined using natural glycoproteins and artificially glycosylated proteins as ligands. Endogenous glycoproteins co-purified with BHL-14 during its affinity chromatographic isolation contained oligosaccharides bearing terminal alpha-linked galactose (TAG) moieties and were superior even to laminin as ligands for homogeneous BHL-14 obtained by high pressure liquid chromatography. Artificially glycosylated proteins prepared by covalent attachment of melibiose to proteins and containing TAG moieties were ligands for BHL-14, unlike their lactose counterparts which contained beta-linked galactose. Enzymatic removal of TAG moieties from the following glycoproteins abolished their recognition by BHL-14: (i) endogenous glycoproteins co-purified with BHL-14; (ii) mouse laminin; and (iii) bovine heart glycoproteins recognized by peanut agglutinin. Modification of TAG in laminin using galactose oxidase also rendered the glycoprotein inert towards BHL-14. Desialylation of human IgG, bovine thyroglobulin or laminin failed to increase the affinity of BHL-14 for these glycoproteins. Since removal of TAG or of sialic acid moiety exposed LacNAc (Gal beta1-->4 GlcNAc) in these glycoproteins, these results indicated that TAG, rather than LacNAc, is a ligand for BHL-14 on N-linked oligosaccharide chains of glycoproteins. Ready recognition of human IgA and jacalin-binding human plasma glycoproteins and non-recognition of human IgG suggested that T antigen (Galbeta1-->3 GalNAc) may also be ligand for galectin-1.  相似文献   

13.
《The Journal of cell biology》1984,98(5):1720-1729
1- Deoxynojirimycin is a specific inhibitor of glucosidases I and II, the first enzymes that process N-linked oligosaccharides after their transfer to polypeptides in the rough endoplasmic reticulum. In a pulse- chase experiment, 1- deoxynojirimycin greatly reduced the rate of secretion of alpha 1-antitrypsin and alpha 1-antichymotrypsin by human hepatoma HepG2 cells, but had marginal effects on secretion of the glycoproteins C3 and transferrin, or of albumin. As judged by equilibrium gradient centrifugation, 1- deoxynojirimycin caused alpha 1- antitrypsin and alpha 1-antichymotrypsin to accumulate in the rough endoplasmic reticulum. The oligosaccharides on cell-associated alpha 1- antitrypsin and alpha 1-antichymotrypsin synthesized in the presence of 1- deoxynojirimycin , remained sensitive to Endoglycosidase H and most likely had the structure Glu1- 3Man9GlcNAc2 . Tunicamycin, an antibiotic that inhibits addition of N-linked oligosaccharide units to glycoproteins, had a similar differential effect on secretion of these proteins. Swainsonine , an inhibitor of the Golgi enzyme alpha- mannosidase II, had no effect on the rates of protein secretion, although the proteins were in this case secreted with an abnormal N- linked, partially complex, oligosaccharide. We conclude that the movement of alpha 1-antitrypsin and alpha 1-antichymotrypsin from the rough endoplasmic reticulum to the Golgi requires that the N-linked oligosaccharides be processed to at least the Man9GlcNAc2 form; possibly this oligosaccharide forms part of the recognition site of a transport receptor for certain secretory proteins.  相似文献   

14.
The N-linked glycans from the 52/54-kDa medium protein and cell wall beta-fructosidase, two glycoproteins secreted by carrot suspension culture cells, were characterized. Carrot cells were labelled with [3H]glucosamine or [3H]fucose. The 52/54-kDa medium protein was isolated from the culture medium and beta-fructosidase from cell walls. The purified proteins were digested with trypsin and glycopeptides were isolated and sequenced. Glycans obtained from individual glycopeptides were separated by gel filtration chromatography and characterized by concanavalin A chromatography, by treatments with exoglycosidases and by sugar composition analysis. The 52/54-kDa medium protein and cell wall beta-fructosidase have one high-mannose-type glycan similar to those from yeast and animal glycoproteins. In addition, the 52/54-kDa medium protein has three complex-type and cell wall beta-fructosidase two complex-type glycans per polypeptide. The complex-type glycans isolated from individual glycosylation sites are fairly large and very heterogeneous. The smallest of these glycans has the structure [Xyl](Man)3[Fuc](GlcNAc]2Asn (square brackets indicating branching) whereas the larger ones carry additional sugars like terminal N-acetylglucosamine and possibly rhamnose and arabinose in the case of the 52/54-kDa medium protein and only arabinose in the case of cell wall beta-fructosidase. These terminal sugars are linked to the alpha-mannose residues of the glycan cores. The 52/54-kDa medium protein is secreted with large and homogeneous complex glycans, their heterogeneity originates from slow processing after secretion. The complex glycans from cell wall beta-fructosidase are processed before the enzyme is integrated into the cell wall.  相似文献   

15.
The purpose of the study was to examine the role of N-linked oligosaccharides in preventing combination of free alpha molecules with human chorionic gonadotropin (hCG)-beta subunit to form the intact hormone, hCG. Culture media from JEG cells incubated in the presence or absence of Swainsonine were filtered on Sephadex G-100, and free alpha was identified by radioimmunoassay. Swainsonine interferes with glycosylation by inhibiting alpha-mannosidase II, resulting in formation of hybrid structures. Approximately 50% of the free alpha molecules from Swainsonine-treated cells (Swainsonine pool 2) had an apparent molecular size that was smaller than that of free alpha from control cells. The oligosaccharides of control alpha molecules were resistant to endo-beta-N-acetylglucosaminidase H treatment. In contrast, virtually all of the Swainsonine free alpha molecules contained endo-beta-N-acetylglucosaminidase H-sensitive oligosaccharides. Swainsonine free alpha and control free alpha molecules were incubated with an excess of hCG-beta subunit, followed by chromatography on Sephadex G-100. Each fraction was assayed by radioimmunoassay for intact hCG and for alpha. Less than 10% of control free alpha molecules combined with hCG-beta. In contrast, 54% of Swainsonine alpha pool 2 and 40% of Swainsonine alpha pool 1 combined with beta to form hCG. Thus, modulation of N-linked oligosaccharide processing converted free alpha molecules to forms that can combine with hCG-beta. These results indicate that the inability of a substantial portion of control free alpha molecules to combine with hCG-beta is due to the presence of N-linked oligosaccharide structures that interfere with combination.  相似文献   

16.
Solution conformations of N-linked oligosaccharides   总被引:1,自引:0,他引:1  
  相似文献   

17.
Two forms of the gonadotropin alpha subunit are synthesized in placenta and in human chorionic gonadotropin (hCG)-producing tumors: an uncombined (monomer) form and a combined (dimer) form. These forms show differences in their migration on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The slower migration of the monomeric form on sodium dodecyl sulfate-polyacrylamide gel electrophoresis has been attributed to a different glycosylation pattern. Previous studies demonstrated different roles of each of the two alpha N-linked glycosylation sites (Asn-52 and Asn-78) in secretion of the uncombined subunit and the biologic activity of hCG dimer. To assess the influence of formation of dimer on the processing pattern at the individual sites, we characterized the N-linked oligosaccharides of monomer and dimer forms of recombinant human choriogonadotropin alpha subunit. Two approaches were employed. First, site-directed mutagenesis was used to alter the two N-linked oligosaccharide attachment sites, thus allowing the expression of alpha subunits containing only one glycosylation site. Second, tryptic glycopeptides of the wild-type subunits were examined. Concanavalin A (ConA) binding and sialic acid content indicated that the oligosaccharides at each glycosylation site of the uncombined alpha subunit are processed differently. Oligosaccharides present at Asn-52 are almost exclusively ConA-unbound and contain three sialic acid residues. The majority of Asn-78-linked oligosaccharides are ConA-bound and disialylated. Both sites are processed independently because no significant differences were observed between the oligosaccharides at the same sites in wild-type and mutant monomeric alpha subunits. By contrast, the majority of the oligosaccharides at both glycosylation sites of the dimer alpha are bound to ConA. Thus, combination primarily affects the processing pattern of the Asn-52-linked species. Because glycosylation at this site is essential for hCG assembly and signal transduction, these data imply a critical link between the site-specific processing and hormone function.  相似文献   

18.
The activity and substrate specificity of endo-beta-N-acetylglucosaminidase [glycopeptide-D-mannosyl-N4-(N-acetyl-D-glucosaminyl)2-asparagine 1,4-N-acetyl-beta-glucosamino-hydrolase, EC 3.2.1.96] obtained from Mucor hiemalis (Endo-M) was compared with that of the enzyme obtained from Flavobacterium meningosepticum (Endo-F), which is the only enzyme available that acts on the complex oligosaccharides of asparagine-linked sugar chains in glycoproteins. They showed almost the same activities toward DNS-ovalbumin glycopeptide containing high-mannose and hybrid asparagine-linked oligosaccharides. However, Endo-M showed high activity towards DNS-asialotransferrin and DNS-transferrin glycopeptides, which contain complex biantennary oligosaccharides. Endo-M could weakly act even on DNS-asialofetuin glycopeptide containing complex triantennary oligosaccharides, while Endo-F could not. SDS-denatured asialotransferrin was deglycosylated by both enzymes in the presence of non-ionic detergent (NP-40) and EDTA, and the deglycosylated protein migrated to a lower molecular weight position than asialotransferrin on SDS-PAGE. However, even in the absence of detergent, Endo-M deglycosylated native asialotransferrin and transferrin. Deglycosylation of asialotransferrin was confirmed by means of Con A-Sepharose 4B column chromatography and SDS-PAGE.  相似文献   

19.
Detecting O-linked oligosaccharides on glycoproteins   总被引:1,自引:0,他引:1  
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号