首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of Mesorhizobium loti surface polysaccharides on the nodulation process is not yet fully understood. In this article, we describe the nodulation phenotype of mutants affected in the synthesis of lipopolysaccharide (LPS) and beta(1,2) cyclic glucan. M. loti lpsbeta2 mutant produces LPS with reduced amount of O-antigen, whereas M. loti lpsbeta1 mutant produces LPS totally devoid of O-antigen. Both genes are clustered in the chromosome. Based on amino acid sequence homology, LPS sugar composition, and enzymatic activity, we concluded that lpsbeta2 codes for an enzyme involved in the transformation of dTDP-glucose into dTDP-rhamnose, the sugar donor of rhamnose for the synthesis of O-antigen. On the other hand, lpsbeta1 codes for a glucosyltransferase involved in the biosynthesis of the O-antigen. Although LPS mutants elicited normal nodules, both show reduced competitiveness compared with the wild type. M. loti beta(1-2) cyclic glucan synthase (cgs) mutant induces white, empty, ineffective pseudonodules in Lotus tenuis. Cgs mutant induces normal root hair curling but is unable to induce the formation of infection threads. M. loti cgs mutant was more sensitive to deoxycholate and displayed motility impairment compared with the wild-type strain. This pleiotropic effect depends on calcium concentration and temperature.  相似文献   

2.
3.
Root-nodule development in legumes is an inducible developmental process initially triggered by perception of lipochitin-oligosaccharide signals secreted by the bacterial microsymbiont. In nature, rhizobial colonization and invasion of the legume root is therefore a prerequisite for formation of nitrogen-fixing root nodules. Here, we report isolation and characterization of chemically induced spontaneously nodulating mutants in a model legume amenable to molecular genetics. Six mutant lines of Lotus japonicus were identified in a screen for spontaneous nodule development under axenic conditions, i.e., in the absence of rhizobia. Spontaneous nodules do not contain rhizobia, bacteroids, or infection threads. Phenotypically, they resemble ineffective white nodules formed by some bacterial mutants on wild-type plants or certain plant mutants inoculated with wild-type Mesorhizobium loti. Spontaneous nodules formed on mutant lines show the ontogeny and characteristic histological features described for rhizobia-induced nodules on wild-type plants. Physiological responses to nitrate and ethylene are also maintained, as elevated levels inhibit spontaneous nodulation. Activation of the nodule developmental program in spontaneous nodules was shown for the early nodulin genes Enod2 and Nin, which are both upregulated in spontaneous nodules as well as in rhizobial nodules. Both monogenic recessive and dominant spontaneous nodule formation (snf) mutations were isolated in this mutant screen, and map positions were determined for three loci. We suggest that future molecular characterization of these mutants will identify key plant determinants involved in regulating nodulation and provide new insight into plant organ development.  相似文献   

4.
5.
Vance, C. P., Reibach, P. H. and Pankhurst, C. E. 1987. Symbiotic properties of Lotus pedunculatus root nodules induced by Rhizobium loti and Bradyrhizobium sp. ( Lotus ).
Symbiotic properties of root nodules were evaluated in glasshouse-grown Lotus pedunculatus Cav. cv. Maku inoculated with either a fast-growing Rhizobium loti strain NZP2037 or a slow-growing Bradyrhizobium sp. ( Lotus ) strain CC814s. Although the nodule mass of plants inoculated with NZP2037 was twice that of plants inoculated with CC814s, the yield of NZP2037 shoots and roots was 50% that of CC814s shoots and roots. Nodules induced by Bradyrhizobium fixed substantially more N than nodules induced by R. loti. Glucose requirements [mol glucose (mol N2 fixed)-1] of nodules induced by CC814s and NZP2037 were 7.1 and 16.6, respectively. Nodule enzymes of carbon and nitrogen assimilation reflected the disparity of the two sym-bioses. Xylem sap of the symbiosis with the higher yield contained a higher concentration of asparagine [9.86 μmol (ml xylem sap)'] than did the lower yielding symbiosis [5.80 umol (ml xylem sap)"']. Nodule CO2 fixation was directly linked to nodule N assimilation in both symbioses. The results indicate that the difference between the two symbioses extend to nodule N and C assimilation and whole plant N transport. The data support a role for host plant modulation of bacterial efficiency and assimilation of fixed N.  相似文献   

6.
7.
During analysis of early events in the infection and nodulation of Vicia hirsuta roots inoculated with normal and mutant strains of Rhizobium leguminosarum and strains containing cloned nodulation (nod) genes, a number of novel observations were made. (i) Alternating zones of curled and straight root hairs were seen on roots of V. hirsuta inoculated with the wild-type strain of R. leguminosarum. This phasing of root hair curling was not seen if plants were grown under continuous light or continuous dark conditions. (ii) Reduced nodulation and delayed nodule initiation was observed with a strain carrying a Tn5 mutation in the nodE gene. In addition the phased root hair curling was absent, and root hair curling was observed along the length of the root. (iii) The nodABC genes cloned on a multicopy plasmid in a wild-type strain inhibited nodulation but induced a continuous root hair curling response. Those few nodules that eventually formed were found to contain bacteria which had lost the plasmid carrying the nodABC genes. (iv) With a strain of Rhizobium cured of its indigenous symbiotic plasmid, but containing the cloned nodABCDEF genes, continuous root hair curling on V. hirsuta was observed. However, no infection threads were observed, and surprisingly, it did appear that initial stages of nodule development occurred. Observations of thin sections of these early developing nodules indicated that early nodule meristematic divisions may have occurred but that no bacteria were found within the nodules and no infection threads were observed either within the nodule bumps or within any of the root hairs. It was concluded that for normal infections to occur, precise regulation of the nod genes is required and that overexpression of the root hair curling genes inhibits the normal infection process.  相似文献   

8.
9.
Previous grafting experiments have demonstrated that legume shoots play a critical role in symbiotic development of nitrogen-fixing root nodules by regulating nodule number. Here, reciprocal grafting experiments between the model legumes Lotus japonicus and Medicago truncatula were carried out to investigate the role of the shoot in the host-specificity of legume-rhizobia symbiosis and nodule type. Lotus japonicus is nodulated by Mesorhizobium loti and makes determinate nodules, whereas M. truncatula is nodulated by Sinorhizobium meliloti and makes indeterminate nodules. When inoculated with M. loti, L. japonicus roots grafted on M. truncatula shoots produced determinate nodules identical in appearance to those produced on L. japonicus self-grafted roots. Moreover, the hypernodulation phenotype of L. japonicus har1-1 roots grafted on wild-type M. truncatula shoots was restored to wild type when nodulated with M. loti. Thus, L. japonicus shoots appeared to be interchangeable with M. truncatula shoots in the L. japonicus root/M. loti symbiosis. However, M. truncatula roots grafted on L. japonicus shoots failed to induce nodules after inoculation with S. meliloti or a mixture of S. meliloti and M. loti. Instead, only early responses to S. meliloti such as root hair tip swelling and deformation, plus induction of the early nodulation reporter gene MtENOD11:GUS were observed. The results indicate that the L. japonicus shoot does not support normal symbiosis between the M. truncatula root and its microsymbiont S. meliloti, suggesting that an unidentified shoot-derived factor may be required for symbiotic progression in indeterminate nodules.  相似文献   

10.
A promoter tagging program in the legume Lotus japonicus was initiated to identify plant genes involved in the nitrogen-fixing symbiosis between legumes and rhizobia. Seven transformed plant lines expressing the promoterless reporter gene uidA (beta-glucuronidase; GUS) specifically in roots and/or nodules were identified. Four of these expressed GUS in the roots only after inoculation with nodule-forming Mesorhizobium loti. In one line (T90), GUS activity was found in the root epidermis, including root hairs. During seedling growth, GUS expression gradually became focused in developing nodules and disappeared from root tissue. No GUS activity was detected when a non-nodulating mutant of M. loti was used to inoculate the plants. The T-DNA insertion in this plant line was located 1.3 kb upstream of a putative coding sequence with strong homology to calcium-binding proteins. Four motifs were identified, which were very similar to the "EF hands" in calmodulin-related proteins, each binding one Ca2+. We have named the gene LjCbp1 (calcium-binding protein). Northern (RNA) analyses showed that this gene is expressed specifically in roots of L. japonicus. Expression was reduced in roots inoculated with non-nodulating M. loti mutants and in progeny homozygous for the T-DNA insertion, suggesting a link between the T-DNA insertion and this gene.  相似文献   

11.
Non-motile mutants of Rhizobium trifolii defective in either flagellar synthesis or function were isolated by transposon Tn5 mutagenesis. they were indistinguishable from motile control strains in growth in both laboratory media and in the rhizosphere of clover roots. When each non-motile mutant was grown together with a motile strain in continuous culture, the numbers of motile and non-motile organisms remained in constant proportion, implying that their growth rates were essentially identical. When inoculated separately onto clover roots, the mutants and wildtype did not differ significantly in the number of nodules produced or in nitrogen fixing activity. However, when mixtures of equal numbers of mutant and wild-type cells were inoculated onto clover roots, the motile strain formed approximately five times more nodules than the flagellate or non-flagellate, non-motile mutants, suggesting that motility is a factor in competition for nodule formation.  相似文献   

12.
13.
The development of nitrogen-fixing nodules in legumes is induced by perception of lipochitin-oligosaccharide signals secreted by a bacterial symbiont. Nitrogen (N) starvation is a prerequisite for the formation, development, and function of root nodules, and high levels of combined N in the form of nitrate or ammonium can completely abolish nodule formation. We distinguished between nitrate and ammonium inhibitory effects by identifying when and where these combined N sources interfere with the Nod-factor-induced pathway. Furthermore, we present a small-scale analysis of the expression profile, under different N conditions, of recently identified genes involved in the Nod-factor-induced pathway. In the presence of high levels of nitrate or ammonium, the NIN gene fails to be induced 24 h after the addition of Nod factor compared with plants grown under N-free conditions. This induction is restored in the hypernodulating nitrate-tolerant har1-3 mutant only in the presence of 10 and 20 mM KNO3. These results were confirmed in Lotus plants inoculated with Mesorhizobium loti. NIN plays a key role in the nodule organogenesis program and its downregulation may represent a crucial event in the nitrate-dependent pathway leading to the inhibition of nodule organogenesis.  相似文献   

14.
Two cDNA clones coding for α-type carbonic anhydrases (CA; EC 4.2.1.1) in the nitrogen-fixing nodules of the model legume Lotus japonicus were identified. Functionality of the full-length proteins was confirmed by heterologous expression in Escherichia coli and purification of the encoded polypeptides. The developmental expression pattern of LjCAA1 and LjCAA2 revealed that both genes code for nodule enhanced carbonic anhydrase isoforms, which are induced early during nodule development. The genes were slightly to moderately down-regulated in ineffective nodules formed by mutant Mesorhizobium loti strains, indicating that these genes may also be involved in biochemical and physiological processes not directly linked to nitrogen fixation/assimilation. The spatial expression profiling revealed that both genes were expressed in nodule inner cortical cells, vascular bundles and central tissue. These results are discussed in the context of the possible roles of CA in nodule carbon dioxide (CO(2)) metabolism.  相似文献   

15.
Nitrogen-fixing symbiosis between legume plants and rhizobia is established through complex interactions between two symbiotic partners. To identify the host legume genes that play crucial roles in such interactions, we isolated a novel Fix- mutant, Ljsym105, from a model legume Lotus japonicus MG-20. The Ljsym105 plants displayed nitrogen-deficiency symptoms after inoculation with Mesorhizobium loti under nitrogen-free conditions, but their growth recovered when supplied with nitrogen-rich nutrients. Ljsym105 was recessive and monogenic and mapped on the upper portion of chromosome 4. The mutant Ljsym105 formed an increased number of small and pale-pink nodules. Nitrogenase (acetylene reduction) activity per nodule fresh weight was low but retained more than 50% of that of the wild-type nodules. Light and electron microscopic observations revealed that the Ljsym105 nodule infected cells were significantly smaller than those of wild-type plants, contained enlarged symbiosomes with multiple bacteroids, and underwent deterioration of the symbiosomes prematurely as well as disintegration of the whole infected cell cytoplasm. These results indicate that the ineffectiveness of the Ljsym105 nodules is primarily due to impaired growth of infected cells accompanied with the premature senescence induced at relatively early stages of nodule development. These symbiotic phenotypes are discussed in respect to possible functions of the LjSym105 locus in the symbiotic interactions required for establishment of the nitrogen-fixing symbiosis.  相似文献   

16.
Expression of Bradyrhizobium japonicum wild-type strain USDA110 nirK , norC and nosZ denitrification genes in soybean root nodules was studied by in situ histochemical detection of β -galactosidase activity. Similarly, PnirK- lacZ , PnorC- lacZ , and PnosZ- lacZ fusions were also expressed in bacteroids isolated from root nodules. Levels of β -galactosidase activity were similar in both bacteroids and nodule sections from plants that were solely N2-dependent or grown in the presence of 4 m M KNO3. These findings suggest that oxygen, and not nitrate, is the main factor controlling expression of denitrification genes in soybean nodules. In plants not amended with nitrate, B. japonicum mutant strains GRK308, GRC131, and GRZ25, that were altered in the structural nirK , norC and nosZ genes, respectively, showed a wild-type phenotype with regard to nodule number and nodule dry weight as well as plant dry weight and nitrogen content. In the presence of 4 m M KNO3, plants inoculated with either GRK308 or GRC131 showed less nodules, and lower plant dry weight and nitrogen content, relative to those of strains USDA110 and GRZ25. Taken together, the present results revealed that although not essential for nitrogen fixation, mutation of either the structural nirK or norC genes encoding respiratory nitrite reductase and nitric oxide reductase, respectively, confers B. japonicum reduced ability for nodulation in soybean plants grown with nitrate. Furthermore, because nodules formed by each the parental and mutant strains exhibited nitrogenase activity, it is possible that denitrification enzymes play a role in nodule formation rather than in nodule function.  相似文献   

17.
Leguminous plants and bacteria from the family Rhizobiaceae form a symbiotic relationship, which culminates in novel plant structures called root nodules. The indeterminate symbiosis that forms between Sinorhizobium meliloti and alfalfa requires biosynthesis of Nod factor, a beta-1,4-linked lipochitooligosaccharide that contains an essential 6-O-sulfate modification. S. meliloti also produces sulfated cell surface polysaccharides, such as lipopolysaccharide (LPS). The physiological function of sulfated cell surface polysaccharides is unclear, although mutants of S. meliloti with reduced LPS sulfation exhibit symbiotic abnormalities. Using a bioinformatic approach, we identified a homolog of the S. meliloti carbohydrate sulfotransferase, LpsS, in Mesorhizobium loti. M. loti participates in a determinate symbiosis with the legume Lotus japonicus. We showed that M. loti produces sulfated forms of LPS and capsular polysaccharide (KPS). To investigate the physiological function of sulfated polysaccharides in M. loti, we identified and disabled an M. loti homolog of the sulfate-activating genes, nodPQ, which resulted in undetectable amounts of sulfated cell surface polysaccharides and a cysteine auxotrophy. We concomitantly disabled an M. loti cysH homolog, which disrupted cysteine biosynthesis without reducing cell surface polysaccharide sulfation. Our experiments demonstrated that the nodPQ mutant, but not the cysH mutant, showed an altered KPS structure and a diminished ability to elicit nodules on its host legume, Lotus japonicus. Interestingly, the nodPQ mutant also exhibited a more rapid growth rate and appeared to outcompete wild-type M. loti for nodule colonization. These results suggest that sulfated cell surface polysaccharides are required for optimum nodule formation but limit growth rate and nodule colonization in M. loti.  相似文献   

18.
To identify bacterial genes involved in symbiotic nodule development, ineffective nodules of alfalfa (Medicago sativa) induced by 64 different Fix-mutants of Rhizobium meliloti were characterized by assaying for symbiotic gene expression and by morphological studies. The expression of leghemoglobin and nodulin-25 genes from alfalfa and of the nifHD genes from R. meliloti were monitored by hybridizing the appropriate DNA probes to RNA samples prepared from nodules. The mutants were accordingly divided into three groups. In group I none of the genes were expressed, in group II only the plant genes were expressed and in group III all three genes were transcribed. Light and electron microscopical analysis of nodules revealed that nodule development was halted at different stages in nodules induced by different group I mutants. In most cases nodules were empty lacking infection threads and bacteroids or nodules contained infection threads and a few released bacteroids. In nodules induced by a third mutant class bacteria were released into the host cells, however the formation of the peribacteroid membrane was not normal. On this basis we suggest that peribacteroid membrane formation precedes leghemoglobin and nodulin-25 induction, moreover, after induction of nodulation by the nod genes at least two communication steps between the bacteria and the host plants are necessary for the development of the mature nodule. By complementing each mutant of group I with a genomic R. meliloti library made in pLAFRl, four new fix loci were identified, indicating that several bacterial genes are involved in late nodule development.  相似文献   

19.
[目的]Mesorh izob ium huakuii 7653R的MCHK _1326基因编码一种外膜孔蛋白,可能参与根瘤菌侵染宿主植物以及结瘤固氮过程,本研究旨在探索该基因在共生固氮中的功能.[方法]生物信息学分析MCHK _1326蛋白的结构特征及生物学功能,启动子原位表达技术检测MCHK_1326共生时空表达特...  相似文献   

20.
A transposon Tn5-induced mutant of Rhizobium meliloti Rm2011, designated Rm6963, showed a rough colony morphology on rich and minimal media and an altered lipopolysaccharide (LPS). Major differences from the wild-type LPS were observed in (i) hexose and 2-keto-3-deoxyoctonate elution profiles of crude phenol extracts chromatographed in Sepharose CL-4B, (ii) silver-stained sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis patterns of crude and purified LPS fractions, and (iii) immunoreactivities otherwise present in purified LPS of the parental strain Rm2011. In addition, Rm6963 lost the ability to grow in Luria-Bertani medium containing the hydrophobic compounds sodium deoxycholate or SDS and showed a decrease in survival in TY medium supplemented with high calcium concentrations. The mutant also had altered symbiotic properties. Rm6963 formed nodules that fixed nitrogen but showed a delayed or even reduced ability to nodulate the primary root of alfalfa without showing changes in the position of nodule distribution profiles along the roots. Furthermore, 2 to 3 weeks after inoculation, plants nodulated by Rm6963 were smaller than control plants inoculated with wild-type bacteria in correlation with a transient decrease in nitrogen fixation. In most experiments, the plants recovered later by expressing a full nitrogen-fixing phenotype and developing an abnormally high number of small nodules in lateral roots after 1 month. Rm6963 was also deficient in the ability to compete for nodulation. In coinoculation experiments with equal bacterial numbers of both mutant and wild-type rhizobia, only the parent was recovered from the uppermost root nodules. A strain ratio of approximately 100 to 1 favoring the mutant was necessary to obtain an equal ratio (1:1) of nodule occupancy. These results show that alterations in Rm6963 which include LPS changes lead to an altered symbiotic phenotype during the association with alfalfa that affects the timing of nodule emergence, the progress of nitrogen fixation, and the strain competitiveness for nodulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号