首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The leucine zipper-, EF-hand-containing transmembrane protein 1 (LETM1) has recently been cloned in an attempt to identify genes deleted in Wolf-Hirschhorn syndrome (WHS), a microdeletion syndrome characterized by severe growth and mental retardation, hypotonia, seizures, and typical facial dysmorphic features. LETM1 is deleted in almost all patients with the full phenotype and has recently been suggested as an excellent candidate gene for the seizures in WHS patients. We have shown that LETM1 is evolutionarily conserved throughout the eukaryotic kingdom and exhibits homology to MDM38, a putative yeast protein involved in mitochondrial morphology. Using LETM1-EGFP fusion constructs and an anti-rat LetM1 polyclonal antibody we have demonstrated that LETM1 is located in the mitochondria. The present study presents information about a possible function for LETM1 and suggests that at least some (neuromuscular) features of WHS may be caused by mitochondrial dysfunction.  相似文献   

2.
Calcyphosine is a calcium-binding protein containing four EF-hand domains, initially identified as thyroid protein p24. It was first cloned and its counterparts in rabbit, human, and mouse, crayfish and lobster of invertebrate were also cloned. Here we describe the cloning and characterization of a novel human calcyphosine gene. The 3829-bp cDNA encodes a EF-hand Ca(2+)-binding protein homologous to the dog calcyphosine. It also contains two EF-hand Ca(2+)-binding motif. It is abundantly expressed in many tissues including by RT-PCR analysis and believed to play important role in calcium signaling. It was mapped to human genome 12q15.  相似文献   

3.
4.
In an attempt to define the distinctive Wolf-Hirschhorn syndrome (WHS) phenotype, and to map its specific clinical manifestations, a total of eight patients carrying a 4p16.3 microdeletion were analyzed for their clinical phenotype and their respective genotypes. The extent of each individual deletion was established by fluorescence in situ hybridization, with a cosmid contig spanning the genomic region from MSX1 (distal half of 4p16.1) to the subtelomeric locus D4S3359. The deletions were 1.9-3.5 Mb, and all were terminal. All the patients presented with a mild phenotype, in which major malformations were usually absent. It is worth noting that head circumference was normal for height in two patients (those with the smallest deletions [1.9 and 2.2 Mb]). The currently accepted WHS critical region (WHSCR) was fully preserved in the patient with the 1.9-Mb deletion, in spite of a typical WHS phenotype. The deletion in this patient spanned the chromosome region from D4S3327 (190 b4 cosmid clone included) to the telomere. From a clinical point of view, the distinctive WHS phenotype is defined by the presence of typical facial appearance, mental retardation, growth delay, congenital hypotonia, and seizures. These signs represent the minimal diagnostic criteria for WHS. This basic phenotype maps distal to the currently accepted WHSCR. Here, we propose a new critical region for WHS, and we refer to this region as "WHSCR-2." It falls within a 300-600-kb interval in 4p16.3, between the loci D4S3327 and D4S98-D4S168. Among the candidate genes already described for WHS, LETM1 (leucine zipper/EF-hand-containing transmembrane) is likely to be pathogenetically involved in seizures. On the basis of genotype-phenotype correlation analysis, dividing the WHS phenotype into two distinct clinical entities, a "classical" and a "mild" form, is recommended for the purpose of proper genetic counseling.  相似文献   

5.
A novel allergenic member of the family of Ca(2+)-binding proteins has been cloned from olive tree pollen. The isolated DNA codes for a protein of 171 amino acid residues, which displays four EF-hand sequence motifs. The encoded protein was overproduced in Escherichia coli and purified. The protein (18? omitted?795 Da), which binds Ca(2+) and IgE antibodies from patients allergic to olive pollen, undergoes Ca(2+)-dependent conformational changes. It is retained on a phenyl-Sepharose column, which indicates the existence of regulatory EF-hand domains. This fact suggests its involvement in Ca(2+)-dependent signal transduction events of the pollen grain. This allergen could be considered as a member of a new subfamily of EF-hand Ca(2+)-binding proteins since it displays a low amino acid sequence similarity with the so far known proteins.  相似文献   

6.
A direct binding of HRC (histidine-rich Ca(2+)-binding protein) to triadin, the main transmembrane protein of the junctional sarcoplasmic reticulum (SR) of skeletal muscle, seems well supported. Opinions are still divided, however, concerning the triadin domain involved, either the cytoplasmic or the lumenal domain, and the exact role played by Ca(2+), in the protein-to-protein interaction. Further support for colocalization of HRC with triadin cytoplasmic domain is provided here by experiments of mild tryptic digestion of tightly sealed TC vesicles. Accordingly, we show that HRC is preferentially phosphorylated by endogenous CaM K II, anchored to SR membrane on the cytoplasmic side, and not by lumenally located casein kinase 2. We demonstrate that HRC can be isolated as a complex with triadin, following equilibrium sucrose-density centrifugation in the presence of mM Ca(2+). Here, we characterized the COOH-terminal portion of rabbit HRC, expressed and purified as a fusion protein (HRC(569-852)), with respect to Ca(2+)-binding properties, and to the interaction with triadin on blots, as a function of the concentration of Ca(2+). Our results identify the polyglutamic stretch near the COOH terminus, as the Ca(2+)-binding site responsible, both for the acceleration in mobility of HRC on SDS-PAGE in the presence of millimolar concentrations of Ca(2+), and for the enhancement by high Ca(2+) of the interaction between HRC and triadin cytoplasmic segment. (c)2001 Elsevier Science.  相似文献   

7.
Cab45, a novel (Ca2+)-binding protein localized to the Golgi lumen   总被引:5,自引:0,他引:5  
We have identified and characterized Cab45, a novel 45-kD protein from mouse 3T3-L1 adipocytes. Cab45 is ubiquitously expressed, contains an NH2-terminal signal sequence but no membrane-anchor sequences, and binds Ca2+ due to the presence of six EF-hand motifs. Within the superfamily of calcium-binding proteins, it belongs to a recently identified group of proteins consisting of Reticulocalbin (Ozawa, M., and T. Muramatsu. 1993. J. Biol. Chem. 268:699-705) and ERC 55 (Weis, K., G. Griffiths, and A.I. Lamond. 1994. J. Biol Chem. 269:19142- 19150), both of which share significant sequence homology with Cab45 outside the EF-hand motifs. In contrast to reticulocalbin and ERC-55 which are soluble components of the endoplasmic reticulum, Cab45 is a soluble protein localized to the Golgi. Cab45 is the first calcium- binding protein localized to the lumenal portion of a post-ER compartment; Cab45 is also the first known soluble protein resident in the Golgi lumen. Cab45 can serve as a model protein to determine the mechanism of retention of soluble proteins in the Golgi compartment.  相似文献   

8.
9.
Proteins containing the EF-hand Ca(2+)-binding motif, such as calmodulin and calcineurin B, function as regulators of various cellular processes. Here we focus on p22, an N-myristoylated, widely expressed EF-hand Ca(2+)-binding protein conserved throughout evolution, which was shown previously to be required for membrane traffic. Immunofluorescence studies show that p22 distributes along microtubules during interphase and mitosis in various cell lines. Moreover, we report that p22 associates with the microtubule cytoskeleton indirectly via a cytosolic microtubule-binding factor. Gel filtration studies indicate that the p22-microtubule-binding activity behaves as a 70- to 30-kDa globular protein. Our results indicate that p22 associates with microtubules via a novel N-myristoylation-dependent mechanism that does not involve classic microtubule-associated proteins and motor proteins. The association of p22 with microtubules requires the N-myristoylation of p22 but does not involve p22's Ca(2+)-binding activity, suggesting that the p22-microtubule association and the role of p22 in membrane traffic are functionally related, because N-myristoylation is required for both events. Therefore, p22 is an excellent candidate for a protein that can mediate interactions between the microtubule cytoskeleton and membrane traffic.  相似文献   

10.
Here we have identified and characterized a novel mitochondrial Ca2+-binding protein, mitocalcin. Western blot analysis demonstrated that mitocalcin was widely expressed in mouse tissues. The expression in brain was increased during post-natal to adult development. Further analyses were carried out in newly established neural cell lines. The protein was expressed specifically in neurons but not in glial cells. Double-labeling studies revealed that mitocalcin was colocalized with mitochondria in neurons differentiated from 2Y-3t cells. In addition, mitocalcin was enriched in the mitochondrial fraction purified from the cells. Immunohistochemical studies on mouse cerebellum revealed that the expression pattern of mitocalcin in glomeruli of the internal granular and molecular layers was well overlapped by the distribution pattern of mitochondria. Immunogold electron microscopy showed that mitocalcin was associated with mitochondrial inner membrane. Overexpression of mitocalcin in 2Y-3t cells resulted in neurite extension. Inhibition of the expression in 2Y-3t cells caused suppression of neurite outgrowth and then cell death. These findings suggest that mitocalcin may play roles in neuronal differentiation and function through the control of mitochondrial function.  相似文献   

11.
12.
Yuasa K  Maeshima M 《Plant physiology》2000,124(3):1069-1078
To understand the roles of plant vacuoles, we have purified and characterized a major soluble protein from vacuoles of radish (Raphanus sativus cv Tokinashi-daikon) taproots. The results showed that it is a novel radish vacuole Ca(2+)-binding protein (RVCaB). RVCaB was released from the vacuolar membrane fraction by sonication, and purified by ion exchange and gel filtration column chromatography. RVCaB is an acidic protein and migrated on sodium dodecyl sulfate-polyacrylamide gel with an apparent molecular mass of 43 kD. The Ca(2+)-binding activity was confirmed by the (45)Ca(2+)-overlay assay. RVCaB was localized in the lumen, as the protein was recovered in intact vacuoles prepared from protoplasts and was resistant to trypsin digestion. Plant vacuoles store Ca(2+) using two active Ca(2+) uptake systems, namely Ca(2+)-ATPase and Ca(2+)/H(+) antiporter. Vacuolar membrane vesicles containing RVCaB accumulated more Ca(2+) than sonicated vesicles depleted of the protein at a wide range of Ca(2+) concentrations. A cDNA (RVCaB) encoding a 248-amino acid polypeptide was cloned. Its deduced sequence was identical to amino acid sequences obtained from several peptide fragments of the purified RVCaB. The deduced sequence is not homologous to that of other Ca(2+)-binding proteins such as calreticulin. RVCaB has a repetitive unique acidic motif, but not the EF-hand motif. The recombinant RVCaB expressed in Escherichia coli-bound Ca(2+) as evidenced by staining with Stains-all and migrated with an apparent molecular mass of 44 kD. These results suggest that RVCaB is a new type Ca(2+)-binding protein with high capacity and low affinity for Ca(2+) and that the protein could function as a Ca(2+)-buffer and/or Ca(2+)-sequestering protein in the vacuole.  相似文献   

13.
14.
Honoré B  Vorum H 《FEBS letters》2000,466(1):11-18
The CREC family consists of a number of recently discovered multiple (up to seven) EF-hand proteins that localise to the secretory pathway of mammalian cells. At present, the family includes reticulocalbin, ERC-55/TCBP-49/E6BP, Cab45, calumenin and crocalbin/CBP-50. Similar proteins are found in quite diverse invertebrate organisms such as DCB-45 and SCF in Drosophila melanogaster, SCF in Bombyx mori, CCB-39 in Caenorhabditis elegans and Pfs40/PfERC in Plasmodium falciparum. The Ca(2+) affinity is rather low with dissociation constants around 10(-4)-10(-3) M. The proteins may participate in Ca(2+)-regulated activities. Recent evidence has been obtained that some CREC family members are involved in pathological activities such as malignant cell transformation, mediation of the toxic effects of snake venom toxins and putative participation in amyloid formation.  相似文献   

15.
A cDNA encoding a predicted 15-kDa protein was earlier isolated from sugar-induced genes in rice embryos (Oryza sativa L.) by cDNA microarray analysis. Here we report that this cDNA encodes a novel Ca2+-binding protein, named OsSUR1 (for Oryza sativa sugar-up-regulated-1). The recombinant OsSUR1 protein expressed in Escherichia coli had 45Ca2+-binding activity. Northern analysis showed that the OsSUR1 gene was expressed mainly in the internodes of mature plants and in embryos at an early stage of germination. Expression of the OsSUR1 gene was induced by sugars that could serve as substrates of hexokinase, but expression was not repressed by Ca2+ signaling inhibitors, calmodulin antagonists and inhibitors of protein kinase or protein phosphatase. These results suggested that Os-SUR1 gene expression was stimulated by a hexokinase-dependent pathway not mediated by Ca2+.  相似文献   

16.
A 21,000-dalton Ca(2+)-binding protein (Walsh, M.P., Valentine, K.A., Ngai, P.K., Carruthers, C.A., and Hollengerg, M.D. (1984) Biochem. J. 224, 117-127) was purified from the rat brain and through the use of oligonucleotide probe based on partial amino acid sequence, cDNA clones were obtained from rat brain cDNA library. The complete amino acid sequence deduced from the cDNA contains 191 residues and has a calculated molecular mass of 22,142 daltons. There are three potential Ca(2+)-binding sites like the EF hands in the sequence. It displays striking sequence homology with visinin and recoverin, retina-specific Ca(2+)-binding proteins. Northern blot analysis revealed that the protein is highly and specifically expressed in the brain.  相似文献   

17.
Calnuc is an ubiquitous, EF-hand Ca(2+) binding protein found in the cytoplasm where it binds to Galphai3, in the Golgi lumen where it constitutes a Ca(2+) storage pool, and secreted outside the cell. Here we investigated the pathway of secretion of calnuc in AtT20 cells. We found by pulse-chase experiments that calnuc is synthesized in the endoplasmic reticulum, transported to the Golgi where it remains greater than 12 h and undergoes posttranslational modification (O-glycosylation and sulfation) followed by secretion into the culture medium. We examined if calnuc is secreted by the constitutive or regulated secretory pathway in AtT20 cells. By immunofluorescence and immunogold labeling, endogenous calnuc is found in immature secretion granules (ISG) but not mature regulated secretory granules (RSG), whereas overexpressed calnuc-green fluorescent protein (GFP) is found in both ISG and RSG, where it colocalizes with ACTH. Neither calnuc nor calnuc-GFP are released by the regulated secretory pathway, suggesting that endogenous calnuc and calnuc-GFP are progressively removed from ISG and RSG during granule maturation. We conclude that calnuc is secreted via the constitutive-like pathway and represents a useful endogenous marker for this pathway in AtT20 cells. Together, these observations indicate that calnuc has a unique itinerary as it is retained in the Golgi and is then constitutively secreted extracellularly where it may influence cell behavior via its Ca(2+)-binding properties.  相似文献   

18.
Five members of a novel Ca(2+)-binding protein subfamily (CaBP), with 46-58% sequence similarity to calmodulin (CaM), were identified in the vertebrate retina. Important differences between these Ca(2+)-binding proteins and CaM include alterations within their second EF-hand loop that render these motifs inactive in Ca(2+) coordination and the fact that their central alpha-helixes are extended by one alpha-helical turn. CaBP1 and CaBP2 contain a consensus sequence for N-terminal myristoylation, similar to members of the recoverin subfamily and are fatty acid acylated in vitro. The patterns of expression differ for each of the various members. Expression of CaBP5, for example, is restricted to retinal rod and cone bipolar cells. In contrast, CaBP1 has a more widespread pattern of expression. In the brain, CaBP1 is found in the cerebral cortex and hippocampus, and in the retina this protein is found in cone bipolar and amacrine cells. CaBP1 and CaBP2 are expressed as multiple, alternatively spliced variants, and in heterologous expression systems these forms show different patterns of subcellular localization. In reconstitution assays, CaBPs are able to substitute functionally for CaM. These data suggest that these novel CaBPs are an important component of Ca(2+)-mediated cellular signal transduction in the central nervous system where they may augment or substitute for CaM.  相似文献   

19.
Gnathodiaphyseal dysplasia (GDD) is a rare skeletal syndrome characterized by bone fragility, sclerosis of tubular bones, and cemento-osseous lesions of the jawbone. By linkage analysis of a large Japanese family with GDD, we previously mapped the GDD locus to chromosome 11p14.3-15.1. In the critical region determined by recombination mapping, we identified a novel gene (GDD1) that encodes a 913-amino-acid protein containing eight putative transmembrane-spanning domains. Two missense mutations (C356R and C356G) of GDD1 were identified in the two families with GDD (the original Japanese family and a new African American family), and both missense mutations occur at the cysteine residue at amino acid 356, which is evolutionarily conserved among human, mouse, zebrafish, fruit fly, and mosquito. Cellular localization to the endoplasmic reticulum suggests a role for GDD1 in the regulation of intracellular calcium homeostasis.  相似文献   

20.
S100A11 is a member of the S100 family of EF-hand Ca2+-binding proteins, which is expressed in smooth muscle and other tissues. Ca2+ binding to S100A11 induces a conformational change that exposes a hydrophobic surface for interaction with target proteins. Affinity chromatography with immobilized S100A11 was used to isolate a 70-kDa protein from smooth muscle that bound to S100A11 in a Ca2+-dependent manner and was identified by mass spectrometry as annexin A6. Direct Ca2+-dependent interaction between S100A11 and annexin A6 was confirmed by affinity chromatography of the purified bacterially expressed proteins, by gel overlay of annexin A6 with purified S100A11, by chemical cross-linking, and by coprecipitation of S100A11 with annexin A6 bound to liposomes. The expression of S100A11 and annexin A6 in the same cell type was verified by RT-PCR and immunocytochemistry of isolated vascular smooth muscle cells. The site of binding of S100A11 on annexin A6 was investigated by partial tryptic digestion and deletion mutagenesis. The unique NH2 terminal head region of annexin A6 was not required for S100A11 binding, but binding sites were identified in both NH2- and COOH-terminal halves of the molecule. We hypothesize that an agonist-induced increase in cytosolic free [Ca2+] leads to formation of a complex of S100A11 and annexin A6, which forms a physical connection between the plasma membrane and the cytoskeleton, or plays a role in the formation of signaling complexes at the level of the sarcolemma. smooth muscle; protein-protein interaction  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号