首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A plant's physiology is modified simultaneously with Oomycete pathogen penetration, starting with release and accumulation of reactive oxygen species (ROS). Localisation of superoxide, hydrogen peroxide, peroxidase and variation in their activity, and the isoenzyme profile of antioxidant enzymes peroxidase (1.11.1.7), catalase (EC 1.11.1.6), superoxide dismutase (EC 1.15.1.1) were studied in six genotypes of four Lactuca spp. (L. sativa, L. serriola, L. saligna and L. virosa) challenged with Bremia lactucae (race NL16). These factors were related to the differential expression of resistance during the course of 96h after inoculation (hai). Accumulation of hydrogen peroxide in infected cells together with enhanced activity of H(2)O(2)-scavenging enzymes in leaf extracts characterised resistant Lactuca spp. genotypes 6-12hai, and peaked at 48-96hai with expression of a hypersensitive reaction. Substantial changes of guaiacol peroxidase activity were detected only in the cytosolic enzyme; activities of the membrane-bound and the ion-bound enzymes were insignificant in the interactions of host genotypes and pathogen isolate examined. The most significant modifications of ROS metabolism were found in resistant L. virosa (NVRS 10.001 602), a genotype responding to pathogen ingress by a rapid and extensive hypersensitive reaction. Formation of the superoxide anion was not detected in either susceptible or resistant plants, and there was also no increase of superoxide dismutase activity or changes in its isozyme profile. The significance of precise balancing the intracellular level of hydrogen peroxide for variability of phenotypic expression of responses to B. lactucae infection in Lactuca spp. is discussed.  相似文献   

2.
The expression of resistance to Bremia lactucae determined by the resistance genes Dm5/8 and Dm7 in lettuce was examined; incompatibility involved the hypersensitive reaction (HR) which occurred only within penetrated cells at early and late stages of fungal development, respectively. Autofluorescence observed under UV and blue light excitation in cells undergoing the HR was associated with the accumulation of ester-linked syringaldehyde and caffeic acid on plant cell walls. Two phases of phenolic deposition were identified. The first was highly localized around penetration points and occurred during incompatible and compatible interactions. The second and major phase was only activated after the occurrence of irreversible membrane damage in the penetrated cell and was reduced by inhibitors of mRNA synthesis. Fungal structures, primary and secondary vesicles, intercellular hyphae and haustoria also became autofluorescent during incompatible interactions. Changes in the fluorescence due to preformed phenolics located in the plant cell vacuole were found just before plasma membrane damage became irreversible during the HR. In addition to localized deposition of phenolics, increases in the concentrations of the major free phenolic esters identified as dicaffeoyl tartaric and chlorogenic acids also occurred during incompatible interactions. The results suggest that membrane damage in penetrated cells occurs at different rates in resistance controlled by Dm5/8 and Dm7 and indicate an important role for irreversible membrane damage in lettuce as a key signalling event leading to widespread activation of defence responses in surrounding cells.  相似文献   

3.
Great genotypic variation in resistance against the gall midge Dasineura marginemtorquens Bremi (Diptera: Cecidomyiidae) exists within its willow host Salix viminalis L. (Salicaceae). In some resistant genotypes larvae die within 40 h after attempting to initiate galls. The present study tested the hypothesis that the hypersensitive response (HR) is involved in incompatible interactions between D. marginemtorquens and S. viminalis. By means of UV/blue light and visible light microscopy, we verified a rapidly (within 12 h after egg hatch) spreading cell death of an HR-type due to larval attack in resistant willow genotypes. Twelve h after egg hatch, the cell death had spread up to six cell layers in resistant S. viminalis genotypes whereas in susceptible genotypes only up to two cell layers were affected. In the groups of dead cells on the resistant genotypes accumulation of phenolics was observed within 24 h after egg hatch. The rapidity of the cell death induction, the early local accumulation of phenolic compounds, and the strong association of the cell death with larval mortality suggest that the formation of dead cells in resistant willow genotypes should be interpreted as a true HR.  相似文献   

4.
Li W  Zhao Y  Liu C  Yao G  Wu S  Hou C  Zhang M  Wang D 《Plant cell reports》2012,31(5):905-916
Callose is a β-l,3-glucan with diverse roles in the viral pathogenesis of plants. It is widely believed that the deposition of callose and hypersensitive reaction (HR) are critical defence responses of host plants against viral infection. However, the sequence of these two events and their resistance mechanisms are unclear. By exploiting a point inoculation approach combined with aniline blue staining, immuno-electron microscopy and external sphincters staining with tannic acid, we systematically investigated the possible roles of callose deposition during viral infection in soybean. In the incompatible combination, callose deposition at the plasmodesmata (PD) was clearly visible at the sites of inoculation but viral RNA of coat protein (CP-RNA) was not detected by RT-PCR in the leaf above the inoculated one (the upper leaf). In the compatible combination, however, callose deposition at PD was not detected at the site of infection but the viral CP-RNA was detected by RT-PCR in the upper leaf. We also found that in the incompatible combination the fluorescence due to callose formation at the inoculation point disappeared following the injection of 2-deoxy-d-glucose (DDG, an inhibitor of callose synthesis). At same time, in the incompatible combination, necrosis was observed and the viral CP-RNA was detected by RT-PCR in the upper leaf and HR characteristics were evident at the inoculation sites. These results show that, during the defensive response of soybean to viral infection, callose deposition at PD is mainly responsible for restricting the movement of the virus between cells and it occurs prior to the HR response.  相似文献   

5.
Nodulation, the organogenetic process resulting from the symbiotic interaction between Rhizobium and legumes, is under the feedback control of the plant. However, the autoregulatory mechanisms controlling root nodule formation are poorly understood. In this paper it is shown that alfalfa can react to infection by its symbiont Rhizobium meliloti by eliciting a defence mechanism similar to the hypersensitive reaction (HR) observed in incompatible plant-pathogen interactions. After the first nodule primordia have been induced, an increasing proportion of infection threads abort in a single or a few root cortical cells in which both symbionts simultaneously undergo necrosis. Autofluorescent, cytochemical and immunolocalization assays revealed that phenolic compounds and proteins associated with defence mechanisms in plants have accumulated in the necrotic cells. These results lead to the proposition that the elicitation of a HR is part of the mechanism by which the plant controls infection and, therefore, regulates nodulation.  相似文献   

6.
Sunflower broomrape (Orobanche cumana Wallr.) is a root holoparasitic angiosperm considered as one of the major constraints for sunflower production in Mediterranean areas. Breeding for resistance is regarded as the most effective, feasible, and environmentally friendly solution to control this parasite. However, the existing sources of genetic resistance are defeated by the continuous emergence of new more virulent races of the parasite. In this work, the interaction between sunflower and O. cumana has been analysed in order to gain insights into the mechanisms involved in resistance. Two sunflower genotypes were selected showing different behaviour against the new race F of O. cumana, HE-39998 (susceptible) and HE-39999 (resistant), and both compatible and incompatible interactions were compared. Pot and Petri dish bioassays revealed that only HE-39998 plants were severely affected, supporting a high number of successfully established broomrapes to mature flowering, whereas in HE-39999 root tubercles were never observed, resistance being associated with browning symptoms of both parasite and host tissues. Histological aspects of the resistance were further investigated. Suberization and protein cross-linking at the cell wall were seen in the resistant sunflower cells in contact with the parasite, preventing parasite penetration and connection to the host vascular system. In addition, fluorescence and confocal laser microscopy (CLM) observations revealed accumulation of phenolic compounds during the incompatible reaction, which is in agreement with these metabolites playing a defensive role during H. annuus-O. cumana interaction.  相似文献   

7.
Polyamine oxidase and lipoxygenase enzymes are key players for hyper sensitive reaction (HR) during incompatible interaction of host-pathogen. Thus, the role of lipoxygenase and polyamines was studied in the wilt pathogen infected and non infected tissues of resistant and susceptible genotypes of castor at 0 days after infection (DAI), 5 DAI and 10 DAI (30 days after sowing). The lipoxygenase (LOX) and polyamine oxidase (PAO) activities were higher in the incompatible interaction at all the stages of analysis. The constitutive level of malondyaldehyde (MDA) content, a product of lipid peroxidation was higher in susceptible genotypes (VP-1 and VI-9), while induced level was higher in resistant genotypes (48–1 and SKP-84) at 5 DAI and 10 DAI . Polyamine profiling using HPTLC showed higher spermidine and spermine content in resistant genotypes at 10 DAI. Furthermore, spermidine was detected only in the roots of resistant genotypes at 10 DAI. These results suggest the role of high titers of polyamines, LOX and PAO in disease resistance possibly through HR induction.  相似文献   

8.
9.
Physiological races of powdery mildew (Podosphaera xanthii) cause different symptoms in eight melon lines. Infection by races 1, 2, and 5 was examined in different melon lines. After a compatible reaction, conidia germination, haustorium initiation from the germ tube, germ tube branching, and sporulation occurred within 12, 24, 48, and 120 h, respectively, and the conidia matured within 240 h. In contrast, type i and ii inhibition were identified through incompatible reactions. The germ tube and haustorium were initiated from conidia, but no germ tube branching occurred in the lines with type i resistance within 48-240 h. In type ii resistance, germ tube branching was observed within 120 h, but no sporulation was observed within 240 h. The number of fluorescing epidermal cells was higher within 24 h in type i, and within 48-120 h in type ii resistance lines than in susceptible lines. Callose accumulation around the haustorium was detected in type ii resistance lines within 48-120 h. This suggests that the rapid hypersensitive response (HR) within 24 h has an important role in the type i response, while HR and callose accumulation in the type ii response occur slowly between 48 and 120 h. Of the resistant lines, PMR 45 and WMR 29 showed a type i incompatible response; the PI 414723 response was entirely type ii; and PMR 5, PI 124112, and MR-1 showed different responses depending on the race. Therefore, the two types of incompatible responses were intermixed in the same germplasm.  相似文献   

10.
Probenazole (PBZ) is the active ingredient of Oryzemate, an agrochemical which is used for the protection of rice plants from Magnaporthe grisea (blast fungus). While PBZ was reported to function upstream of salicylic acid (SA) in Arabidopsis, little is known about the mechanism of PBZ-induced resistance in rice. The role of SA in blast fungus resistance is also unclear. The recommended application period for Oryzemate is just before the Japanese rainy season, at which time rice plants in the field have reached the 8-leaf stage with adult traits. Thus, the involvement of SA in PBZ-induced resistance was studied in compatible and incompatible blast fungus-rice interactions at two developmentally different leaf morphology stages. Pre-treatment of inoculated fourth leaves of young wild-type rice plants at the 4-leaf stage with PBZ did not influence the development of whitish expanding lesions (ELs) in the susceptible interaction without the accumulation of SA and pathogenesis-related (PR) proteins. However, PBZ pre-treatment increased accumulation of SA and PR proteins in the eighth leaves of adult plants at the 8-leaf stage, resulting in the formation of hypersensitive reaction (HR) lesions (HRLs). Exogenous SA induced resistance in adult but not young plants. SA concentrations in blast fungus-inoculated young leaves were essentially the same in compatible and incompatible interactions, suggesting that PBZ-induced resistance in rice is age-dependently regulated via SA accumulation.  相似文献   

11.
Leaf curl disease caused by Cotton Leaf Curl Burewala virus (CLCuBuV) has been recognized as serious threat to cotton in Indian subcontinent. However, information about cotton–CLCuBuV interaction is still limited. In this study, the level of phenolic compounds, total soluble proteins, and malondialdehyde (MDA) and the activities of phenylalanine ammonia-lyase (PAL), peroxidase (POX), catalase (CAT), proteases, superoxide dismutase (SOD), and polyphenol oxidase (PPO) were studied in leaves of two susceptible (CIM-496 & NIAB-111) and two resistant (Ravi and Co Tiep Khac) cotton genotypes. Disease symptoms were mild in the resistant genotypes but were severe in highly susceptible genotypes. The results showed that phenolic compounds, proteins, PAL, POX, CAT, proteases, SOD, PPO, and MDA play an active role in disease resistance against CLCuBuV. The amount of total phenols, proteases, MDA, and PPO was significantly higher in leaves of CLCuBuV-inoculated plants of both resistant genotypes as in non-inoculated plants, and decreased in CLCuBuV-inoculated plants of both susceptible genotypes over their healthy plants. POX, protein content, SOD, and PAL activities showed lower values in resistant genotypes, while they decreased significantly in susceptible genotypes as compared to the noninoculated plants except PAL, which showed non-significant decrease. CAT was found to be increased in both susceptible and resistant genotypes with maximum percent increase in resistant genotype Ravi, as compared to non-inoculated plants. The results showed significantly higher concentrations of total phenols and higher activity of protease, MDA, SOD, and PPO in resistant genotype Ravi after infection with CLCuBuV, suggesting that there is a correlation between constitutive induced levels of these enzymes and plant resistance that could be considered as biochemical markers for studying plant-virus compatible and incompatible interactions.  相似文献   

12.
13.
Root holoparasitic angiosperms, like Orobanche spp, completely lack chlorophyll and totally depend on their host for their supply of nutrients. O. crenata is a severe constraint to the cultivation of legumes and breeding for resistance remains the most economical, feasible, and environmentally friendly method of control. Due to the lack of resistance in commercial pea cultivars, the use of wild relatives for breeding is necessary, and an understanding of the mechanisms underlying host resistance is needed in order to improve screening for resistance in breeding programmes. Compatible and incompatible interactions between O. crenata and pea have been studied using cytochemical procedures. The parasite was stopped in the host cortex before reaching the central cylinder, and accumulation of H2O2, peroxidases, and callose were detected in neighbouring cells. Protein cross-linking in the host cell walls appears as the mechanism of defence, halting penetration of the parasite. In situ hybridization studies have also shown that a peroxidase and a beta-glucanase are differently expressed in cells of the resistant host (Pf651) near the penetration point. The role of these proteins in the resistance to O. crenata is discussed.  相似文献   

14.
15.
The active oxygen species hydrogen peroxide (H2O2) was detected cytochemically by its reaction with cerium chloride to produce electron-dense deposits of cerium perhydroxides. In uninoculated lettuce leaves, H2O2 was typically present within the secondary thickened walls of xylem vessels. Inoculation with wild-type cells of Pseudomonas syringae pv phaseolicola caused a rapid hypersensitive reaction (HR) during which highly localized accumulation of H2O2 was found in plant cell walls adjacent to attached bacteria. Quantitative analysis indicated a prolonged burst of H2O2 occurring between 5 to 8 hr after inoculation in cells undergoing the HR during this example of non-host resistance. Cell wall alterations and papilla deposition, which occurred in response to both the wild-type strain and a nonpathogenic hrpD mutant, were not associated with intense staining for H2O2, unless the responding cell was undergoing the HR. Catalase treatment to decompose H2O2 almost entirely eliminated staining, but 3-amino-1,2,4-triazole (catalase inhibitor) did not affect the pattern of distribution of H2O2 detected. H2O2 production was reduced more by the inhibition of plant peroxidases (with potassium cyanide and sodium azide) than by inhibition of neutrophil-like NADPH oxidase (with diphenylene iodonium chloride). Results suggest that CeCl3 reacts with excess H2O2 that is not rapidly metabolized during cross-linking reactions occurring in cell walls; such an excess of H2O2 in the early stages of the plant-bacterium interaction was only produced during the HR. The highly localized accumulation of H2O2 is consistent with its direct role as an antimicrobial agent and as the cause of localized membrane damage at sites of bacterial attachment.  相似文献   

16.
The time courses of sesquiterpenoid phytoalexin accumulation were examined in compatible and incompatible interactions of leaves and tubers from five different R genotypes of potato (Solanum tuberosum) with corresponding pathotypes of Phytophthora infestans, as well as in non-host interactions of all five potato cultivars with Phytophthora megasperma f. sp. glycinea and in elicitor-treated tubers from five, and cell suspension cultures from two, of the cultivars. In tubers, rishitin and several structurally related sesquiterpene derivatives accumulated rapidly in non-host incompatible interactions, less rapidly in host incompatible interactions, and more slowly in compatible interactions. Treatment of tubers or cell cultures with fungal culture filtrate or arachidonic acid elicited in most cases a transient accumulation of the sesquiterpenoid phytoalexins. None of these compounds was detectable under any of the applied conditions either in infected or in elicitortreated leaves. Sesquiterpenoid phytoalexins might therefore be helpful, but appear not to be essential, in disease resistance of potato.Abbreviations CF concentrated culture filtrate of Pi - cv. cultivar - Pi Phytophthora infestans (numbering indicates pathotypes corresponding to R genes in potato) - Pmg Phytophthora megasperma f. sp. glycinea  相似文献   

17.
Interactions between phenolic compounds in black currant leaves and foliar diseases may be important in breeding for resistant genotypes with a nutritional high profile for human applications. For increased understanding of such interactions, we evaluated the presence of major fungal diseases by visual inspection, and content of phenolic compounds by HPLC in leaves of five segregating black currant breeding populations. Eight individual flavonols (e.g. quercetin-3-O-glucoside, quercetin-3-O-rutinoside and kaempferol-malonylgucoside), three flavan-3-ols (epigallocatechin, catechin and epicatechin) and two chlorogenic acids (neochlorogenic acid and chlorogenic acid) were significantly correlated to the leaf diseases. Rib-0701 was the population possessing the highest content for several of the compounds, while genotype differences existed for content of various phenolic compounds and resistance to the diseases. The high variability of content of phenolic compounds opens up for opportunities to breed resistant genotypes with improved health properties of the leaves for functional food products.  相似文献   

18.
Main conclusion

Environmentally induced variation and the genotypic differences in flavonoid and phenolic content in lettuce can be reliably detected using the appropriate parameters derived from the records of rapid non-invasive fluorescence technique.

The chlorophyll fluorescence excitation ratio method was designed as a rapid and non-invasive tool to estimate the content of UV-absorbing phenolic compounds in plants. Using this technique, we have assessed the dynamics of accumulation of flavonoids related to developmental changes and environmental effects. Moreover, we have tested appropriateness of the method to identify the genotypic differences and fluctuations in total phenolics and flavonoid content in lettuce. Six green and two red genotypes of lettuce (Lactuca sativa L.) grown in pots were exposed to two different environments for 50 days: direct sunlight (UV-exposed) and greenhouse conditions (low UV). The indices based on the measurements of chlorophyll fluorescence after red, green and UV excitation indicated increase of the content of UV-absorbing compounds and anthocyanins in the epidermis of lettuce leaves. In similar, the biochemical analyses performed at the end of the experiment confirmed significantly higher total phenolic and flavonoid content in lettuce plants exposed to direct sun compared to greenhouse conditions and in red compared to green genotypes. As the correlation between the standard fluorescence indices and the biochemical records was negatively influenced by the presence of red genotypes, we proposed the use of a new parameter named Modified Flavonoid Index (MFI) taking into an account both absorbance changes due to flavonol and anthocyanin content, for which the correlation with flavonoid and phenolic content was relatively good. Thus, our results confirmed that the fluorescence excitation ratio method is useful for identifying the major differences in phenolic and flavonoid content in lettuce plants and it can be used for high-throughput pre-screening and phenotyping of leafy vegetables in research and breeding applications towards improvement of vegetable health effects.

  相似文献   

19.
20.
Autofluorescence of downy mildew resistant and susceptible cells of pearl millet seedlings undergoing hypersensitive reaction (HR) upon Sclerospora graminicola-inoculation and arachidonic acid (AA)-treatment was studied. Two-day-old seedlings of a highly resistant (IP 18296) and a highly susceptible (23D2B) genotype of pearl millet were either inoculated with zoospore suspension of S. graminicola or treated with AA for 24 h. The coleoptiles with hypersensitive necrotic spots were processed by the standard procedure, and the tissues were subjected to fluorescence microscopy. A differential accumulation of autofluor-escent compounds in resistant and susceptible pearl millet genotypes was observed with most accumulation occurring in resistant cells treated with AA. The variation in the degree of fluorescence and the spatial accumulation of autofluorescent compounds among the two inoculated/treated genotypes is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号