首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Axonal trajectories of the Kolmer-Agduhr (KA) neurons of Xenopus embryos, were observed after anterior-posterior (A-P) inversions of neural tube grafts to determine whether KA axons follow cell-inherent directional cues, cues from their immediate environment, or rostrocaudal signals from the embryo. KA axons form one of the earliest ascending spinal pathways in Xenopus and are visible in the lateral marginal zone of whole mounts processed for GABA immunoreactivity. Grafts were made at trunk levels at stages 22–24, 3–5 h before the first KA neurons were detectable and prior to axonal outgrowth. Embryos were fixed and immunostained 6–36 h later. KA trajectories within and adjacent to reversed grafts were compared to those of nonrotated control grafts and to neural tube lengths comparable in position and in length in unoperated embryos. Most KA axons within rotated grafts followed the graft's orientation. However, others changed direction, taking novel routes including turning to conform to the orientation of the host embryo. Reorientations were most common near the posterior host/graft interface. Some host KA cells also reoriented, always within a few hundred microns of the graft interface. Taken together, these growth patterns show that most KA axons within the grafts grow normally with respect to the original polarity of the graft neural tube and maintain that direction even into tissue of opposite polarity, suggesting that their routes are mainly determined by cell-intrinsic and/or local tissue factors. However, the reorientation of many other axons, particularly near graft seams, implies that KA axons can respond to local fluctuations in directional or segment identity signals generated in both host and graft after this perturbation. © 1996 John Wiley & Sons, Inc.  相似文献   

2.
Notochordless Xenopus embryos were produced by u.v. irradiation of the uncleaved fertilized egg. The spinal cords were examined using intermediate filament staining for glial cells, retrograde HRP staining for neuronal morphology and an anti-glycinergic antibody to reveal commissural cells and axons. The floorplate cells of the normal cord appear to be absent and their position along the ventral midline of the cord is occupied by motor neurones, Kolmer-Agduhr cells, radial glial cells and a ventrally placed marginal zone containing the longitudinal axons. Motor neurone number is reduced to 15% of control values, and the sensory extramedullary cell number is increased twentyfold. Commissural axons are still able to cross the ventral cord but do so at abnormal angles and some commissural axons continue to grow circumferentially up the contralateral side of the cord rather than turning to grow longitudinally. Extracellular electrophysiological recordings from motor axons reveal that the normal alternation of locomotor activity on the left and right side of the embryo is lost in notochordless animals. These results suggest that the notochord and/or the normal floor plate structure are important for the development of the laterality of spinal cord connections and may influence motor neurone proliferation or differentiation.  相似文献   

3.
The outgrowth of motor axons to the developing pectoral fin of the Japanese medaka fish (Oryzias latipes) was investigated both in wildtype embryos and in the pectoral finless (pl) mutants in which adults are missing pectoral fins. Late in embryogenesis the pectoral fin is a simple limb which contains two antagonist muscles which are innervated by presumptive motor neurons from the first four spinal segments (S1-4). The pectoral fin develops from a fin bud located in S1 and S2 centered on the border between S1 and S2 and, as with other limbs, one of the earliest signs of differentiation is the apical ectodermal ridge (AER). By the time the AER is well formed the growth cones of the presumptive motor neurons have reached the base of the fin bud and formed a plexus by extending toward the fin bud upon emergence from the spinal cord. This is especially evident on the ventral surface of the metamerically arranged axial muscles. For example, growth cones from S2 extend in a diagonal direction (both anterior and lateral) towards the fin bud. One hypothesis which can account for the pattern of motor outgrowth is that growth cones are attracted to the base of the fin bud, perhaps via a long distance cue. This hypothesis was tested by examining outgrowth of segmental nerves in pl embryos in which the fin buds arrest early in development following the initial appearance of the AER. In pl, nerves from S1-4 converged to form a plexus at the base of the abnormal fin bud, but the pattern of outgrowth varied from wildtype in a way consistent with a diminished capacity of the fin bud to attract segmental nerves to it.  相似文献   

4.
In larval lamprey, descending brain neurons, which regenerate their axons following spinal cord injury, were isolated and examined in cell culture to identify some of the factors that regulate neurite outgrowth. Focal application of 5 mM or 25 mM L-glutamate to single growth cones inhibited outgrowth of the treated neurite, but other neurites from the same neuron were not inhibited, an effect that has not been well studied for neurons in other systems. Glutamate-induced inhibition of neurite outgrowth was abolished by 10 mM kynurenic acid. Application of high potassium media to growth cones inhibited neurite outgrowth, an effect that was blocked by 2 mM cobalt or 100 microM cadmium, suggesting that calcium influx via voltage-gated channels contributes to glutamate-induced regulation of neurite outgrowth. Application of glutamate to growth cones in the presence of 2 microM omega-conotoxin MVIIC (CTX) still inhibited neurite outgrowth, while CTX blocked high potassium-induced inhibition of neurite outgrowth. Thus, CTX blocked virtually all of the calcium influx resulting from depolarization. To our knowledge, this is the first direct demonstration that calcium influx via ligand-gated ion channels can contribute to regulation of neurite outgrowth. Finally, focal application of glutamate to the cell bodies of descending brain neurons inhibited outgrowth of multiple neurites from the same neuron, and this is the first demonstration that multiple neurites can be regulated in this fashion. Signaling mechanisms involving intracellular calcium, similar to those shown here, may be important for regulating axonal regeneration following spinal cord injury in the lamprey.  相似文献   

5.
The identification of surface proteins restricted to subsets of embryonic axons and growth cones may provide information on the mechanisms underlying axon fasciculation and pathway selection in the vertebrate nervous system. We describe here the characterization of a 135 kd cell surface glycoprotein, TAG-1, that is expressed transiently on subsets of embryonic spinal cord axons and growth cones. TAG-1 is immunochemically distinct from the cell adhesion molecules N-CAM and L1 (NILE) and is expressed on commissural and motor neurons over the period of initial axon extension. Moreover, TAG-1 and L1 appear to be segregated on different segments of the same embryonic spinal axons. These observations provide evidence that axonal guidance and pathway selection in vertebrates may be regulated in part by the transient and selective expression of distinct surface glycoproteins on subsets of developing neurons.  相似文献   

6.
Parasympathetic preganglionic neurons in the cat sacral spinal cord innervate intraspinal neurons and pelvic target organs. Retrograde tracing studies have revealed little of the morphology of their axons including their origin, initial segments, or their myelin, due to methodological limitations. Intracellular labeling of single neurons with neurobiotin or HRP has overcome these problems. Axons were studied in 24 preganglionic neurons. In 21 neurons the axon originated as a branch of a dendrite, without a detectable axon hillock, at distances from the soma ranging from 10 to 110 μm (average 34.1 μm ). In 3 neurons the axon was derived from the soma. Initial segments, present in all cells, ranged from 15 to 40 μm (average 26.8 μm). Nearly all axons followed the initial segment with unmyelinated segments that varied between 59 to 630 μm, followed by myelin and nodes of Ranvier. Internodal distances were variable and relatively short (average 93 μm). Axonal diameters measured over the intraspinal course in 18 axons averaged 1.3 μm (range 0.6–2.4 μm) and were relatively constant compared with other neurons. Spine-like protrusions were observed on the initial segments of 12 cells. Axon collaterals originated from unmyelinated sections and nodes of Ranvier. Antidromic action potentials showing initial segment, soma-dendritic inflections, did not differentiate between soma-derived and dendrite-derived axons. The data suggest that axons originating from a dendrite are the normal structure of preganglionic neurons in the lateral sacral parasympathetic nucleus. It is proposed that the particular structure of these axons may be part of a timing mechanism that coordinates preganglionic neurons with other spinal neurons involved in target organ reflexes.  相似文献   

7.
Growth pattern of pioneering chick spinal cord axons   总被引:2,自引:0,他引:2  
The early growth pattern of axons in the embryonic chick spinal cord was studied by electron microscopy. Serial perisagittal thin sections were obtained from the lateral margins of spinal cords of stage 17 (S17) and S19 embryos. A simple stereotypic pattern of axonal growth was found. Axons originated from a dispersed population of presumptive interneurons located along the lateral spinal cord margin. They first grew ventrally in a nonfasciculative pattern and later turned at right angles and grew in a fasciculative manner longitudinally in the ventrolateral fasciculus. Growth along the circumferential pathway was analyzed in detail by reconstructing individual axons and growth cones from the S17 specimen. Most circumferential axons, regardless of their site of origin, grew in a parallel orientation, and each of their growth cones projected ventrally. This pattern suggested that circumferential growth cones were guided at many, if not all, points along their path. Study of the region in front of these seven growth cones, however, revealed no apparent structural basis for their guidance. Alternative guidance mechanisms are discussed. In conjunction with previous studies (e.g., Windle and Baxter, 1936; Lyser, 1966), these findings suggest that the circumferential-nonfasciculative and the longitudinal-fasciculative patterns of axonal growth are the two fundamental patterns followed by most early forming axons in the brain stem and spinal cord of all higher vertebrates.  相似文献   

8.
Following spinal cord injury, there are numerous changes in gene expression that appear to contribute to either neurodegeneration or reparative processes. We utilized high density oligonucleotide microarrays to examine temporal gene profile changes after spinal cord injury in rats with the goal of identifying novel factors involved in neural plasticity. By comparing mRNA changes that were coordinately regulated over time with genes previously implicated in nerve regeneration or plasticity, we found a gene cluster whose members are involved in cell adhesion processes, synaptic plasticity, and/or cytoskeleton remodeling. This group, which included the small GTPase Rab13 and actin-binding protein Coronin 1b, showed significantly increased mRNA expression from 7-28 days after trauma. Overexpression in vitro using PC-12, neuroblastoma, and DRG neurons demonstrated that these genes enhance neurite outgrowth. Moreover, RNAi gene silencing for Coronin 1b or Rab13 in NGF-treated PC-12 cells markedly reduced neurite outgrowth. Coronin 1b and Rab13 proteins were expressed in cultured DRG neurons at the cortical cytoskeleton, and at growth cones along with the pro-plasticity/regeneration protein GAP-43. Finally, Coronin 1b and Rab13 were induced in the injured spinal cord, where they were also co-expressed with GAP-43 in neurons and axons. Modulation of these proteins may provide novel targets for facilitating restorative processes after spinal cord injury.  相似文献   

9.
Glutamate is the main excitatory neurotransmitter involved in spinal cord circuits in vertebrates, but in most groups the distribution of glutamatergic spinal neurons is still unknown. Lampreys have been extensively used as a model to investigate the neuronal circuits underlying locomotion. Glutamatergic circuits have been characterized on the basis of the excitatory responses elicited in postsynaptic neurons. However, the presence of glutamatergic neurochemical markers in spinal neurons has not been investigated. In this study, we report for the first time the expression of a vesicular glutamate transporter (VGLUT) in the spinal cord of the sea lamprey. We also study the distribution of glutamate in perikarya and fibers. The largest glutamatergic neurons found were the dorsal cells and caudal giant cells. Two additional VGLUT-positive gray matter populations, one dorsomedial consisting of small cells and another one lateral consisting of small and large cells were observed. Some cerebrospinal fluid-contacting cells also expressed VGLUT. In the white matter, some edge cells and some cells associated with giant axons (Müller and Mauthner axons) and the dorsolateral funiculus expressed VGLUT. Large lateral cells and the cells associated with reticulospinal axons are in a key position to receive descending inputs involved in the control of locomotion. We also compared the distribution of glutamate immunoreactivity with that of γ-aminobutyric acid (GABA) and glycine. Colocalization of glutamate and GABA or glycine was observed in some small spinal cells. These results confirm the glutamatergic nature of various neuronal populations, and reveal new small-celled glutamatergic populations, predicting that some glutamatergic neurons would exert complex actions on postsynaptic neurons.  相似文献   

10.
Axon outgrowth between the spinal cord and the hindlimb of the chick embryo is constrained by three tissues that border axon pathways. Growth cones turn to avoid the posterior sclerotome, perinotochordal mesenchyme, and pelvic girdle precursor during normal development and after experimental manipulation. We wanted to know if these functionally similar barriers to axon advance also share a common molecular composition. Since the posterior sclerotome differentially binds peanut agglutinin (PNA) and since PNA binding is also typical of prechondrogenic differentiation, we examined the pattern of expression of PNA binding sites and cartilage proteoglycan epitopes in relation to axon outgrowth. We found that all three barrier tissues preferentially express both PNA binding sites and chondroitin-6-sulfate (C-6-S) immunoreactivity at the time when growth cones avoid these tissues. Moreover, both epitopes are expressed in the roof plate of the spinal cord and in the early limb bud, two additional putative barriers to axon advance. In contrast, neither epitope is detected in peripheral axon pathways. In the somites, this dichotomous pattern of expression clearly preceded the invasion of the anterior sclerotome by either motor growth cones or neural crest cells. However, in the limb, barrier markers disappeared from presumptive axon pathways in concert with the invasion of axons. Since this coordinate pattern suggested that the absence of barrier markers in these axon pathways requires an interaction with growth cones, we analyzed the pattern of barrier marker expression following unilateral neural tube deletions. We found that PNA-negative axon pathways developed normally even in the virtual absence of axon outgrowth. We conclude that the absence of staining with carbohydrate-specific barrier markers is an independent characteristic of the cells that comprise axon pathways. These results identify two molecular markers that characterize known functional barriers to axon advance and suggest that barrier tissues may impose patterns on peripheral nerve outgrowth by virtue of their distinct molecular composition.  相似文献   

11.
Peculiarities of the axons growth in the culture of 14-day old chick embryo spinal cord after 24, 48 hr, 3, 5 and 7 days in the Maximov's chamber were observed. For the stimulation of axon growth the spinal cord was cultivated simultaneously with the explants of the muscle tissue and in the medium after the addition of supernatant of the somatic muscle. It has been demonstrated that the growth of the axons stimulated with the muscle explants or muscle supernatant takes place through the growth cones, while in the absence of growth stimulation effect glial cells can take part in the axons growth. It is supposed that the glial cells are capable of playing the role of the cells, which direct axons growth in the absence of influence of specific target factor.  相似文献   

12.
The extracellular matrix protein, tenascin, appears in a restricted pattern during organ morphogenesis. Here we studied the expression of tenascin along developing peripheral nerves in chick embryos and tested its activity as a substrate for cultured neurons. Motor axons grow out through the tenascin-rich, anterior part of the sclerotome. Shortly after, tenascin surrounds axon fascicles of ventral roots. At the limb levels, outgrowing axons accumulate in the tenascin-containing girdle region forming a plexus. In the limb, tenascin first appears in bracket-like structures that surround the precartilage cell condensations of the femur and humerus, respectively. These regions coincide with the channels along which axons first grow in from the girdle plexus to form the limb nerves. Later, the major tenascin staining is associated with the cartilage and tendon primordia, and not with the limb nerves. We used tenascin as a substrate for cultured neural explants and single cells in order to test for its function in neurite outgrowth. Dissociated embryonic neurons of various types attached to mixed polylysine/tenascin substrates and sprouted rapidly after a lag of several hours. Outgrowth was inhibited and neurites were detached by anti-tenascin antibodies. On substrates coated with tenascin alone, neurite outgrowth was achieved from 3 day spinal cord explants. Whereas growth cones were well spread and rapidly moving, the neurites were poorly attached, straight and rarely branched. We speculate that in vivo tenascin allows axonal outgrowth, but inhibits branching and supports fasciculation of newly formed axons.  相似文献   

13.
To determine the initial growth pattern of pioneering axons and investigate the factors that may influence their guidance, the lateral margin of a stage 16+ chick brachial spinal cord was examined in serial thin sections. The specimen was prepared with hypertonic fixative which partially shrank the tissue and increased extracellular space. The retention of surface contact after shrinkage was used as an index of the relative adhesiveness between cells in situ. Six axons and growth cones were found within the reconstructed tissue; five were oriented dorsoventrally and one apparent motor neuron growth cone was oriented radially. The five circumferential axons originated from presumptive interneurons distributed in a dispersed pattern along the neural tube lateral wall. Four terminated with growth cones, and each extended a short distance (less than 30 microns) ventrally along the outer margin. No contact was found between these nonfasciculating axons or growth cones. Thus, the earliest intracentral axons appear to grow dorsoventrally from the outset with no appreciable wandering. Morphological features that may indicate their mechanism of guidance, including preformed cellular guides, extracellular channels, contact with basal lamina, and intercellular junctions were not found. The preferential retention of surface contact between adjacent endfeet, as well as between pioneering circumferential axons and neuroepithelial cells, suggests that these particular surfaces are mutually adherent. These findings are consistent with a proposed dorsal-to-ventral adhesive gradient mechanism of circumferential axonal guidance.  相似文献   

14.
High-affinity uptake systems for amino acid neurotransmitter precursors have been highly correlated with the use of the particular amino acid or its derivative as a transmitter. We have found interneurons in the Xenopus embryo spinal cord which accumulate GABA by a high-affinity uptake system. They originate near the end of gastrulation and their ability to accumulate GABA first appears at the early tail bud stage. By position and appearance they are comparable to some of the embryonic interneurons described by A. Roberts and J. D. W. Clarke (1982, Phil. Trans. R. Soc. London Ser. B 296, 195-212). GABA-accumulating neurons also develop in dissociated cell cultures made from the presumptive spinal cord of neural plate stage Xenopus embryos. GABA accumulation in cultured neurons, as in cells in vivo, occurs via a high-affinity uptake system; GABA-accumulating cells have the same time of origin as the cells in vivo, and the ability to accumulate GABA in the population of cultured neurons appears at a time equivalent to that observed in intact sibling embryos. Thus it seems likely that the population of GABA-accumulating neurons developing in cell culture corresponds to the GABA-accumulating interneurons in vivo. The development of these neurons in dissociated cell cultures permits perturbation experiments that would be difficult to perform in vivo. We have examined the development of high-affinity GABA uptake in conditions that permit no electrical impulse activity in the cultures. The onset and extent of development of GABA accumulation in the neuronal population are normal under these conditions.  相似文献   

15.
BMPs as mediators of roof plate repulsion of commissural neurons   总被引:1,自引:0,他引:1  
During spinal cord development, commissural (C) neurons, located near the dorsal midline, send axons ventrally and across the floor plate (FP). The trajectory of these axons toward the FP is guided in part by netrins. The mechanisms that guide the early phase of C axon extension, however, have not been resolved. We show that the roof plate (RP) expresses a diffusible activity that repels C axons and orients their growth within the dorsal spinal cord. Bone morphogenetic proteins (BMPs) appear to act as RP-derived chemorepellents that guide the early trajectory of the axons of C neurons in the developing spinal cord: BMP7 mimics the RP repellent activity for C axons in vitro, can act directly to collapse C growth cones, and appears to serve an essential function in RP repulsion of C axons.  相似文献   

16.
Trophic influences of alpha-MSH and ACTH4-10 on neuronal outgrowth in vitro   总被引:2,自引:0,他引:2  
Slices of foetal spinal cords in culture were used to establish possible trophic effects of alpha-melanocyte stimulating hormone (alpha-MSH) and a fragment of the adrenocorticotropic hormone (ACTH4-10) on the outgrowth of neurites from spinal neurons. The spinal cord slices were treated with peptides over a wide concentration range. Using monoclonal antibodies against (subunits of) neurofilament followed by immunofluorescence, we could show that the extension consisted mainly of axons. After 5 and 7 days, outgrowth was quantified with 2 different techniques, namely by visual scoring under phase contrast and by means of an ELISA for neurofilament protein. Both methods yielded the same dose-response profile. Both alpha-MSH and ACTH4-10 stimulated the formation of neurites in a dose-dependent manner, with a maximal stimulatory effect at 0.001-0.01 nM (ACTH4-10) or 0.1-1.0 nM (alpha-MSH). The maximal effect of the peptides was 30-40% compared to controls. We conclude that alpha-MSH and ACTH4-10 stimulate axonal outgrowth from foetal spinal cord slices in vitro in a dose-dependent way.  相似文献   

17.
In the developing visual system of Xenopus laevis retinal ganglion cell (RGC) axons extend through the brain towards their major target in the midbrain, the optic tectum. Enroute, the axons are guided along their pathway by cues in the environment. In vitro, neurotransmitters have been shown to act chemotropically to influence the trajectory of extending axons and regulate the outgrowth of developing neurites, suggesting that they may act to guide or modulate the growth of axons in vivo. Previous work by Roberts and colleagues (1987) showed that populations of cells within the developing Xenopus diencephalon and mid-brain express the neurotransmitter gamma amino butyric acid (GABA). Here we show that Xenopus RGC axons in the midoptic tract grow alongside the GABAergic cells and cross their GABA immunopositive nerve processes. Moreover, RGC axons and growth cones express GABA-A and GABA-B receptors, and GABA and the GABA-B receptor agonist baclofen both stimulate RGC neurite outgrowth in culture. Finally, the GABA-B receptor antagonist CGP54626 applied to the developing optic projection in vivo causes a dose-dependent shortening of the optic projection. These data indicate that GABA may act in vivo to stimulate the outgrowth of Xenopus RGC axons along the optic tract.  相似文献   

18.
During nervous system development, neurons form synaptic contacts with distant target cells. These connections are formed by the extension of axonal processes along predetermined pathways. Axon outgrowth is directed by growth cones located at the tips of these neuronal processes. Although the behavior of growth cones has been well-characterized in vitro, it is difficult to observe growth cones in vivo. We have observed motor neuron growth cones migrating in living Caenorhabditis elegans larvae using time-lapse confocal microscopy. Specifically, we observed the VD motor neurons extend axons from the ventral to dorsal nerve cord during the L2 stage. The growth cones of these neurons are round and migrate rapidly across the epidermis if they are unobstructed. When they contact axons of the lateral nerve fascicles, growth cones stall and spread out along the fascicle to form anvil-shaped structures. After pausing for a few minutes, they extend lamellipodia beyond the fascicle and resume migration toward the dorsal nerve cord. Growth cones stall again when they contact the body wall muscles. These muscles are tightly attached to the epidermis by narrowly spaced circumferential attachment structures. Stalled growth cones extend fingers dorsally between these hypodermal attachment structures. When a single finger has projected through the body wall muscle quadrant, the growth cone located on the ventral side of the muscle collapses and a new growth cone forms at the dorsal tip of the predominating finger. Thus, we observe that complete growth cone collapse occurs in vivo and not just in culture assays. In contrast to studies indicating that collapse occurs upon contact with repulsive substrata, collapse of the VD growth cones may result from an intrinsic signal that serves to maintain growth cone primacy and conserve cellular material.  相似文献   

19.
The molecular subunit composition of neurofilaments (NFs) progressively changes during axon development. In developing Xenopus laevis spinal cord, peripherin emerges at the earliest stages of neurite outgrowth. NF-M and XNIF (an alpha-internexin-like protein) appear later, as axons continue to elongate, and NF-L is expressed after axons contact muscle. Because NFs are the most abundant component of the vertebrate axonal cytoskeleton, we must understand why these changes occur before we can fully comprehend how the cytoskeleton regulates axon growth and morphology. Knowing where these proteins are localized within developing neurites and how their expression changes with cell contact is essential for this understanding. Thus, we examined by immunofluorescence the expression and localization of these NF subunits within dissociated cultures of newly differentiating spinal cord neurons. In young neurites, peripherin was most abundant in distal neuritic segments, especially near branch points and extending into the central domain of the growth cone. In contrast, XNIF and NF-M were usually either absent from very young neurites or exhibited a proximal to distal gradient of decreasing intensity. In older neurites, XNIF and NF-M expression increased, whereas that of peripherin declined. All three of these proteins became more evenly distributed along the neurites, with some branches staining more intensely than others. At 24 h, NF-L appeared, and in 48-h cultures, its expression, along with that of NF-M, was greater in neurites contacting muscle cells, arguing that the upregulation of these two subunits is dependent on contact with target cells. Moreover, this contact had no effect on XNIF or peripherin expression. Our findings are consistent with a model in which peripherin plays an important structural role in growth cones, XNIF and NF-M help consolidate the intermediate filament cytoskeleton beginning in the proximal neurite, and increased levels of NF-L and NF-M help further solidify the cytoskeleton of axons that successfully reach their targets.  相似文献   

20.
Glycine is a major inhibitory neurotransmitter in the central nervous system of vertebrates. Here, we report the initial development of glycine‐immunoreactive (Gly‐ir) neurons and fibers in zebrafish. The earliest Gly‐ir cells were found in the hindbrain and rostral spinal cord by 20 h post‐fertilization (hpf). Gly‐ir cells in rhombomeres 5 and 6 that also expressed glycine transporter 2 (glyt2) mRNA were highly stereotyped; they were bilaterally located and their axons ran across the midline and gradually turned caudally, joining the medial longitudinal fascicles in the spinal cord by 24 hpf. Gly‐ir neurons in rhombomere 5 were uniquely identified, since there was one per hemisegment, whereas the number of Gly‐ir neurons in rhombomere 6 were variable from one to three per hemisegment. Labeling of these neurons by single‐cell electroporation and tracing them until the larval stage revealed that they became MiD2cm and MiD3cm, respectively. The retrograde labeling of reticulo‐spinal neurons in Tg(glyt2:gfp) larva, which express GFP in Gly‐ir cells, and a genetic mosaic analysis with glyt2:gfp DNA construct also supported this notion. Gly‐ir cells were also distributed widely in the anterior brain by 27 hpf, whereas glyt2 was hardly expressed. Double staining with anti‐glycine and anti‐GABA antibodies demonstrated distinct distributions of Gly‐ir and GABA‐ir cells, as well as the presence of doubly immunoreactive cells in the brain and placodes. These results provide evidence of identifiable glycinergic (Gly‐ir/glyt2‐positive) neurons in vertebrate embryos, and they can be used in further studies of the neurons' development and function at the single‐cell level. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 74: 616–632, 2014  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号