首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Due to a long-term transgression since the Early Cambrian, an extensive shallow-water carbonate platform was developed in the entire Tarim Basin (NW China). During the deposition of the Yingshan Formation (Early-Middle Ordovician), a carbonate ramp system was formed in the intrashelf basin in the Bachu-Keping area of the western basin. Four well-exposed outcrop sections were selected to investigate their depositional facies, cycles, and sequences, as well as the depositional evolution. Detailed facies analyses permit the recognition of three depositional facies associations, including peritidal, semi-restricted subtidal, and open-marine subtidal facies, and eleven types of lithofacies. These are vertically arranged into meter-scale, shallowing-upward peritidal, semi-restricted subtidal, and open-marine subtidal cycles, in the span of Milankovitch frequency bands, suggesting a dominant control of Earth’s orbital forcing on the cyclic sedimentation on the platform. On the basis of vertical facies (or lithofacies) and cycle stacking patterns, as well as accommodation changes illustrated graphically by Fischer plots at all studied sections, six third-order depositional sequences are recognized and consist of lower transgressive and upper regressive parts. In shallow depositional settings, the transgressive packages are dominated by thicker-than-average, shallow subtidal cycles, whereas the regressive parts are mainly represented by thinner-than-average, relatively shallow subtidal to peritidal cycles. In relatively deep environments, however, the transgressive and regressive successions display the opposite trends of cycle stacking patterns, i.e., thinner-than-average subtidal cycles of transgressive packages. Sequence boundaries are mainly characterized by laterally traceable, transitional zones without apparent subaerial exposure features. Good correlation of the long-term changes in accommodation space inferred from vertical facies and cycle stacking patterns with sea-level fluctuations elsewhere around the world suggests an overriding eustatic control on cycle origination, platform building-up and evolution during the Early-Middle Ordovician, although with localized influences of syndepositional faulting and depositional settings.  相似文献   

2.
Summary This article deals with the discussion of the role of the syndepositional cementation for the growth of the Middle Triassic pre-volcanic carbonate platforms of the Dolomites (Southern Alps, Northern Italy). The study is concentrated on the Marmolada Buildup, which escaped the facies destroying dolomitization which affected many surrounding platforms. The investigations took place within an almost isochronous uppermost Anisian palcogeographic transect, ranging from the platform-top to the margin and the upper slope. Methods used include geological mapping, sedimentological and paleontological studies, evaluation of the microfacies, as well as SEM and EDS epifluorescence analyses. The well bedded platform-top succession consists of intra-bioclast calcarenites and calcirudites, interbedded with subordinate boundstones, and organized in shallowing upward, meter scale depositional cycles, sometimes capped by subaerial surfaces. The platform margin belt is rich in boundstones and lacks a primary framework formed by organisms; metazoan skeletons form less then 5% of the rock volume. The outer margin and the uppermost slope are characterized by decimeter-scale boundstone blocks, coated and linked to each other by huge amounts of radiaxial fibrous calcite cements, arranged in concentric crusts. These cements (“evinospongiac”) represent the main component of the margin and upper slope facies. Epifluorescence analyses suggest the existence of abundant organic residual matter associated not only with the bioclasts and peloids, but also with the syndepositional cements. Organic matter likely played a significant role in carbonate cementation and was a key factor for the early lithification of the platform as well as for the sediment production. Minor element microanalyses reveal an uniform Mg content in different calcite types (2–4 Mole % MgCO3), independently from the primary nature of the components. Late diagenetic sparry calcites exhibit similar Mg values but no iron. These data point to a homogenization of minor element distribution, probably associated with a slow but long-lasting semi-closed fluid circulation, possibly related with the Neogene uplifting of the Dolomite Mountains.  相似文献   

3.
Luigi Spalluto 《Facies》2012,58(1):17-36
The “mid”-Cretaceous carbonate succession of the Apulia Carbonate Platform cropping out in northern Murge area (Apulia, southern Italy) is composed of shallow-water carbonate rocks and is over 400 m in thickness. This paper focuses on the lithofacies analysis of this carbonate succession, its paleoenvironmental interpretation, and its sequence-chronostratigraphic architecture. Lithofacies analysis permitted to identify deposits which can be grouped into the following three facies belts: (1) terrestrial facies belt formed by: intraclast-supported paleosoils; solution-collapse breccias; (2) restricted facies belt made up of lithofacies deposited in protected peritidal environments; (3) normal-marine facies belt made up of lithofacies formed in moderate- to high-energy subtidal environments. The detailed study both in outcrops and in thin-sections revealed that, at the bed scale, lithofacies are cyclically arranged and form shallowing-upward small-scale depositional sequences comparable to parasequences and/or simple sequences. The following three small-scale sequence types have been distinguished: (1) subtidal sequences mostly made up of lithofacies formed in the normal-marine open subtidal domain; (2) peritidal sequences made up of lithofacies formed in the restricted peritidal domain; (3) peritidal sequences showing a cap formed by paleosoils. Small-scale sequences are not randomly arranged in the compiled succession but form discrete packages, or sets, that alternate in the sedimentary record. The repetition of such small-scale sequence packages in the succession has been the key to recognize large-scale sequences comparable to third-order depositional sequences. Although sedimentological data are often fragmentary due to late dolomitization, four large-scale sequences have been distinguished. The data support a generalized landward-backstepping of facies belts during transgression, which implies a gradual gain of accommodation culminating with the deposition of a package of small-scale sequences formed by normal-marine subtidal deposits. These mark periods of maximum accommodation space and form the maximum-flooding zones of large-scale sequences. A gradual seaward progradation of facies belts is recorded during highstand conditions, which implies a gradual loss of accommodation culminating with the deposition of a package of peritidal small-scale sequences capped by paleosoils or by solution-collapse breccias. The occurrence of terrestrial deposits marks periods of minimum accommodation on the platform and determines the sequence boundary of large-scale sequences. The large-scale sequences identified in this study fit with the main transgressive/regressive cycles published in the sequence-chronostratigraphic chart of European basins. As a consequence, it is interpreted that changes of the sea level recorded at the scale of European basins played an important role in determining the sequence-stratigraphic architecture of the studied succession. In spite of this, the occurrence of solution-collapse breccias, which implies a significant gap in carbonate sedimentation in between Early and Middle Cenomanian times, may also have an alternative interpretation. In particular, this deposit may represent the local fingerprint of the well-known tectonic phase which, during Late Albian-Early/Middle Cenomanian times, determined the subaerial exposure of large parts of Periadriatic carbonate platforms producing a marked regional unconformity.  相似文献   

4.
The Early Cretaceous Fort Terrett Formation of Mason County, central Texas, is a succession of subtidal to peritidal mud-dominated facies with minor intervals of bioclastic packstone–grainstone, rudist floatstone, and interbedded chert nodules. The strata conformably overlie the Hensel Formation, which was deposited unconformably on Precambrian basement. The Hensel Formation also contains a significant percentage of dolomite, precipitated within a fine-grained clayey matrix. The Hensel and Fort Terrett Formations were deposited during a transgressive episode, which provided the conditions for the extensive shallow-water Comanche carbonate platform. Siliciclastic and carbonate sediments were deposited along the coastal margin in subtidal, intertidal to supratidal areas. Previous dolomitization models have suggested that high permeability layers are required for dolomitizing brines to flow through a carbonate succession. Although, interparticle porosity in muddy tidal-flat successions can be significant, it has a limited flow capacity. However, interconnected fenestral porosity can allow sufficient fluid flow to move dolomitizing fluids more efficiently through the succession. Thus, it is hypothesized that interconnected fenestral porosity could have had a significant impact on permeability within this muddy succession and provided the pathways and conduits for Mg-rich brines. Four types of dolomite are recognized in the Fort Terrett succession. Three of these dolomite types formed largely by replacement and they occur throughout the succession. Features such as crystal size, crystal face geometry and zonation reflect the progressive development and recrystallization of the dolomite types. Only type 4 dolomite formed as a cement in void spaces during a late diagenetic stage. The direction of the dolomitizing fluid movement is difficult to determine, but it was likely downward in this case, controlled by a density-head driving-mechanism generated by dense hypersaline fluids from an evaporating lagoon.  相似文献   

5.
Summary The Middle Ordovician Duwibong Formation (about 100 m thick), Korea, comprises various lithotypes deposited across a carbonate ramp. Their stacking patterns constitute several kinds of meter-scale, shallowing-upward carbonate cycles. Lithofacies associations are grouped into four depositional facies: deep- to mid-ramp, shoal-complex, lagoonal, and tidal-flat facies. These facies are composed of distinctive depositional cycles: deep subtidal, shallow subtidal, restricted marine, and peritidal cycles, respectively. The subtidal cycles are capped by subtidal lithofacies and indicate incomplete shallowing to the peritidal zone. The restricted marine and peritidal cycles are capped by tidal flat lithofacies and show evidence of subaerial exposure. These cycles were formed by higher frequency sea-level fluctuations with durations of 120 ky (fifth order), which were superimposed on the longer term sea-level events, and by sediment redistribution by storm-induced currents and waves. The stratigraphic succession of the Duwibong Formation represents a general regressive trend. The vertical facies change records the transition from a deep- to mid-ramp to shoal, to lagoon, into a peritidal zone. The depositional system of the Duwibong Formation was influenced by frequent storms, especially on the deep ramp to mid-ramp seaward of ooid shoals. The storm deposits comprise about 20% of the Duwibong sequence.  相似文献   

6.
Varied west-transported and far-traveled Jurassic mélanges in southwestern Serbia represent a key to understand the geodynamic history and to solve paleogeographic questions and reconstructions in the Triassic–Jurassic passive and active margin arrangement of the Inner Dinarides. Of special interest are the carbonate-clastic radiolaritic mélange areas in the Zlatar Mountain below the Dinaridic Ophiolite nappe. The present study reports from a Middle Jurassic sedimentary mélange in the area of Vodena Poljana. Carbonate components and blocks of the mass-flow deposits consist exclusively of a reworked Middle/Late Anisian to Early Jurassic distal shelf succession. Ophiolite components from the Dinaridic Ophiolite nappe stack are missing in the spectrum. The underlying series of the Zlatar Mélange belong to Early/Middle Anisian shallow-water carbonates and to Late Anisian to Middle Jurassic deep-water sedimentary rocks of the Hallstatt facies zone. South of Vodena Poljana in the overlying ophiolitic mélange occur Late Triassic radiolaritic components from the sedimentary cover of the Late Triassic ocean floor, beside ophiolite clasts and limestone components from the continental slope. A comparison with preserved Hallstatt Limestone successions and Jurassic mélange complexes from the Eastern Alps, Western Carpathians, and Albanides strengthen the interpretation of a provenance of the Zlatar mélange from the distal passive margin facing the Neotethys Ocean to the east. An autochthonous Dinaridic Ocean west of the Drina-Ivanjica Unit cannot be confirmed.  相似文献   

7.
Facies associations of the Rhaetian Fatra Formation from the Veká Fatra Mts. (West Carpathians) were deposited in a storm-dominated, shallow, intra-platform basin with dominant carbonate deposition and variable onshore peritidal and subtidal deposits, with 21 microfacies types supported by a cluster analysis. The deposits are formed by bivalves, gastropods, brachiopods, echinoderms, corals, foraminifers and red algae, ooids, intraclasts and peloids. A typical feature is the considerable variation in horizontal direction. The relative abundance and state of preservation of components as well as the fabric and geometric criteria of deposits can be correlated with depth/water energy-related environmental gradients. Four facies associations corresponding to four types of depositional settings were distinguished: a) peritidal, b) shoreface, above fair-weather wave base (FWWB), c) shallow subtidal, above normal storm wave base and d) above maximum storm wave base. The depositional environment can be characterized as a mosaic of low-relief peritidal flats and islands, shoreface banks and bars, and shallow subtidal depressions. The distribution and preservation of components were mainly controlled by the position of base level (FWWB), storm activity and differences in carbonate production between settings. Poorly or moderately diverse level-bottom macrobenthic assemblages are dominated by molluscs and brachiopods. The main site of patch-reef/biostrome carbonate production was located below the fair-weather wave base. Patch-reef/biostrome assemblages are poorly diverse and dominated by the branched scleractinian coral Retiophyllia, forming locally dm-scale autochthonous aggregations or more commonly parautochthonous assemblages with evidence of storm-reworking and substantial bioerosion by microborings and boring bivalves.Facies types and assemblages are comparable in some aspects to those known from the Upper Triassic of the Eastern and Southern Alps (Hochalm member of the Kössen Formation or Calcare di Zu Formation), pointing to similar intra-platform depositional conditions. The absence of large-scale patch-reefs and poor diversity of level-bottom and patch-reef/biostrome assemblages with abundance of eurytopic taxa indicate high-stress/unstable ecological conditions and more restricted position of the Fatric intra-platform setting from the open ocean than the intra-platform habitats in the Eastern or Southern Alps.  相似文献   

8.
An uppermost Triassic–lowermost Jurassic carbonate platform succession, which is 430 m thick, in northwestern Sicily is described with the aim to provide new data on the sedimentological and biological variations across the Triassic–Jurassic boundary in peritidal environments. The studied succession belonged to the rimmed carbonate shelf that developed during the Late Triassic along the margins of the Ionian Tethys. The peritidal sediments consist of meter-scale shallowing-upward cycles formed by subtidal, intertidal, and supratidal facies. Three main informal units are differentiated along the section on the basis of the variations recorded by the subtidal facies. The lower and middle units are attributed to the Rhaetian, on the basis of the common presence of the foraminifer Triasina hantkeni, associated with several benthic foraminifers, such as Aulotortus sinuosus and Auloconus permodiscoides. Megalodontids are particularly abundant and large in the lower unit, whereas they become rare in the middle unit and disappear in the upper unit. The last occurrence of T. hantkeni, along with the disappearance of the benthic foraminifer fauna, and the bloom of the calcareous alga Thaumatoporella parvovesiculifera is assumed as a proxy of the Rhaetian–Hettangian boundary. Recovery biota during the early Jurassic occurs about 20 m upward of the boundary zone, marked by the appearance of benthic foraminifers, such as Siphovalvulina sp. The observed biostratigraphic signature in the studied section is easily comparable to similar Tethyan sections already described from Italy, Greece, and Turkey; thus, it is believed that the faunistic turnover does not reflect local facies variations, in response to changes in the accommodation space of the platform, but regional changes in a more wide area of ocean Tethys.  相似文献   

9.
This paper re-examines unsolved problems concerning the relationships between skeletal benthic communities, the skeletal carbonate sediments they produce and how these are preserved in the subsurface. Recent work based on shelf-wide datasets of modern shallow-marine carbonate sediments of South Florida suggest that the boundaries between facies occur randomly and that facies occurrence bears little relation to water depth. This is at variance with earlier work from the region that indicated facies occurrence related to different environments and which helped establish the basis for palaeoenvironmental analysis of ancient limestones.A windward-facing depositional margin of a carbonate mound in the back-reef area of the Florida Keys is used as a small-scale, case study to examine whether surface peritidal facies occur in an ordered or random fashion and whether they are depth related. Lateral facies transition analysis along transects from the shoreline to the shallow subtidal indicates that peritidal facies occur in a very well-ordered (i.e. non-random) arrangement of zones and patches. Surface facies are generally well-preserved and recognisable in the shallow subsurface and in cores through the Holocene carbonates and shoreline mangrove peats. Analysis of upward facies transitions in cores also indicates common facies trends reflecting the evolution of the sediment mound in response to rising Holocene sea level. However, even though the modern facies occur in an ordered and depth-related pattern, subsurface facies do not show a simple relation to the known sea-level curve in the area. Rather, they relate to a complex of different rates of sea-level rise, sea-floor topography, carbonate production rates, wave/storm energy input, and bioturbation.  相似文献   

10.
Platform carbonate sediments of Liassic age cropping out in the area of the Pigadi-Fokianos Gulf (SE of Leonidion, Peloponnesus) have been investigated in order to determine their depositional environment. Facies analysis allowed the recognition of several microfacies types and their cyclic stacking pattern. The carbonates were deposited in a restricted inner platform environment (lagoon-peritidal domain) and are arranged into small-scale shallowing-upward cycles. Palaeosol horizons containing typical pedogenic features are developed on the top of the peritidal facies or are directly superimposed on subtidal deposits, forming diagenetic caps. This implies repeated sea-level fluctuations and periodic emersion episodes. The presence of orbitally forced cyclicity though is mostly probable, cannot be clearly documented by the available data. The studied carbonates are comparable with other coeval analogous peritidal cycles of the same age along the southern margin of the Tethys.  相似文献   

11.
The Jesmond succession of the Cache Creek Terrane in southern British Columbia records late Early Triassic peritidal carbonate sedimentation on a mudflat of a buildup resting upon a Panthalassan seamount. Conodont and foraminiferal biostratigraphy dates the succession as the uppermost Smithian to mid-Spathian. The study section (ca. 91 m thick) is dominated by fine-grained carbonates and organized into at least 12 shallowing-upwards cycles, each consisting of shallow subtidal facies and overlying intertidal facies. The former includes peloidal and skeletal limestones, flat-pebble conglomerates, stromatolitic bindstones, and oolitic grainstone, whereas the latter consists mainly of dolomicrite. The scarcity of skeletal debris, prevalence of microbialite, and intermittent intercalation of flat-pebble conglomerate facies imply environmentally harsh conditions in the mudflat. The study section also records a rapid sea-level fall near the Smithian-Spathian boundary followed by a gradual sea-level rise in the early to mid-Spathian.  相似文献   

12.
A litho-biostratigraphic analysis has been carried out in the Gador-Turon unit of the Sierra de Gador (Alpujarride complex, Betic Cordillera, SE Spain). The Triassic succession of this unit is composed of a lower meta-detrital formation overlain by an upper meta-carbonate formation divided in six members. In the latter, a Ladinian–Carnian-rich fossil association has been found (foraminifers, algae, bivalves, microproblematica, trace fossils). Facies analysis has enabled the recognition of 22 facies of platform origin. This succession accumulated as a subsiding margin-type carbonate platform with homoclinal ramp geometry (Anisian?–Ladinian) evolving into a fault-block-type platform with a steeper-margined geometry (Ladinian–Carnian). Slope deposits of this latter platform show a prism-like geometry with progradational patterns and include syn-sedimentary structures associated with normal faults capped by younger beds. The results of the present research indicate that the architecture of the platform studied has been controlled mainly by climate and oceanic factors during the development of the ramp, and by syn-sedimentary extensional tectonics during the development of the steeper-margined platform. The Ladinian–Carnian tectonic activity was probably also responsible for the siliciclastic input and the shift to a mixed terrigenous-carbonate platform.  相似文献   

13.
In this paper, the sedimentology and the stratigraphic architecture of the Devonian Santa Lucia Formation in the Cantabrian Mountains of NW-Spain are described. The Santa Lucia Formation consists of 11 different facies that can be attributed to peritidal/lagoonal, intertidal and subtidal facies associations. These facies associations are arranged in small-scale sedimentary cycles. Three different settings of small-scale sedimentary cycles are recognized: intertidal/supratidal, shallow subtidal/intertidal and subtidal cycles. These cycles reflect spatial differences in the reaction of the depositional system to small-scale relative sea-level changes. Small-scale stratigraphic cycles are stacked into seven medium-scale cycles that in turn are integral parts of three larger-scale cycles. Most of the Santa Lucia Formation (sequences 2–6) forms one major large-scale cycle, whereas sequences 1 and 7 are part of an underlying and an overlying cycle, respectively. Eustatic sea-level changes exerted major control on the formation of these large-scale sequences, whereas the medium-scale cycles seem to be co-controlled by regional tectonism and eustasy. Small-scale cycles seem to be the product of high frequency, eustatic sea-level changes. During the deposition of the Santa Lucia Formation, the morphology of the carbonate platform changed from a gently south-dipping ramp to a rimmed shelf and back to a gently dipping ramp.  相似文献   

14.
Summary Sedimentological, paleontological and sequence analyses of Cenomanian limestones in Sicily reveal the facies architecture and dynamics of a Mid Cretaceous rudistdominated platform margin from Western Tethys. The studied deposits outcrop near Palermo, as part of a large structural unit of the Sicilian Maghrebids. They belong to the Panormide carbonate platform, a Mesocenozoic paleogeographic domain of the African margin. The lateral continuity of the beds along three nearly parallel E-W outcrop sections allowed the recording of cm/dm thick lithological and faunal variations. Nine main lithofacies associations have been recognised along about 200 m of subvertical strata. Their vertical and lateral organisation points to a transition from highenergy shelf-margin rudist patches and shoals to more internal lagoonal-tidal environments over a short distance. The lithofacies evolution and stacking pattern along the three sections made it possible to define elementary cycles, composite cycles and larger-scale sequences with a dominant shallowing-upward trend. Their hierarchical organisation implies that sea-level fluctuations were an important factor in their formation. The cycles are characterised by a great variation in facies as a result of transgressive-regressive events in different sectors of the inferred Cenomanian shelf. Subtidal cycles typical of the shelf margin (4–10 m-thick) are particularly well identifiable. They are made of large Caprinidae and Sauvagesiac rudstone-to-floatstone (about 2/3 of the total thickness), capped by rudist-conglomerates, often organised into 3–5 fining-upward amalgamated beds and showing, in places, effects of surface-related diagenesis. In more internal shelf areas the cycles consist of Caprinidae-Radiolitidae floastone grading up into amalgamated beds of angular bioclastic rudstone/grainstone. Alternations of foraminifer/ostracod mudstone/wackestone and bioclastic grainstone/fine-rudstone, capped by loferites and/or by other emersion-related overprintings, characterise the cycles formed in the peritidal zones. these cycles are stacked into three incomplete depositional sequences. The sequence boundaries have been identified by the abrupt interposition of peritidal cycles in subtidal rudist-rich cycles, with evidence of brief subaerial exposure.  相似文献   

15.
Summary During the Middle and early Late Triassic carbonate ramps and rimmed platforms developed at the northwestern margin of the Tethys ocean. In the Northern Calcareous Alps, Anisian stacked homoclinal ramps evolved through a transitional stage with distally steepened ramps to huge rimmed platforms of Late Ladinian to Early Carnian age. Middle Triassic to early Late Triassic facies and biota of basin, slope and platform depositional systems are described. Special emphasis is given to foraminifers, sponges, microproblematic organisms and algae. The Ladinian to early Carnian reef associations are characterized by the abundance of segmented sponges, microproblematica, biogenic crusts and synsedimentary cements. Among the foraminifers, recifal forms likeHydrania dulloi andCucurbita infundibuliformis (Carnian in age) are reported from the Northern Calcareous Alps for the first time. Some sphinctozoid sponges likeParavesicocaulis concentricus were known until now only from the Hungarian and Russian Triassic.  相似文献   

16.
We present a comprehensive facies scheme for west-central Jordan platform deposits of upper Albian to Turonian age, discuss Cenomanian and Turonian carbonate cycles, and reconstruct the paleogeographic evolution of the platform. Comparisons with adjacent shelf areas (Israel, Sinai) emphasize local characteristics as well as the regional platform development. Platform deposits are subdivided into fifteen microfacies types that define eight environments of deposition of three facies belts. Main facies differences between Cenomanian and Turonian platforms are: rudist-bearing packstones that characterise the higher-energy shallow subtidal (transition zone) during the Cenomanian, and fossiliferous (commonly with diverse foraminifer assemblages) wackestones and packstones of an open shallow subtidal environment. On Turonian platforms high-energy environments are predominantly characterised by oolithic or bioclastic grainstones and packstones, whereas peritidal facies are indicated by dolomitic wackestones with thin, wavy (cryptmicrobial) lamination. Rhythmic facies changes define peritidal or subtidal shallowing-up carbonate cycles in several Cenomanian and Turonian platform intervals. Cyclicities are also analysed on the base of accommodation plots (Fischer Plots). High-frequency accommodation changes within lower Cenomanian cyclic bedded limestones of the central and southern area exhibit two major cyclic sets (set I and II) each containing regionally comparable peaks. Accommodation patterns within cyclic set II coincide with the sequence boundary zone of CeJo1. The lateral and vertical facies distributions on the inner shelf allow the reconstruction of paleogeographic conditions during five time intervals (Interval A to E). An increased subsidence is assumed for the central study area, locally (area of Wadi Al Karak) persisting from middle Cenomanian to middle Turonian times. In contrast, inversion and the development of a paleo-high have been postulated for an adjacent area (Wadi Mujib) during late Cenomanian to early Turonian times, while small-scale sub-basins with an occasionally dysoxic facies developed northwards and further south during this time interval. A connection between these structural elements in Jordan with basins and uplift areas in Egypt and Israel during equivalent time intervals is assumed. This emphasises the mostly concordant development of that Levant Platform segment.  相似文献   

17.
Summary  The Upper Triassic carbonates of the area comprised between Maratea (Lucania) and Praia a Mare (Calabria) have been studied. They have been grouped into six facies assemblages which, in turn, define two depositional systems.
1)  a platform margin depositional system, comprising algae-bivalves-bearing dolomites (A1), Megalodontid-bearing limestones and dolomites (A2), dololutites and stromatolitic/bioclastic dolomites. (A3);
2)  a slope to basin depositional system comprising: buildup-facies, talus breccia and coarse to fine doloarenites (B1), coarse to fine doloarenites and dark laminated dololutites (B2), dark laminated dololutites (B3).
The algal and bivalve dolomites represent typical peritidal platform sediments arranged in cyclical patterns formed as shoal barrier and back-reef deposits periodically emerged and deformed in tepee structures. The outer margin of the platform was colonised by peculiar bioconstructions dominated by microbialites and serpulids; little sponges occur less frequently, whereas rare corals have been found only in some turbiditic beds. Along the slope, in a distance that can be estimated in 5 or 6 km, the coarse breccias give way to coarse turbidites, then finer turbidites and finally to dark, organic-rich micrites. Most of the floatstone and associated turbidites imply a fault- controlled slope. The laminated texture and the high O.M. (Organic Matter) content of the latter facies quite obviously point to a basin with poorly oxygenated bottom waters. In the uppermost Triassic there is an indication of a regressive trend, evidenced by the progradation of the platform facies. At that time a back-reef area was characterised by Megalodontid prairies alternated to areas of sandy bioclastic transport. However, due to the poor biostratigraphic record and intense cataclasis, no definite evidence of a well-structured Rhaetian platform margin with buildups and related basinal sediments exists. These sedimentary and paleoecological features match well with those found in the intraplatform basins of the Dolomia Principale, as well as with other coeval facies in Southern Apennines, Central Apennines, Southern Alps and in Southern Spain. Altogether, this evidence suggests that in the Norian time both Southern Alps and Apennines experienced a very similar tectonic evolution and comparable paleoceanographic conditions, characterised by the formation of numerous intraplatform throughs with restricted circulation, the latter influencing the bottom conditions as well as the marginal communities. The margins of these restricted basins, differently from the typical Dachstein reefs of the Upper Triassic Tethys, were dominated by microbial-serpulid communities.  相似文献   

18.
Late Jurassic–Early Cretaceous ?tramberk-type reef limestones are known from some parts of the Southern Carpathians in Romania. The Upper Jurassic deposits mainly consist of massif reef limestones including a variety of microbialites associated with micro-encrusters. They played an important role in the formation and evolution of the reef frameworks and thus are of significant importance for deciphering the depositional environments. For our study, the most important encrusting organisms are Crescentiella morronensis, Koskinobullina socialis, Lithocodium aggregatum, Bacinella-type structures, Radiomura cautica, Perturbatacrusta leini, Coscinophragma sp., and crust-forming coralline sponges such as Calcistella. Based on microscopic observations, microbial contribution to reef construction is documented by the abundance of dense micrite, laminate structures, clotted, thrombolithic or peloidal microfabrics, constructive micritic cortices, biogenic encrustations and cement crusts, as well as by other types of microbial structures and crusts. Most of the investigated carbonate deposits can be classified as “coral-microbial-microencruster boundstones” which are characteristic for the Intra-Tethyan domain. Their paleogeographical significance is indicated by the presence of many features comparable with carbonate deposits of rimmed platform systems from the Northern Calcareous Alps or Central Apennines. Based on the distribution of the facies and facies associations within the carbonate sequences under study we can distinguish slope and external shelf margin environments. The microbial crusts, the encrusting micro-organisms, and in some cases the syndepositional cements have stabilized and bound the carbonates of the slope facies types. Subsequently, the stable substrate favored the installation of coral-microbial bioconstruction levels.  相似文献   

19.
Based on their lithologic characteristics and stratal geometries, the Middle Cambrian Fasham and Deh-Sufiyan Formations of the lower Mila Group in the Central Alborz, northern Iran, exhibit 39 lithofacies representing several supratidal to deep subtidal facies belts. The siliciclastic successions of the Fasham Formation are divided into two facies associations, suggesting deposition in a tide-dominated, open-mouthed estuarine setting. The mixed, predominantly carbonate successions of the Deh-Sufiyan Formation are grouped into ten facies associations. Four depositional zones are recognized on the Deh-Sufiyan ramp: basinal, outer ramp (deep subtidal associations), mid ramp (shallow subtidal to lower intertidal associations), and inner ramp (shoal and upper intertidal to supratidal associations). These facies associations are arranged in small-scale sedimentary cycles, i.e., peritidal, shallow subtidal, and deep subtidal cycles. These cycles reflect spatial differences in the reaction of the depositional system to small-scale relative sea-level changes. Small-scale cycles are stacked into medium-scale cycles that in turn are building blocks of large-scale cycles. Systematic changes in stacking pattern (cycle thickness, cycle type, and facies proportion) allow to reconstruct long-term changes in sea-level. Six large-scale cycles (S1–S6) have been identified and are interpreted as depositional sequences showing retrogradational (transgressive systems tract) and progradational (highstand systems tract) packages of facies associations. The six depositional sequences provide the basis for inter-regional sequence stratigraphic correlations and have been controlled by eustatic sea-level changes.  相似文献   

20.
Pavel Kabanov 《Facies》2003,49(1):243-270
Summary The type upper Moscovian-basal Kasimovian argillaceous-carbonate succession of central European Russia contains regionally traced cyclothem-bounded subaerial exposure horizons (geosols) represented mainly by rendzina-type palaeosols. Palaeokarst profiles occurrarely and grade laterally to palaeosols. Composite subaerial profiles divided by one or two thin marine beds are called ‘multiple geosols’. The biofaces structure of the studied succession is defined by brachiopod and fusulinoid biofaces. The heterogeneous Choristites biofacies characterizes openmarine intervals, which constitute the bulk of the succession, and is defined by presence of Choristites. The Meekella biofacies with monospecific concentrations of Meekella shells and extreme rarity of other brachiopods characterises restricted peritidal intervals which commonly constitute the terminal regressive parts of major cyclothems. Three fusulinoid biofacies defined by Baranova and Kabanov (2003) include restricted peritidal Biofacies 1 with only small fusulinoids Fusiella and Schubertella present, open shoal-to-subtidal Biofacies 2 with the richest fusulinoid assemblages, and the most offshore Biofacies 3 with less diverse, sometimes Hemifusulina-dominated, fusulinoid assemblages. Bioturbation patterns and ichnofossils allow recognition of deeper subtidal Zoophycos and shallower non-Zoophycos ichnofacies. Among the latter, shallowest subtidal facies are characterized by presence of thalassinoid burrows. Intertidal laminated lithofacies with suppressed bioturbation contain Skolithos burrows. Seventeen lithofacies are recognized. Terrestrial lithofacies include topclays (upper clayey palaeosol horizons) and aeolian grainstones. Restricted peritidal lithofacies include cross-stratified skeletal-peloidal grainstones, fine-grained laminated grainstones-mudstones, and lagoonal mudstones. Open shoal lithofacies include ooidal grainstones (rare, only in Podolskian) and coarse skeletal-peloidal grainstones. The open subtidal lithofacies include skeletal packstones-rudstones, shallow subtidal packstones-wackestones, deeper subtidal packstones-wackestones, Ivanovia boundstones (only in Podolskian), proximal tempestites, distal tempestites, and skeletal wackestones-mudstones. The fossiliferous shale lithofacies is a miscellaneous group of marine shales lacking distinct features of the above-listed lithofacies. Conglomerates of cyclothem bases that are regarded as early transgressive lithofacies are variable in their palaeoenvironmental position and are characterized by concentrated pebbles derived from palaeosol reworking. The shallowest subtidal lithofacies of fine packstones-grainstones is considered as transitional between open subtidal and restricted peritidal lithofacies. The origin of stratiform dolostones is shown to be early diagenetic in the subsurface. The depositional model involves a shallow and broad epicontinental ramp, where through water circulation prevented stratification of the water column and allowed large skeletal benthos to colonize the entire spectrum of depositional environments. Storms are thought to be the principal water-mixing agent. The anti-estuarine circulation carrying oxygenated waters down-ward may explain the lack of anoxic features in the deepest facies that may have formed below storm wave base.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号