首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In most animals, multiple genes encode protein kinase C (PKC) proteins. Pharmacological studies have revealed numerous roles for this protein family, yet the in vivo roles of specific PKC proteins and the functional targets of PKC activation are poorly understood. We find that in Caenorhabditis elegans, two PKC genes, pkc-1 and tpa-1, are required for mechanosensory response; the role of the nPKCε/η ortholog, pkc-1, was examined in detail. pkc-1 function is required for response to nose touch in adult C. elegans and pkc-1 likely acts in the interneurons that regulate locomotion which are direct synaptic targets of mechanosensory neurons. Previous studies have suggested numerous possible targets of pkc-1; our analysis indicates that pkc-1 may act via the extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) pathway. We find that ERK/MAPK pathway function is required for mechanosensory response in C. elegans and that at least one component of this pathway, lin-45 Raf, acts in interneurons of the mechanosensory circuit. Genetic analysis indicates that lin-45 and pkc-1 act together to regulate nose touch response. Thus, these results functionally link two conserved signaling pathways in adult C. elegans neurons and define distinct roles for PKC genes in vivo.  相似文献   

2.
Recent studies have documented the involvement of the atypical protein kinase C (aPKC) isoforms in important cellular functions such as cell proliferation and survival. Exposure of cells to a genotoxic stimulus that induces apoptosis, such as UV irradiation, leads to a profound inhibition of the atypical PKC activity in vivo. In this study, we addressed the relationship between this phenomenon and different proteins involved in the apoptotic response. We show that (i) the inhibition of the aPKC activity precedes UV-induced apoptosis; (ii) UV-induced aPKC inhibition and apoptosis are independent of p53; (iii) Bcl-2 proteins are potent modulators of aPKC activity; and (iv) the aPKCs are located upstream of the interleukin-converting enzyme-like protease system, which is required for the induction of apoptosis by both Par-4 (a selective aPKC inhibitor) and UV irradiation. We also demonstrate here that inhibition of aPKC activity leads to a decrease in mitogen-activated protein (MAP) kinase activity and simultaneously an increase in p38 activity. Both effects are critical for the induction of apoptosis in response to Par-4 expression and UV irradiation. Collectively, these results clarify the position of the aPKCs in the UV-induced apoptotic pathway and strongly suggest that MAP kinases play a role in this signaling cascade.  相似文献   

3.
Epithelial cells are major sites of malignant transformation. Atypical protein kinase C (aPKC) isoforms are overexpressed and activated in many cancer types. Using normal, highly polarized epithelial cells (MDCK and NMuMG), we report that aPKC gain of function overcomes contact inhibited growth and is sufficient for a transformed epithelial phenotype. In 2D cultures, aPKC induced cells to grow as stratified epithelia, whereas cells grew as solid spheres of nonpolarized cells in 3D culture. aPKC associated with Mst1/2, which uncoupled Mst1/2 from Lats1/2 and promoted nuclear accumulation of Yap1. Of importance, Yap1 was necessary for aPKC-mediated overgrowth but did not restore cell polarity defects, indicating that the two are separable events. In MDCK cells, Yap1 was sequestered to cell–cell junctions by Amot, and aPKC overexpression resulted in loss of Amot expression and a spindle-like cell phenotype. Reexpression of Amot was sufficient to restore an epithelial cobblestone appearance, Yap1 localization, and growth control. In contrast, the effect of aPKC on Hippo/Yap signaling and overgrowth in NMuMG cells was independent of Amot. Finally, increased expression of aPKC in human cancers strongly correlated with increased nuclear accumulation of Yap1, indicating that the effect of aPKC on transformed growth by deregulating Hippo/Yap1 signaling may be clinically relevant.  相似文献   

4.
We have previously shown that during early Caenorhabditis elegans embryogenesis PKC-3, a C. elegans atypical PKC (aPKC), plays critical roles in the establishment of cell polarity required for subsequent asymmetric cleavage by interacting with PAR-3 [Tabuse, Y., Y. Izumi, F. Piano, K.J. Kemphues, J. Miwa, and S. Ohno. 1998. Development (Camb.). 125:3607--3614]. Together with the fact that aPKC and a mammalian PAR-3 homologue, aPKC-specific interacting protein (ASIP), colocalize at the tight junctions of polarized epithelial cells (Izumi, Y., H. Hirose, Y. Tamai, S.-I. Hirai, Y. Nagashima, T. Fujimoto, Y. Tabuse, K.J. Kemphues, and S. Ohno. 1998. J. Cell Biol. 143:95--106), this suggests a ubiquitous role for aPKC in establishing cell polarity in multicellular organisms. Here, we show that the overexpression of a dominant-negative mutant of aPKC (aPKCkn) in MDCK II cells causes mislocalization of ASIP/PAR-3. Immunocytochemical analyses, as well as measurements of paracellular diffusion of ions or nonionic solutes, demonstrate that the biogenesis of the tight junction structure itself is severely affected in aPKCkn-expressing cells. Furthermore, these cells show increased interdomain diffusion of fluorescent lipid and disruption of the polarized distribution of Na(+),K(+)-ATPase, suggesting that epithelial cell surface polarity is severely impaired in these cells. On the other hand, we also found that aPKC associates not only with ASIP/PAR-3, but also with a mammalian homologue of C. elegans PAR-6 (mPAR-6), and thereby mediates the formation of an aPKC-ASIP/PAR-3-PAR-6 ternary complex that localizes to the apical junctional region of MDCK cells. These results indicate that aPKC is involved in the evolutionarily conserved PAR protein complex, and plays critical roles in the development of the junctional structures and apico-basal polarization of mammalian epithelial cells.  相似文献   

5.
The establishment and maintenance of cellular polarity are essential biological processes that must be maintained throughout the lifetime of eukaryotic organisms. The Par-1 protein kinases are key polarity determinants that have been conserved throughout evolution. Par-1 directs anterior-posterior asymmetry in the one-cell C. elegans embryo and the Drosophila oocyte. In mammalian cells, Par-1 may regulate epithelial cell polarity. Relevant substrates of Par-1 in these pathways are just being identified, but it is not yet known how Par-1 itself is regulated. Here, we demonstrate that human Par-1b (hPar-1b) interacts with and is negatively regulated by atypical PKC. hPar-1b is phosphorylated by aPKC on threonine 595, a residue conserved in Par-1 orthologs in mammals, worms, and flies. The equivalent site in hPar-1a, T564, is phosphorylated in vivo and by aPKC in vitro. Importantly, phosphorylation of hPar-1b on T595 negatively regulates the kinase activity and plasma membrane localization of hPar-1b in vivo. This study establishes a novel functional link between two central determinants of cellular polarity, aPKC and Par-1, and suggests a model by which aPKC may regulate Par-1 in polarized cells.  相似文献   

6.
Atypical protein kinase C isoforms (aPKCs) transmit regulatory signals to effector proteins located in the cytoplasm, nucleus, cytoskeleton, and membranes. Mechanisms by which aPKCs encounter and control effector proteins in various microenvironments are poorly understood. By using a protein interaction screen, we discovered two novel proteins that adapt a Caenorhabditis elegans aPKC (PKC3) for specialized (localized) functions; protein kinase C adapter 1 (CKA1, 593 amino acids) and CKA1S (549 amino acids) are derived from a unique mRNA by alternative utilization of two translation initiation codons. CKA1S and CKA1 are routed to the cell periphery by exceptionally basic N-terminal regions that include classical phosphorylation site domains (PSDs). Tethering of PKC3 is mediated by a segment of CKA1 that constitutes a phosphotyrosine binding (PTB) domain. Two aromatic amino acids (Phe(175) and Phe(221)) are indispensable for creation of a PKC3-binding surface and/or stabilization of CKA1.aPKC complexes. Patterns of CKA1 gene promoter activity and CKA1/CKA1S protein localization in vivo overlap with patterns established for PKC3 expression and distribution. Transfection experiments demonstrated that CKA1/CKA1S sequesters PKC3 in intact cells. Structural information in CKA1/CKA1S enables delivery of adapters to the lateral plasma membrane surface (near tight junctions) in polarized epithelial cells. Thus, a PTB domain and PSDs collaborate in a novel fashion in CKA1/CKA1S to enable tethering and targeting of PKC3. Avid ligation of a PKC isoform is a previously unappreciated function for a PTB module.  相似文献   

7.
Protein kinase C (PKC) is a family of serine/threonine kinases involved in various signal transduction pathways. We investigated the roles of PKC in the regulation of group IIA secreted phospholipase A2 (sPLA2-IIA) expression in cytokine-stimulated rat fibroblastic 3Y1 cells. Here we show that the induction of sPLA2-IIA by proinflammatory cytokines was under the control of both classical cPKCα and atypical aPKCλ/ι pathways by using PKC inhibitors, a PKC activator, and PKC knockdowns. Treatment of 3Y1 cells with PKC selective inhibitors having broad specificity, such as chelerythrine chloride and GF109203X, blocked IL-1β/TNFα-dependent induction of sPLA2-IIA protein in a dose-dependent manner. Treatment with the PKC activator phorbol 12-myristate 13-acetate (PMA), which activates cPKC and novel nPKC isoforms, markedly attenuated the cytokine-dependent induction of sPLA2-IIA expression. In comparison, 24-h pretreatment with PMA, which down-regulates these PKC isoforms, markedly enhanced sPLA2-IIA expression. Results with short hairpin RNA (shRNA)-mediated knockdown of PKC isoforms revealed that the cytokine-induced sPLA2-IIA expression was markedly enhanced in cPKCα knockdown cells compared to those in replicate control cells. In contrast, knockdown of the aPKCλ/ι isoform reduced the cytokine-induced expression of sPLA2-IIA. These results suggest that the aPKCλ/ι pathway is required for the induction of sPLA2-IIA expression and that the cPKCα pathway acts as a negative regulator of sPLA2-IIA expression in cytokine-stimulated rat fibroblasts.  相似文献   

8.
The atypical C-type protein kinases (aPKCs) comprise the third subclass of the PKC family functionally defined by insensitivity to phorbol esters, diacylgylcerol and calcium. aPKCs have been implicated in numerous biological processes including cell proliferation and survival, cell polarity, migration and inflammation. However, only insufficient data exist with regard to aPKC isoform specificity, since both mammalian aPKCs, PKC iota/lambda and PKC zeta, exhibit a high structural homology and very similar biochemical properties. In this study, we therefore used isoform-specific riboprobes and antibodies to define the characteristic expression profile of each aPKC isoform during mouse embryogenesis. Both, PKC iota/lambda and zeta show highly specific temporal and spatial patterns of expression which may help in distinguishing physiological functions of these isoforms.  相似文献   

9.
Okochi Y  Kimura KD  Ohta A  Mori I 《The EMBO journal》2005,24(12):2127-2137
Molecular and pharmacological studies in vitro suggest that protein kinase C (PKC) family members play important roles in intracellular signal transduction. Nevertheless, the in vivo roles of PKC are poorly understood. We show here that nPKC-epsilon/eta TTX-4 in the nematode Caenorhabditis elegans is required for the regulation of signal transduction in various sensory neurons for temperature, odor, taste, and high osmolality. Interestingly, the requirement for TTX-4 differs in different sensory neurons. In AFD thermosensory neurons, gain or loss of TTX-4 function inactivates or hyperactivates the neural activity, respectively, suggesting negative regulation of temperature sensation by TTX-4. In contrast, TTX-4 positively regulates the signal sensation of ASH nociceptive neurons. Moreover, in AWA and AWC olfactory neurons, TTX-4 plays a partially redundant role with another nPKC, TPA-1, to regulate olfactory signaling. These results suggest that C. elegans nPKCs regulate different sensory signaling in various sensory neurons. Thus, C. elegans provides an ideal model to reveal genetically novel components of nPKC-mediated molecular pathways in sensory signaling.  相似文献   

10.
BACKGROUND: Generation of asymmetry in the one-cell embryo of C. elegans establishes the anterior--posterior axis (A-P), and is necessary for the proper identity of early blastomeres. Conserved PAR proteins are asymmetrically distributed and are required for the generation of this early asymmetry. The small G protein Cdc42 is a key regulator of polarity in other systems, and recently it has been shown to interact with the mammalian homolog of PAR-6. The function of Cdc42 in C. elegans had not yet been investigated, however. RESULTS: Here, we show that C. elegans cdc-42 plays an essential role in the polarity of the one-cell embryo and the proper localization of PAR proteins. Inhibition of cdc-42 using RNA interference results in embryos with a phenotype that is nearly identical to par-3, par-6, and pkc-3 mutants, and asymmetric localization of these and other PAR proteins is lost. We further show that C. elegans CDC-42 physically interacts with PAR-6 in a yeast two-hybrid system, consistent with data on the interaction of human homologs. CONCLUSIONS: Our results show that CDC-42 acts in concert with the PAR proteins to control the polarity of the C. elegans embryo, and provide evidence that the interaction of CDC-42 and the PAR-3/PAR-6/PKC-3 complex has been evolutionarily conserved as a functional unit.  相似文献   

11.
Rapid signal transduction pathways play a prominent role in mediating neuroprotective actions of estrogen in the CNS. We have previously shown that estrogen-induced neuroprotection of primary cerebrocortical neurons from beta-amyloid peptide (Abeta) toxicity depends on activation of protein kinase C (PKC). PKC activation with phorbol-12-myristate-13-acetate (PMA) also provides neuroprotection in this paradigm. Because the PKC family includes several isoforms that have opposing roles in regulating cell survival, we sought to identify which PKC isoforms contribute to neuroprotection induced by PMA and estrogen. We detected protein expression of multiple PKC isoforms in primary neuron cultures, including conventional (alpha, betaI, betaII), novel (delta, epsilon, theta) and atypical (zeta, iota/lambda) PKC. Using a panel of isoform-specific peptide inhibitors and activators, we find that novel and atypical PKC isoforms do not participate in the mechanism of either PMA or estrogen neuroprotection. In contrast, a selective peptide activator of conventional PKC isoforms provides dose-dependent neuroprotection against Abeta toxicity. In addition, peptide inhibitors of conventional, betaI, or betaII PKC isoforms significantly reduce protection afforded by PMA or 17beta-estradiol. Taken together, these data provide evidence that conventional PKC isoforms mediate phorbol ester and estrogen neuroprotection of cultured neurons challenged by Abeta toxicity.  相似文献   

12.
Liu XF  Ohno S  Miki T 《Cellular signalling》2006,18(10):1604-1615
Cell polarity regulates diverse biological events such as localization of embryonic determinants and establishment of tissue and organ architecture. Epithelial cell polarity is regulated by the polarity complex Par6/Par3/atypical protein kinase C (aPKC). We previously found that the nucleotide exchange factor ECT2 associates with this polarity complex and regulates aPKC activity, but the role of ECT2 in cell polarity is still unclear. Here we show that expression of a dominant negative (ECT2-N2) or constitutively active (ECT2-DeltaN5) form of ECT2 inhibits normal cyst formation of MDCK cells in 3-dimensional collagen gels. Central lumens were not observed in cysts formed by cells expressing either ECT2-DeltaN5 or ECT2-N2. Apical localization of ZO-1 and basolateral localization of beta-catenin were no longer observed in these cells. Interestingly, cells expressing ECT2-N2 did form normal cysts when cultured in the basement membrane matrix Matrigel instead of collagen gels. Addition of a major Matrigel component, laminin, partially rescued the normal cyst formation inhibited by ECT2-N2 in 3-dimensional collagen gels. Thus, signaling through laminin might override the defects of signaling through collagen and ECT2. Whereas ECT2-N2 inhibited the lumen formation of MDCK cysts, caspase-3, which is reportedly involved in lumen formation through apoptosis, was activated at various locations of cells in the cysts. It is likely that perturbation of ECT2 signaling inhibits the establishment of epithelial cell polarity leading to the inhibition of selected elimination of cells at the center of cysts. Thus, ECT2 appears to play a critical role in epithelial cell polarity.  相似文献   

13.
极性是多数细胞的共同特征,是细胞分化和细胞行使正常功能的基础,细胞极性的建立对于生物体的生长发育至关重要。过去十年的研究显示,进化上保守的非典型蛋白激酶C(aPKC)复合物在许多生物的多种细胞中都参与了细胞极性的建立,并且在其中扮演着相当重要的角色,这为揭示极性建立的机制提供了重要的线索。以线虫合子前-后极(anterior-posterior)的形成、哺乳动物和果蝇上皮细胞顶-底极(apical-basal)的建立以及果蝇神经母细胞不对称分裂中细胞命运决定子的分配这3个典型的极性过程为主线,综述了aPKC复合物在细胞极性建立中的作用,并探讨其中的分子机制。  相似文献   

14.
Protein kinase C (PKC) participates in a myriad of cellular processes. Protein kinase C isoforms play different roles based on their cellular expression balance and activation. The activity of classical PKC isoforms has been shown to be crucial for immune cell population homeostasis, playing a positive role in survival and proliferation. Protein kinase C inhibitors have been used for conditions where up-regulated PKC results in a pathological state. The most commonly investigated PKC inhibitors are highly effective in inhibiting PKC function but they are relatively unspecific, some of them even inhibiting other kinase families. Protein kinase C pseudosubstrates are auto-inhibitory domains which have been used to inhibit more specifically PKC in vitro but they do not freely penetrate cells. This could be resolved by using cell-permeable PKC pseudosubstrates which would more accurately modulate cellular PKC activity and PKC-related functions in intact cells. Here we show the development of a chimeric peptide inhibitor of classical PKC isoforms, consisting of a cell permeable sequence and a pseudosubstrate sequence which was able to translocate into cells, inhibiting PKC kinase activity and PKC T-cell-specific substrate phosphorylation. We also demonstrate a dramatic reduction in T-cell proliferation at high chimeric peptide concentration; this was attributed to apoptosis induction, as demonstrated by cell shrinking, phosphatidylserine exposure and DNA fragmentation. As expected, the control peptide (pseudosubstrate) did not penetrate cells, affect cell proliferation or survival. We also show that a neoplastic T-cell line which expresses higher levels of PKC is more resistant to chimeric peptide-mediated cell death than normal cells, corroborating a PKC role in apoptosis resistance. This chimeric peptide could be useful for the specific modulation of the PKC signalling pathway in pathological conditions.  相似文献   

15.
The asymmetric distribution of cellular components is an important clue for understanding cell fate decision during embryonic patterning and cell functioning after differentiation. In C. elegans embryos, PAR-3 and aPKC form a complex that colocalizes to the anterior periphery of the one-cell embryo, and are indispensable for anterior-posterior polarity that is formed prior to asymmetric cell division. In mammals, ASIP (PAR-3 homologue) and aPKCgamma form a complex and colocalize to the epithelial tight junctions, which play critical roles in epithelial cell polarity. Although the mechanism by which PAR-3/ASIP and aPKC regulate cell polarization remains to be clarified, evolutionary conservation of the PAR-3/ASIP-aPKC complex suggests their general role in cell polarity organization. Here, we show the presence of the protein complex in Xenopus laevis. In epithelial cells, XASIP and XaPKC colocalize to the cell-cell contact region. To our surprise, they also colocalize to the animal hemisphere of mature oocytes, whereas they localize uniformly in immature oocytes. Moreover, hormonal stimulation of immature oocytes results in a change in the distribution of XaPKC 2-3 hours after the completion of germinal vesicle breakdown, which requires the kinase activity of aPKC. These results suggest that meiotic maturation induces the animal-vegetal asymmetry of aPKC.  相似文献   

16.
17.
The kidney filter represents a unique assembly of podocyte epithelial cells that tightly enwrap the glomerular capillaries with their foot processes and the interposed slit diaphragm. So far, very little is known about the guidance cues and polarity signals required to regulate proper development and maintenance of the glomerular filtration barrier. We now identify Par3, Par6, and atypical protein kinase C (aPKC) polarity proteins as novel Neph1-Nephrin-associated proteins. The interaction was mediated through the PDZ domain of Par3 and conserved carboxyl terminal residues in Neph1 and Nephrin. Par3, Par6, and aPKC localized to the slit diaphragm as shown in immunofluorescence and immunoelectron microscopy. Consistent with a critical role for aPKC activity in podocytes, inhibition of glomerular aPKC activity with a pseudosubstrate inhibitor resulted in a loss of regular podocyte foot process architecture. These data provide an important link between cell recognition mediated through the Neph1-Nephrin complex and Par-dependent polarity signaling and suggest that this molecular interaction is essential for establishing the three-dimensional architecture of podocytes at the kidney filtration barrier.  相似文献   

18.
Atypical protein kinase C (aPKC) isoforms have been shown to mediate Src‐dependent signaling in response to growth factor stimulation. To determine if aPKC activity contributes to the transformed phenotype of cells expressing oncogenic Src, we have examined the activity and function of aPKCs in 3T3 cells expressing viral Src (v‐Src). aPKC activity and tyrosine phosphorylation were found to be elevated in some but not all clones of mouse fibroblasts expressing v‐Src. aPKC activity was inhibited either by addition of a membrane‐permeable pseudosubstrate, by expression of a dominant‐negative aPKC, or by RNAi‐mediated knockdown of specific aPKC isoforms. aPKC activity contributes to morphological transformation and stress fiber disruption, and is required for migration of Src‐transformed cells and for their ability to polarize at the edge of a monolayer. The λ isoform of aPKC is specifically required for invasion through extracellular matrix in Boyden chamber assays and for degradation of the extracellular matrix in in situ zymography assays. Tyrosine phosphorylation of aPKCλ is required for its ability to promote cell invasion. The defect in invasion upon aPKC inhibition appears to result from a defect in the assembly and/or function of podosomes, invasive adhesions on the ventral surface of the cell that are sites of protease secretion. aPKC was also found to localize to podosomes of v‐Src transformed cells, suggesting a direct role for aPKC in podosome assembly and/or function. We conclude that basal or elevated aPKC activity is required for the ability of Src‐transformed cells to degrade and invade the extracellular matrix. J. Cell. Physiol. 221: 171–182, 2009. © 2009 Wiley‐Liss, Inc  相似文献   

19.
Immunological homeostasis is often maintained by counteractive functions of two different cell types or two different receptors signaling through different intermediates in the same cell. One of these signaling intermediates is protein kinase C (PKC). Ten differentially regulated PKC isoforms are integral to receptor-triggered responses in different cells. So far, eight PKC isoforms are reported to be expressed in macrophages. Whether a single receptor differentially uses PKC isoforms to regulate counteractive effector functions has never been addressed. As CD40 is the only receptor characterized to trigger counteractive functions, we examined the relative role of PKC isoforms in the CD40-induced macrophage functions. We report that in BALB/c mouse macrophages, higher doses of CD40 stimulation induce optimum phosphorylation and translocation of PKCα, βI, βII, and ε whereas lower doses of CD40 stimulation activates PKCδ, ζ, and λ. Infection of macrophages with the protozoan parasite Leishmania major impairs PKCα, βI, βII, and ε isoforms but enhances PKCδ, ζ, and λ isoforms, suggesting a reciprocity among these PKC isoforms. Indeed, PKCα, βI, βII, and ε isoforms mediate CD40-induced p38MAPK phosphorylation, IL-12 expression, and Leishmania killing; PKCδ and ζ/λ mediate ERK1/2 phosphorylation, IL-10 production, and parasite growth. Treatment of the susceptible BALB/c mice with the lentivirally expressed PKCδ- or ζ-specific short hairpin RNA significantly reduces the infection and reinstates host-protective IFN-γ-dominated T cell response, defining the differential roles for PKC isoforms in immune homeostasis and novel PKC-targeted immunotherapeutic and parasite-derived immune evasion strategies.  相似文献   

20.
PKClambda/iota belongs to the third group of the PKC family, atypical PKC (aPKC), together with PKCzeta based on its sequence divergence from conventional and novel PKCs observed not only in the N-terminal regulatory domain but also in the kinase domain. Although one of the most distinct features of aPKC is its single, unrepeated cysteine-rich domain, recent studies have revealed that the N-terminal regulatory domain has additional aPKC-specific structural motifs involved in various protein-protein interactions, which are important for the regulation and the subcellular targeting of aPKC. The identification of aPKC-specific binding proteins has significantly facilitated our understanding of the activation mechanism as well as the physiological function of aPKC at the molecular level. In particular, the finding that the mammalian homologs of the Caenorhabditis elegans proteins, PAR-3 and PAR-6, bind aPKC unexpectedly opens a new avenue for exploring a thus far completely unrecognized critical function of aPKC, that is, as a component of an evolutionarily conserved cell polarity machinery. Together with the great progress in the genome project as well as in the genetic analysis of model organisms, these advances are leading us into the new era of aPKC study in which functional divergence between PKClambda/iota and zeta can be discussed in elaborately.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号