首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
gamma-Tubulin is assumed to participate in microtubule nucleation in acentrosomal plant cells, but the underlying molecular mechanisms are still unknown. Here, we show that gamma-tubulin is present in protein complexes of various sizes and different subcellular locations in Arabidopsis and fava bean. Immunoprecipitation experiments revealed an association of gamma-tubulin with alphabeta-tubulin dimers. gamma-Tubulin cosedimented with microtubules polymerized in vitro and localized along their whole length. Large gamma-tubulin complexes resistant to salt treatment were found to be associated with a high-speed microsomal fraction. Blue native electrophoresis of detergent-solubilized microsomes showed that the molecular mass of the complexes was >1 MD. Large gamma-tubulin complexes were active in microtubule nucleation, but nucleation activity was not observed for the smaller complexes. Punctate gamma-tubulin staining was associated with microtubule arrays, accumulated with short kinetochore microtubules interacting in polar regions with membranes, and localized in the vicinity of nuclei and in the area of cell plate formation. Our results indicate that the association of gamma-tubulin complexes with dynamic membranes might ensure the flexibility of noncentrosomal microtubule nucleation. Moreover, the presence of other molecular forms of gamma-tubulin suggests additional roles for this protein species in microtubule organization.  相似文献   

2.
gamma-Tubulin is an ubiquitous MTOC (microtubule-organizing center) component essential for the regulation of microtubule functions. A 1.8 kb cDNA coding for gamma-tubulin was isolated from CHO cells. Analysis of nucleotide sequence predicts a protein of 451 amino acids, which is over 97% identical to human and Xenopus gamma-tubulin. When CHO cells were transiently transfected with the gamma-tubulin clone, epitope-tagged full-length, as well as truncated polypeptides (amino acids 1-398 and 1-340), resulted in the formation of cytoplasmic foci of various sizes. Although one of the foci was identified as the centrosome, the rest of the dots were not associated with any other centrosomal components tested so far. The pattern of microtubule organization was not affected by induction of such gamma-tubulin-containing dots in transfected cells. In addition, the cytoplasmic foci were unable to serve as the site for microtubule regrowth in nocodazole-treated cells upon removal of the drug, suggesting that gamma-tubulin-containing foci were not involved in the activity for microtubule formation and organization. Using the monomeric form of Chlamydomonas gamma-tubulin purified from insect Sf9 cells (), interaction between gamma-tubulin and microtubules was further investigated by immunoelectron microscopy. Microtubules incubated with gamma-tubulin monomers in vitro were associated with more gold particles conjugated with gamma-tubulin than in controls where no exogenous gamma-tubulin was added. However, binding of gamma-tubulin to microtubules was not extensive and was easily lost during sample preparation. Although gamma-tubulin was detected at the minus end of microtubules several times more frequently than the plus end, the majority of gold particles were seen along the microtubule length. These results contradict the previous reports (; ), which might be ascribed to the difference in the level of protein expression in transfected cells.  相似文献   

3.
Horio T  Oakley BR 《Plant physiology》2003,133(4):1926-1934
gamma-Tubulin localizes to microtubule-organizing centers in animal and fungal cells where it is important for microtubule nucleation. Plant cells do not have morphologically defined microtubule organizing centers, however, and gamma-tubulin is distributed in small, discrete structures along microtubules. The great difference in distribution has prompted speculation that plant gamma-tubulins function differently from animal and fungal gamma-tubulins. We tested this possibility by expressing Arabidopsis gamma-tubulin in the fission yeast Schizosaccharomyces pombe. At high temperatures, the plant gamma-tubulin was able to bind to microtubule-organizing centers, nucleate microtubule assembly, and support the growth and replication of S. pombe cells lacking endogenous gamma-tubulin. However, the distribution of microtubules was abnormal as was cell morphology, and at low temperatures, cells were arrested in mitosis. These results reveal that Arabidopsis gamma-tubulin can carry out essential functions in S. pombe and is, thus, functionally conserved. The morphological abnormalities reveal that it cannot carry out some nonessential functions, however, and they underscore the importance of gamma-tubulin in morphogenesis of fission yeast cells and in maintaining normal interphase microtubule arrays.  相似文献   

4.
Indirect immunofluorescence and digital videomicroscopy were used to study gamma-tubulin distribution in normal mitotic and interphase HeLa cells and after their treatment with microtubule-stabilizing (taxol) and depolymerizing (nocodazole) drugs. In interphase HeLa cells, the affinity-purified antibodies against gamma-tubulin and monoclonal antibodies against acetylated tubulin stain one or two neighboring dots, centrioles. The gamma-tubulin content in two centrioles from the same cell differs insignificantly. Mitotic poles contain fourfold amount of gamma-tubulin as compared with the centrioles in interphase. The effect of nocodazole (5 microg/ml) on interphase cells resulted in lowering the amount of gamma-tubulin in the centrosome, and in 24 h it was reduced by half. Treatment with nocodazole for 2 h caused a fourfold decrease in the gamma-tubulin content in mitotic poles. Besides, the mitotic poles were unevenly stained, the fluorescence intensity in the center was lower than at the periphery. Upon treatment with taxol (10 microg/ml), the gamma-tubulin content in the interphase cell centrosome first decreased, then increased, and in 24 h it doubled as compared with control. In the latter case, bright dots appeared in the cell cytoplasm along the microtubule bundles. However, after 24 h treatment with taxol, the total amount of intracellular gamma-tubulin did not change. Treatment with taxol for 2-4 h halved the gamma-tubulin content in the centrosome as compared with normal mitosis. In some cells, antibodies against gamma-tubulin revealed up to four microtubule convergence foci. Other numerous microtubule convergence foci were not stained. Thus, the existence of at least three gamma-tubulin pools is suggested: (1) constitutive gamma-tubulin permanently associated with centrioles irrespective of the cell cycle stage and of their ability to serve as microtubule organizing centers; (2) gamma-tubulin unstably associated with the centrosome only during mitosis; (3) cytoplasmic gamma-tubulin that can bind to stable microtubules.  相似文献   

5.
Growth of most eukaryotic cells requires directed transport along microtubules (MTs) that are nucleated at nuclear-associated microtubule organizing centers (MTOCs), such as the centrosome and the fungal spindle pole body (SPB). Herein, we show that the pathogenic fungus Ustilago maydis uses different MT nucleation sites to rearrange MTs during the cell cycle. In vivo observation of green fluorescent protein-MTs and MT plus-ends, tagged by a fluorescent EB1 homologue, provided evidence for antipolar MT orientation and dispersed cytoplasmic MT nucleating centers in unbudded cells. On budding gamma-tubulin containing MTOCs formed at the bud neck, and MTs reorganized with >85% of all minus-ends being focused toward the growth region. Experimentally induced lateral budding resulted in MTs that curved out of the bud, again supporting the notion that polar growth requires polar MT nucleation. Depletion or overexpression of Tub2, the gamma-tubulin from U. maydis, affected MT number in interphase cells. The SPB was inactive in G2 phase but continuously recruited gamma-tubulin until it started to nucleate mitotic MTs. Taken together, our data suggest that MT reorganization in U. maydis depends on cell cycle-specific nucleation at dispersed cytoplasmic sites, at a polar MTOC and the SPB.  相似文献   

6.
《The Journal of cell biology》1995,130(5):1137-1147
alpha-, beta-, and gamma-tubulins are evolutionarily highly conserved members of the tubulin gene superfamily. While the abundant members, alpha- and beta-tubulins, constitute the building blocks of cellular microtubule polymers, gamma-tubulin is a low abundance protein which localized to the pericentriolar material and may play a role in microtubule assembly. To test whether gamma-tubulin mediates the nucleation of microtubule assembly in vivo, and co-assembles with alpha- and beta-tubulins into microtubules or self-assembles into macro- molecular structures, we experimentally elevated the expression of gamma-tubulin in the cell cytoplasm. In most cells, overexpression of gamma-tubulin causes a dramatic reorganization of the cellular microtubule network. Furthermore, we show that when overexpressed, gamma-tubulin causes ectopic nucleation of microtubules which are not associated with the centrosome. In a fraction of cells, gamma-tubulin self-assembles into novel tubular structures with a diameter of approximately 50 nm (named gamma-tubules). Furthermore, unlike microtubules, gamma-tubules are resistant to cold or drug induced depolymerization. These data provide evidence that gamma-tubulin can cause nucleation of microtubule assembly and can self-assemble into novel tubular structures.  相似文献   

7.
The process of microtubule nucleation in plant cells is still a major question in plant cell biology. gamma-Tubulin is known as one of the key molecular players for microtubule nucleation in animal and fungal cells. Here, we provide genetic evidence that in Arabidopsis thaliana, gamma-tubulin is required for the formation of spindle, phragmoplast, and cortical microtubule arrays. We used a reverse genetics approach to investigate the role of the two Arabidopsis gamma-tubulin genes in plant development and in the formation of microtubule arrays. Isolation of mutants in each gene and analysis of two combinations of gamma-tubulin double mutants showed that the two genes have redundant functions. The first combination is lethal at the gametophytic stage. Disruption of both gamma-tubulin genes causes aberrant spindle and phragmoplast structures and alters nuclear division in gametophytes. The second combination of gamma-tubulin alleles affects late seedling development, ultimately leading to lethality 3 weeks after germination. This partially viable mutant combination enabled us to follow dynamically the effects of gamma-tubulin depletion on microtubule arrays in dividing cells using a green fluorescent protein marker. These results establish the central role of gamma-tubulin in the formation and organization of microtubule arrays in Arabidopsis.  相似文献   

8.
The centrosome is the major microtubule organizing structure in somatic cells. Centrosomal microtubule nucleation depends on the protein gamma-tubulin. In mammals, gamma-tubulin associates with additional proteins into a large complex, the gamma-tubulin ring complex (gammaTuRC). We characterize NEDD1, a centrosomal protein that associates with gammaTuRCs. We show that the majority of gammaTuRCs assemble even after NEDD1 depletion but require NEDD1 for centrosomal targeting. In contrast, NEDD1 can target to the centrosome in the absence of gamma-tubulin. NEDD1-depleted cells show defects in centrosomal microtubule nucleation and form aberrant mitotic spindles with poorly separated poles. Similar spindle defects are obtained by overexpression of a fusion protein of GFP tagged to the carboxy-terminal half of NEDD1, which mediates binding to gammaTuRCs. Further, we show that depletion of NEDD1 inhibits centriole duplication, as does depletion of gamma-tubulin. Our data suggest that centriole duplication requires NEDD1-dependent recruitment of gamma-tubulin to the centrosome.  相似文献   

9.
gamma-Tubulin is essential to microtubule organization in eukaryotic cells. It is believed that gamma-tubulin interacts with tubulin to accomplish its cellular functions. However, such an interaction has been difficult to demonstrate and to characterize at the molecular level. gamma-Tubulin is a poorly soluble protein, not amenable to biochemical studies in a purified form as yet. Therefore basic questions concerning the existence and properties of tubulin binding sites on gamma-tubulin have been difficult to address. Here we have performed a systematic search for tubulin binding sites on gamma-tubulin using the SPOT peptide technique. We find a specific interaction of tubulin with six distinct domains on gamma-tubulin. These domains are clustered in the central part of the gamma-tubulin primary amino acid sequence. Synthetic peptides corresponding to the tubulin binding domains of gamma-tubulin bind with nanomolar K(d)s to tubulin dimers. These peptides do not interfere measurably with microtubule assembly in vitro and associate with microtubules along the polymer length. On the tertiary structure, the gamma-tubulin peptides cluster to surface regions on both sides of the molecule. Using SPOT analysis, we also find peptides interacting with gamma-tubulin in both the alpha- and beta-tubulin subunits. The tubulin peptides cluster to surface regions on both sides of the alpha- and beta- subunits. These data establish gamma-tubulin as a tubulin ligand with unique tubulin-binding properties and suggests that gamma-tubulin and tubulin dimers associate through lateral interactions.  相似文献   

10.
 This paper reports the changes that occur in the microtubule cytoskeleton of cells of orchid protocorms during infection by a compatible mycorrhizal fungus. In cells of protocorms uninfected by a mycorrhizal fungus, microtubules occurred in regular arrays. In contrast, the cells of orchid protocorms with established mycorrhizas appeared to contain irregularly arranged microtubules. Double labelling with anti-β-tubulin and rhodamine-labelled wheat-germ agglutinin demonstrated that these irregularly arranged microtubules occurred only inside fungal hyphae and that microtubules were absent from host cells containing mycorrhizal fungi. Microtubule depolymerisation was shown to occur at the early stages of fungal infection. There was neither loss of nor obvious organisational change in microtubules in cells adjacent to others containing fungal hyphae. Electron microscopy confirmed the presence of an interfacial matrix between the host plasma membrane and the hyphal wall. The loss of microtubules from cells infected by mycorrhizal fungi suggests that an intact host microtubule cytoskeleton is not necessary for the formation of the interfacial matrix in mycorrhizas of orchid protocorms. Accepted: 9 November 1995  相似文献   

11.
We have previously shown that gamma-tubulin, the third member of the tubulin family that functions in microtubule nucleation, when overexpressed, accumulates throughout the cytoplasm and forms numerous ectopic microtubule nucleation sites in mammalian cells (Shu and Joshi [1995] J. Cell. Biol. 130:1137-1147). We now show that overexpression of gamma-tubulin differentially upregulates the synthesis of alpha- and beta-tubulins in mammalian cells. Surprisingly, despite a dramatic increase in the level of gamma-tubulin protein in transfected cells, there is no obvious alteration in the level of endogenous gamma-tubulin mRNA, suggesting that synthesis of gamma-tubulin might employ a regulatory mechanism other than the autoregulatory pathway shared by alpha- and beta-tubulins. Interestingly, a significant number of mammalian cells transfected with gamma-tubulin fail to form normal bipolar mitotic spindle during mitosis; instead, numerous microtubules occur in the cytoplasm intermingled with the condensed chromosomes. In addition, they reduplicate their DNA after an abnormal mitotic exit. These results thus suggest that the number of microtubule nucleation sites, or even gamma-tubulin itself, might play an important role in the regulation of tubulin synthesis as well as cell cycle progression.  相似文献   

12.
Structure of rat gamma-tubulin and its binding to HP33.   总被引:1,自引:0,他引:1  
Gamma-tubulin is localized at the microtubule organizing center and is thought to participate in the organizing of the microtubule network. In this study, we isolated a cDNA of rat gamma-tubulin. The rat gamma-tubulin cDNA encoded 451 amino acids, the same number as that of its counterpart in other vertebrates, and its structure was found to be highly conserved in vertebrates. In a previous work, we identified HP33 (hepatocarcinogenesis- and hepatocellular proliferation-related 33-kDa protein) that was localized at the centrosome of hepatic cells and that exhibited MAP-like activity. In vitro GST pull-down assay using highly purified recombinant HP33 and bacterially expressed gamma-tubulin demonstrated that HP33 bound to gamma-tubulin directly. These results suggest that HP33 is localized at the centrosome via association with both the microtubule and its minus end-specific component, gamma-tubulin.  相似文献   

13.
In this study, gamma-tubulin distribution was determined chronologically in conjunction with microtubule dynamics during bovine fertilization and parthenogenesis. In unfertilized bovine oocytes, gamma-tubulin was identified in the cytoplasm, mainly in the cortex and concentrated in the meiotic spindle. Following sperm penetration, gamma-tubulin in the cytoplasm was recruited by a sperm component. During pronuclear apposition, gamma-tubulin was localized as spots at the spindle poles. gamma-tubulin spots were observed in blastomeres of embryos cleaved in vitro. Following electrical stimulation, gamma-tubulin and microtubule matrix were noted in oocyte cortex. In the late pronuclear stage, considerably less gamma-tubulin and microtubules were detected in the cytoplasm. At the mitotic metaphase of parthenotes, gamma-tubulin was recruited to the condensed chromatin and concentrated in the spindle. The gamma-tubulin spots were not detected until the 8-cell stage of parthenotes. This suggests that maternal gamma-tubulin is recruited by a sperm component to reconstitute the zygotic centrosome. In the absence of sperm components, the cell cycle-related assembly of gamma-tubulin organizes microtubule nucleation for positioning the pronucleus and spindle protein of mitotic metaphase during the first cell cycle of bovine parthenotes.  相似文献   

14.
Despite the absence of a conspicuous microtubule-organizing centre, microtubules in plant cells at interphase are present in the cell cortex as a well oriented array. A recent report suggests that microtubule nucleation sites for the array are capable of associating with and dissociating from the cortex. Here, we show that nucleation requires extant cortical microtubules, onto which cytosolic gamma-tubulin is recruited. In both living cells and the cell-free system, microtubules are nucleated as branches on the extant cortical microtubules. The branch points contain gamma-tubulin, which is abundant in the cytoplasm, and microtubule nucleation in the cell-free system is prevented by inhibiting gamma-tubulin function with a specific antibody. When isolated plasma membrane with microtubules is exposed to purified neuro-tubulin, no microtubules are nucleated. However, when the membrane is exposed to a cytosolic extract, gamma-tubulin binds microtubules on the membrane, and after a subsequent incubation in neuro-tubulin, microtubules are nucleated on the pre-existing microtubules. We propose that a cytoplasmic gamma-tubulin complex shuttles between the cytoplasm and the side of a cortical microtubule, and has nucleation activity only when bound to the microtubule.  相似文献   

15.
Glycogen synthase kinase-3beta (GSK-3beta) is known to play a role in the regulation of the dynamics of microtubule networks in cells. Here we show the role of GSK-3beta in the proper formation of the mitotic spindles through an interaction with GCP5, a component of the gamma-tubulin ring complex (gammaTuRC). GCP5 bound directly to GSK-3beta in vitro, and their interaction was also observed in intact cells at endogenous levels. Depletion of GCP5 dramatically reduced the GCP2 and gamma-tubulin in the gammaTuRC fraction of sucrose density gradients and disrupted gamma-tubulin localization to the spindle poles in mitotic cells. GCP5 appears to be required for the formation or stability of gammaTuRC and the recruitment of gamma-tubulin to the spindle poles. A GSK-3 inhibitor not only led to the accumulation of gamma-tubulin and GCP5 at the spindle poles but also enhanced microtubule nucleation activity at the spindle poles. Depletion of GCP5 rescued this disrupted organization of spindle poles observed in cells treated with the GSK-3 inhibitor. Furthermore, the inhibition of GSK-3 enhanced the binding of gammaTuRC to the centrosome isolated from mitotic cells in vitro. Our findings suggest that GSK-3beta regulates the localization of gammaTuRC, including GCP5, to the spindle poles, thereby controlling the formation of proper mitotic spindles.  相似文献   

16.
Human gamma-tubulin functions in fission yeast   总被引:3,自引:2,他引:1       下载免费PDF全文
《The Journal of cell biology》1994,126(6):1465-1473
gamma-Tubulin is a phylogenetically conserved component of microtubule- organizing centers that is essential for viability and microtubule function. To examine the functional conservation of gamma-tubulin, we have tested the ability of human gamma-tubulin to function in the fission yeast Schizosaccharomyces pombe. We have found that expression of a human gamma-tubulin cDNA restores viability and a near-normal growth rate to cells of S. pombe lacking endogenous gamma-tubulin. Immunofluorescence microscopy showed that these cells contained normal mitotic spindles and interphase microtubule arrays, and that human gamma-tubulin, like S. pombe gamma-tubulin, localized to spindle pole bodies, the fungal microtubule-organizing centers. These results demonstrate that human gamma-tubulin functions in fission yeast, and they suggest that in spite of the great morphological differences between the microtubule-organizing centers of humans and fission yeasts, gamma-tubulin is likely to perform the same tasks in both. They suggest, moreover, that the proteins that interact with gamma-tubulin, including, most obviously, microtubule-organizing center proteins, must also be conserved. We have also found that a fivefold overexpression of S. pombe gamma-tubulin causes no reduction in growth rates or alteration of microtubule organization. We hypothesize that the excess gamma-tubulin is maintained in the cytoplasm in a form incapable of nucleating microtubule assembly. Finally, we have found that expression of human gamma-tubulin or overexpression of S. pombe gamma-tubulin causes no significant alteration of resistance to the antimicrotubule agents benomyl, thiabendazole and nocodazole.  相似文献   

17.
Paxillin is a focal adhesion-associated protein that functions as a multi-domain adapter protein, binding several structural and signaling molecules. alpha-Tubulin was identified as an interacting protein in a two-hybrid screen using the paxillin C-terminal LIM domain as a bait. In vitro binding assays with glutathione S-transferase-paxillin demonstrated an interaction of alpha-tubulin with the C terminus of paxillin. Another member of the tubulin family, gamma-tubulin, bound to both the N and the C terminus of paxillin. The interaction between paxillin and both alpha- and gamma-tubulin in vivo was confirmed by co-immunoprecipitation from human T lymphoblasts. Immunofluorescence studies revealed that, in adherent T cells, paxillin localized to sites of cell-matrix interaction as well as to a large perinuclear region. Confocal microscopy revealed that this region corresponds to the lymphocyte microtubule organizing center, where paxillin colocalizes with alpha- and gamma-tubulin. The localization of paxillin to this area was observed in cells in suspension as well as during adhesion to integrin ligands. These data constitute the first characterization of the interaction of paxillin with the microtubule cytoskeleton, and suggest that paxillin, in addition to its well established role at focal adhesions, could also be associated with the lymphocyte microtubule network.  相似文献   

18.
gamma-Tubulin is a ubiquitous and highly conserved component of centrosomes in eukaryotic cells. Genetic and biochemical studies have demonstrated that gamma-tubulin functions as part of a complex to nucleate microtubule polymerization from centrosomes. We show that, as in other organisms, Caenorhabditis elegans gamma-tubulin is concentrated in centrosomes. To study centrosome dynamics in embryos, we generated transgenic worms that express GFP::gamma-tubulin or GFP::beta-tubulin in the maternal germ line and early embryos. Multiphoton microscopy of embryos produced by these worms revealed the time course of daughter centrosome appearance and growth and the differential behavior of centrosomes destined for germ line and somatic blastomeres. To study the role of gamma-tubulin in nucleation and organization of spindle microtubules, we used RNA interference (RNAi) to deplete C. elegans embryos of gamma-tubulin. gamma-Tubulin (RNAi) embryos failed in chromosome segregation, but surprisingly, they contained extensive microtubule arrays. Moderately affected embryos contained bipolar spindles with dense and long astral microtubule arrays but with poorly organized kinetochore and interpolar microtubules. Severely affected embryos contained collapsed spindles with numerous long astral microtubules. Our results suggest that gamma-tubulin is not absolutely required for microtubule nucleation in C. elegans but is required for the normal organization and function of kinetochore and interpolar microtubules.  相似文献   

19.
The molecular mechanisms controlling microtubule formation in cells with non-centrosomal microtubular arrays are not yet fully understood. The key component of microtubule nucleation is gamma-tubulin. Although previous results suggested that tyrosine kinases might serve as regulators of gamma-tubulin function, their exact roles remain enigmatic. In the present study, we show that a pool of gamma-tubulin associates with detergent-resistant membranes in differentiating P19 embryonal carcinoma cells, which exhibit elevated expression of the Src family kinase Fyn (protein tyrosine kinase p59(Fyn)). Microtubule-assembly assays demonstrated that membrane-associated gamma-tubulin complexes are capable of initiating the formation of microtubules. Pretreatment of the cells with Src family kinase inhibitors or wortmannin blocked the nucleation activity of the gamma-tubulin complexes. Immunoprecipitation experiments revealed that membrane-associated gamma-tubulin forms complexes with Fyn and PI3K (phosphoinositide 3-kinase). Furthermore, in vitro kinase assays showed that p85alpha (regulatory p85alpha subunit of PI3K) serves as a Fyn substrate. Direct interaction of gamma-tubulin with the C-terminal Src homology 2 domain of p85alpha was determined by pull-down experiments and immunoprecipitation experiments with cells expressing truncated forms of p85alpha. The combined results suggest that Fyn and PI3K might take part in the modulation of membrane-associated gamma-tubulin activities.  相似文献   

20.
A panel of six anti-peptide antibodies recognizing epitopes in different regions of the gamma-tubulin molecule was used for the characterization and localization of gamma-tubulin during cell cycle in Leishmania promastigotes. Immunofluorescence microscopy revealed the presence of gamma-tubulin in the basal bodies, posterior pole of the cell, and in the flagellum. Furthermore, the antibodies showed punctuate staining in the subpellicular microtubule. This complex localization pattern was observed in both interphase and dividing cells, where staining of posterior poles and the subpellicular corset was more prominent. In posterior poles, gamma-tubulin co-distributed with the 210-kDa microtubule-interacting protein and the 57-kDa protein immunodetected with anti-vimentin antibody. Immunogold electron microscopy on thin sections of isolated flagella showed that gamma-tubulin was associated with the paraflagellar rod (PFR) that runs adjacent to the axonemal microtubules. Under different extraction conditions, gamma-tubulin in Leishmania was found only in insoluble cytoskeletal fractions, in contrast to tubulin dimers that were both in soluble and cytoskeletal pool. Two-dimensional electrophoresis revealed multiple charge variants of gamma-tubulin. Posttranslational modifications of Leishmania gamma-tubulin might therefore have an important role in the regulation of microtubule nucleation and interaction with other proteins. The complex pattern of gamma-tubulin localization and its properties indicate that gamma-tubulin in Leishmania might have other function(s) besides microtubule nucleation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号