首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ecologically successful algae that colonize natural and artificial substrates in the marine environment have distinct strategies for opportunistic dispersal and settlement. The objective of this research was to visualize molecular architecture of zoospores from Enteromorpha (=Ulva) flexuosa (Wulfen) J. Agardh and Ulva fasciata Delile that coexist but alternate in dominance on an intertidal bench. Multiple fluorescent lectins were used to stabilize and probe for diverse zoospore glycoconjugates (GC) that could be involved in cell and substrate interactions. Results from epifluorescence microscopy showed distinct cellular and extracellular polymeric substance (EPS) domains of GC relative to settlement morphologies. Glycoconjugates were similar for both species with (1) α‐d mannose and/or glucose moieties localized on flagella, the anterior domes and anterior regions, the plasma membranes, and EPS; (2) α‐fucose localized on flagella and anterior regions; (3) N or α,ß‐N acetylglucosamine localized on flagella, the anterior regions, and EPS; and (4) varied N‐acetylgalactosamine and/or galactose moieties localized on each domain for both species excluding the plasma membranes. Some differences in lectin binding were observed for each species at the flagella, the anterior domes, and the plasma membranes. Glycoconjugate distributions shifted with morphological changes that followed initial adhesion. TEM of E. flexuosa zoospore stages following carbohydrate‐stabilizing fixations and gold‐conjugated lectin probes resolved GC with α‐d mannose and/or glucose, and/or N‐acetylglucosamine at the plasma membrane, ER and diverse vesicles of the anterior pole, EPS, and discontinuous regions or knobs associated with flagellar surfaces. The distinct distribution and diversity of zoospore GC may be central to recognition and attachment on diverse substrata by these algae.  相似文献   

2.
Diatoms and their associated extracellular polymeric substances (EPS) are major constituents of the microalgal assemblages present within sea ice. Yields and chemical composition of soluble and cell‐associated polysaccharides produced by three sea‐ice diatoms, Synedropsis sp., Fragilariopsis curta, and F. cylindrus, were compared. Colloidal carbohydrates (CC) contained heteropolysaccharides rich in mannose, xylose, galactose, and glucose. Synedropsis sp. CC consisted mainly of carbohydrates <8 kDa size, with relatively soluble EPS, compared to high proportions of less‐soluble EPS produced by both Fragilariopsis spp. F. curta colloidal EPS contained high concentrations of amino sugars (AS). Both Fragilariopsis species had high yields of hot bicarbonate (HB) soluble EPS, rich in xylose, mannose, galactose, and fucose (and AS in F. cylindrus). All species had frustule‐associated EPS rich in glucose–mannose. Nutrient limitation resulted in declines in EPS yields and in glucose content of all EPS fractions. Significant similarities between EPS fractions from cultures and different components of natural EPS from Antarctic sea ice were found. Increased salinity (52) reduced growth, but increased yields of EPS in Fragilariopsis cylindrus. Ice formation was inhibited byF. cylindrus, EPS, and by enhanced EPS content (additional xanthan gum) down to ?12°C, with growth rate reduced in the presence of xanthan. Differences in the production and composition of EPS between Synedropsis sp. and Fragilariopsis spp., and the association between EPS, freezing and cell survival, supports the hypothesis that EPS production is a strategy to assist polar ice diatoms to survive the cold and saline conditions present in sea ice.  相似文献   

3.
Raphidiopsis brookii P. J. Hill (cyanobacteria) was isolated from a small subtropical eutrophic pond (Biguá Pond) located in the grounds of Rio Grande University in the extreme south of Brazil, following a toxic bloom of this species. Growth, saxitoxin production, and release of carbohydrates and protein were monitored at three sodium nitrate concentrations (500, 1,000, and 1,500 μM), from inoculation up to the stationary growth phase. Growth was monitored by determining the biovolume, chl content, and trichome count. Growth was better described in terms of biovolume and chl measurements, because trichome fragmentation was observed to increase at the stationary growth phase. Carbohydrates and proteins were released in small amounts during most of the experiment, with a significant increase during the stationary phase. Extracellular polysaccharides were essentially composed of glucose, galactose, N‐acetyl‐glucosamine, mannose, xylose, rhamnose, arabinose, and fucose. The relative proportions of these units showed no significant variation during growth. Small quantities of extracellular free carbohydrates were also detected, and only fucose was released in significant amounts at the lowest nitrate concentration (500 μM). R. brookii produced both saxitoxin and dc‐saxitoxin, the former at four times the rate of the latter. This was the first study demonstrating saxitoxin production and the release of both carbohydrate and protein by R. brookii.  相似文献   

4.
Native EPS produced by Pseudomonas syringae pv. phaseolicola in vitro was separated by ion exchange chromatography on DEAE fractogel into three different polysaccharide fractions. A neutral polysaccharide eluting with the void volume yielded only fructose upon hydrolysis and exhibited an IR spectrum similar to authentic levan. At about 300 mM KCl a mannuronan eluted. Comparison with authentic alginate by IR spectroscopy, elution behaviour during DEAE-fractogel column chromatography, and monomer composition (mannuronic acid and traces of guluronic acid) confirmed the identity of this fraction as a bacterial alginate. It contained about 56 mol% acetyl groups. A third polysaccharide eluted at about 160 mM KCl. Its monomeric composition (rhamnose, fucose, glucose, and amino sugars), elution behaviour upon DEAE-fractogel column chromatography, and TLC patterns, closely resembled the sugar moiety of lipopolysaccharides (LPS) from, Pseudomonas syringae pv. phaseolicola. The protein component of crude EPS represented a fourth macromolecular fraction. It was not covalently linked to any of the polysaccharides since it could be removed from the EPS by phenol extraction.  相似文献   

5.
The released polysaccharide from the halophilic cyanobacterium Aphanothece halophytica GR02 was separated into two main fractions byanion-exchange chromatography. The major fraction consisted of glucose,fucose, mannose, arabinose and glucuronic acid. Judging from thechromatography on Sepharose 2B, the major fraction was not furtherfractionated, and its apparent molecular weight was above 2.0 × 106 Da.The minor fraction consisted of rhamnose, mannose, fucose,glucose, galactose and glucuronic acid, with traces of arabinose.Methylation and GC-MS spectrometry analyses of the major fractionrevealed the presence of 1-linked glucose, 1,3-linked glucose, 1,3-linkedfucose, 1,4-linked fucose, 1,3-linked arabinose, 1,2,4-linked mannose,1,3,6-linked mannose, 1-linked glucuronic acid and 1,3-linked glucuronicacid residues. The major fraction was thought to originate from capsularpolysaccharide. The released polysaccharides, obtained from cultures atdifferent age of culture, showed no striking variations in themonosaccharide composition and the relative proportions of themonosaccharides. However, the proportions of galactose and rhamnose inthe released polysaccharides, obtained from cultures under different salinity,were significantly different. The released polysaccharide also exhibitedgelling properties and strong affinity for metal ions.  相似文献   

6.
Dynamics in the production of extracellular polymeric substances (EPS) were investigated for the benthic diatoms Cylindrotheca closterium (Ehrenberg) and Nitzschia sp. The effect of growth phase and light:dark conditions were examined using axenic cultures. Two EPS fractions were distinguished. Soluble EPS was recovered from the culture supernatant and represented polysaccharides that were only loosely associated with the cells. Bound EPS was extracted from the cells using warm (30° C) water and was more closely associated with the diatom aggregates. Concentrations of EPS exceeded internal concentrations of sugar throughout growth, indicating that EPS production is important in these organisms. Soluble and bound EPS revealed distinct differences in daily dynamics during the course of growth. Soluble EPS was produced continuously once cultures entered the stationary phase. During the stationary phase, chl a‐normalized EPS production rates equaled 6.4 and 3.4 d ? 1 for C. closterium and Nitzschia sp., respectively. In contrast, production of bound EPS occurred only in the light and was highest during the exponential phase. Up to 90% of the attached EPS that was produced in the light was degraded during the subsequent dark period. The monosaccharide distribution of EPS was constant during the course of the experiment. The soluble EPS consisted of high amounts of galactose and glucuronic acid, relative to rhamnose, glucose, xylose/mannose, and galacturonic acid. In contrast, glucose was the dominant monosaccharide present in the bound EPS. These differences suggest that the production of the two distinct EPS fractions is under different metabolic controls and probably serves different cellular functions.  相似文献   

7.

Amphora rostrata was grown under continuous illumination at 27°C in batch cultures using f/2 medium. Cell biomass (measured as chllorophyll a and cell counts) reached a maximum on day 7. Thereafter, cell biomass as chl a showed a small decrease. Planktonic('free') and biofilm extracellular polymeric substances (EPS) from the adherent cells of A. rostrata were studied. Both types of EPS were produced during the logarithmic phase of growth. However, production was higher during the stationary growth phase. Enhanced EPS production was associated with nutrient deficient conditions. Planktonic and biofilm EPS were purified by gel filtration using Sephadex G‐200 and ion exchange chromatography using DEAE‐cellulose. Both polymers showed the presence of a single peak. Capillary gas Chromatographie analysis of both planktonic and biofilm EPS showed that fucose (36.7%) and galactose (27.6%) were the most abundant monosaccharides, with small quantities of rhamnose, xylose, arabinose, mannose and glucose. Other chemical analysis showed the presence of sulphate, uronic acids, hexoamines, pyruvate and proteins in both the planktonic and bio‐film EPS. Uronic acid, pyruvate and sulphate together were found to contribute ~50 to 60% (W/W) to the EPS of A. rostrata. Such a high content of non‐sugar components indicates their importance to the diatom in metal binding, desiccation prevention and flexibility.  相似文献   

8.
Hot water-soluble polysaccharides were extracted from field colonies and suspension cultures of Nostoc commune Vaucher, Nostoc flagelliforme Berkeley et Curtis, and Nostoc sphaeroides Kützing. Excreted extracellular polymeric substances (EPS) were isolated from the media in which the suspension cultures were grown. The main monosaccharides of the field colony polysaccharides from the three species were glucose, xylose, and galactose, with an approximate ratio of 2:1:1. Mannose was also present, but the levels varied among the species, and arabinose appeared only in N. flagelliforme. The compositions of the cellular polysaccharides and EPS from suspension cultures were more complicated than those of the field samples and varied among the different species. The polysaccharides from the cultures of N. flagelliforme had a relatively simple composition consisting of mannose, galactose, glucose, and glucuronic acid, but no xylose, as was found in the field colony polysaccharides. The polysaccharides from cultures of N. sphaeroides contained glucose (the major component), rhamnose, fucose, xylose, mannose, and galactose. These same sugars were present in the polysaccharides from cultures of N. commune, with xylose as the major component. Combined nitrogen in the media had no qualitative influence on the compositions of the cellular polysaccharides but affected those of the EPS of N. commune and N. flagelliforme. The EPS of N. sphaeroides had a very low total carbohydrate content and thus was not considered to be polysaccharide in nature. The field colony polysaccharides could be separated by anion exchange chromatography into neutral and acidic fractions having similar sugar compositions. Preliminary linkage analysis showed that 1) xylose, glucose, and galactose were 1→4 linked, 2) mannose, galactose, and xylose occurred as terminal residues, and 3) branch points occurred in glucose as 1→3,4 and 1→3,6 linkages and in xylose as a 1→3,4 linkage. The polymer preparations from field colonies had higher kinematic viscosities than those from correspondingsuspension cultures. The high viscosities of the polymers suggested that they might be suitable for industrial uses.  相似文献   

9.
Diatoms are dominant organisms in phototrophic biofilms in aquatic habitats. They produce copious amounts of extracellular polymeric substances (EPS), which mainly consist of carbohydrates and traces of proteins and glycoproteins. This study focuses on the characterization of EPS from a total of 14 diatoms belonging to the six genera Achnanthes, Cymbella, Fragilaria, Punctastriata, Staurosira, and Pseudostaurosira, all of which were isolated from epilithic biofilms of the littoral zone of Lake Constance. EPS from all isolates were extracted by a sequential extraction procedure resulting in five different fractions. The monosaccharide composition of each fraction was analyzed by HPLC equipped with a pulse amperiometric detector, yielding results similar to those obtained by probing the EPS structures with monomer‐specific fluorophore‐linked lectins. Significant differences in carbohydrate composition occurred in the different fractions of single isolates. Most of the diatom isolates in our study form chain‐like colonies in which the cells are attached to each other by intercellular pads. Here we demonstrate that these pads can be dissolved in hot bicarbonate and that they show a heterogeneous composition of monosaccharides in contrast to other fractions, which mostly were dominated by one or two monosaccharides. Principal component analysis indicates a correlation between carbohydrate composition of EPS fractions and the phylogenetic relationship of the respective species, indicating that EPS analyses under defined culture conditions may support taxonomic analyses.  相似文献   

10.
The Hindak strain of a Cryptomonas species (Cryptophyceae) produces extracellular polysaccharides. Because there is no information on the structure of these compounds in the Cryptophyceae we conducted structural studies. Gas–liquid chromatographic analyses showed that the polysaccharide is composed of fucose, rhamnose, xylose, mannose, glucose, galactose, galacturonic acid, glucuronic acid, and traces of 3-O-methyl galactose. The polysaccharide was separated into two subtractions by ion-exchange chromatography. Fraction A consisted mainly of 1,3-linked galactose units and 1,4-linked galacturonic acid. Unlike fraction B, fraction A did not have xylose, 3-O-methyl galactose, or glucuronic acid. Also, its degree of branching was low compared to that of fraction B. Only traces of sulfate were present infraction A, but fraction B was 10–15% sulfated. Protein was approximately 1% in both fractions. These polysaccharides appear to be a novel type of polymer in algae.  相似文献   

11.
Marine benthic diatoms excrete large quantities of extracellular polymeric substances (EPS), both as a function of their motility system and as a response to environmental conditions. Diatom EPS consists predominantly of carbohydrate‐rich polymers and is important in the ecology of cells living on marine sediments. Production rates, production pathways, and monosaccharide composition of water‐soluble (colloidal) carbohydrates, EPS, and intracellular storage carbohydrate (glucans) were investigated in the epipelic (mud‐inhabiting) diatoms Cylindrotheca closterium (Ehrenburg), Navicula perminta (Grün.) in Van Heurck, and Amphora exigua Greg. under a range of experimental conditions simulating aspects of the natural environment. Cellular rates of colloidal carbohydrate, EPS, and glucan production were significantly higher during nutrient‐replete compared with nutrient‐limited growth for all three species. The proportion of EPS in the extracellular carbohydrate pool increased significantly (to 44%–69%) as cells became nutrient limited. Cylindrotheca closterium produced two types of EPS differing in sugar composition and production patterns. Nutrient‐replete cells produced a complex EPS containing rhamnose, fucose, xylose, mannose, galactose, glucose, and uronic acids. Nutrient‐limited cells produced an additional EPS containing mannose, galactose, glucose, and uronic acids. Both EPS types were produced under illuminated and darkened conditions. 14C‐labeling revealed immediate production of 14C‐glucan and significant increases in 14C‐EPS between 3 and 4 h after addition of label. The glucan synthesis inhibitor 2,6‐dichlorobenzonitrile significantly reduced 14C‐colloidal carbohydrate and 14C‐EPS. The glucanase inhibitor P‐nitrophenyl β‐d ‐glucopyranoside resulted in accumulation of glucan within cells and lowered rates of 14C‐colloidal and 14C‐EPS production. Cycloheximide prevented glucan catabolism, but glucan production and EPS synthesis were unaffected.  相似文献   

12.
The extracellular polysaccharide of Coscinodiscus nobilis, a member of the Coscinodiscaceae, contains a highly branched heteropolysaccharide(s) containing fucose, rhamnose, mannose, d-glucose, xylose, d-glucuronic acid, galactose (trace) and half ester sulphate. The positions of linkages between the monosaccharides have been established and evidence for the linkages between d-glucuronic acid and monosaccharides was obtained. The extracellular polysaccharide contained also a chrysolaminaran, but this may have been derived from dead cells. Fucose and mannose occur also in a separate polymer. The diatom contained polysaccharide material consisting of glucose, mannose, fucose and uronic acid residues.  相似文献   

13.
糖类(即碳水化合物)是土壤有机质的重要组成部分, 经生物化学降解形成不同结构的单糖。土壤中的中性单糖也叫中性糖, 主要包括木糖、核糖、阿拉伯糖、葡萄糖、半乳糖、甘露糖、岩藻糖和鼠李糖。其中, 植物来源的糖主要为五碳糖, 如木糖和阿拉伯糖; 微生物来源的糖主要包括半乳糖、甘露糖、岩藻糖、鼠李糖等六碳糖。研究中常利用六碳糖和五碳糖的比例指示微生物和植物对土壤有机碳的相对贡献。中性糖是微生物重要的碳源和能量来源, 在团聚体的形成过程中扮演着重要角色。该文整合了近30年土壤中性糖的研究进展, 对比了提取中性糖的常用方法, 分析了不同土地利用类型和不同土壤组分中中性糖的含量、来源和周转特征, 综述了影响中性糖含量和分布的主要环境因素。结果表明, 中性糖在耕地土壤中的绝对含量和相对含量均显著低于针叶林、阔叶林、草地和灌丛4种土地利用类型。(半乳糖+甘露糖)/(阿拉伯糖+木糖)(GM/AX)在不同土地利用间差异不显著, 而(鼠李糖+岩藻糖)/(阿拉伯糖+木糖)(RF/AX)则表明草地土壤中的微生物来源的中性糖含量高于针叶林和耕地。不同密度的土壤组分中, 轻质组分中中性糖的含量比重质组分高, 重质组分中微生物来源的中性糖较多; 就不同粒径(或团聚体)而言, 黏粒(或微团聚体)中微生物来源的中性糖含量更丰富。有关影响土壤中性糖含量和分布的因素的研究, 目前主要集中在人为活动(如耕种和放牧等), 而有关温度、降水等自然环境因素影响的研究较少。  相似文献   

14.
For the production of therapeutic proteins in plants, the presence of β1,2‐xylose and core α1,3‐fucose on plants’ N‐glycan structures has been debated for their antigenic activity. In this study, RNA interference (RNAi) technology was used to down‐regulate the endogenous N‐acetylglucosaminyltransferase I (GNTI) expression in Nicotiana benthamiana. One glyco‐engineered line (NbGNTI‐RNAi) showed a strong reduction of plant‐specific N‐glycans, with the result that as much as 90.9% of the total N‐glycans were of high‐mannose type. Therefore, this NbGNTI‐RNAi would be a promising system for the production of therapeutic glycoproteins in plants. The NbGNTI‐RNAi plant was cross‐pollinated with transgenic N. benthamiana expressing human glucocerebrosidase (GC). The recombinant GC, which has been used for enzyme replacement therapy in patients with Gaucher's disease, requires terminal mannose for its therapeutic efficacy. The N‐glycan structures that were presented on all of the four occupied N‐glycosylation sites of recombinant GC in NbGNTI‐RNAi plants (GCgnt1) showed that the majority (ranging from 73.3% up to 85.5%) of the N‐glycans had mannose‐type structures lacking potential immunogenic β1,2‐xylose and α1,3‐fucose epitopes. Moreover, GCgnt1 could be taken up into the macrophage cells via mannose receptors, and distributed and taken up into the liver and spleen, the target organs in the treatment of Gaucher's disease. Notably, the NbGNTI‐RNAi line, producing GC, was stable and the NbGNTI‐RNAi plants were viable and did not show any obvious phenotype. Therefore, it would provide a robust tool for the production of GC with customized N‐glycan structures.  相似文献   

15.
A method was developed for the isolation and purification of exopolysaccharide (EPS) produced by Lactobacillus delbrueckii subsp. bulgaricus NCFB 2483 that can be adapted for industrial-scale operation. Hydrolyzed milk medium, which was ultrafiltered to remove molecular species larger than 2.5×105 Da, was found to be a suitable growth medium for the bacteria, which produced approximately 400 mg EPS/l . Optimal isolation of EPS was achieved using centrifugation, filtration and ethanol precipitation methods. Insoluble and soluble EPS fractions were obtained. The soluble fraction was purified using a series of ethanol precipitations to achieve approximately 98% (w/w) purity. This fraction consisted of galactose, glucose, rhamnose and mannose in the ratio of approximately 5:1:0.6:0.5, with traces of glucosamine.  相似文献   

16.
Water extraction was applied to prepare carbohydrate compound of rhizoma ligustici wallichii. Four main fractions, fraction-I, fraction-II, fraction-III, and fraction-IV, were obtained by membranes of 1.0 × 10−4 mm pore size and normal molecular-weight cut-off of 50 kDa. The resulting four preparations were further analysed by capillary gas chromatography method. Thin layer chromatography (TLC) analysis showed that carbohydrate compound of rhizoma ligustici wallichii was composed of five types of monosaccharides, namely glucose, rhamnose, mannose, galactose and arabinose. Gas chromatography (GC) analysis showed that fraction I of rhizoma ligustici wallichii was composed of four types of monosaccharides, namely glucose, mannose, galactose and arabinose at a molar ratio of 521:1:4.6:3.3. Furthermore, the protective effect of the Rhizoma ligustici wallichii polysaccharides and ethanol extract of danshen against ischemia-reperfusion (IR) induced renal injury were evaluated. The findings imply that carbohydrate compound of the Rhizoma ligustici wallichii and ethanol extract of danshen play a causal role in IR-induced renal injury probably by the radical scavenging and antioxidant activities. Moreover, ethanol extract of danshen displayed stronger renoprotective effect than that of carbohydrate compound of the Rhizoma ligustici wallichii.  相似文献   

17.
Aims: To characterize the interaction between cell surface carbohydrates and Staphylococcus aureus. Methods and Results: In the present study, in vitro adherence of S. aureus to Detroit 562 cells, amount of cell surface desialylation and effect of subterminal monosaccharides on desialylated glycoproteins on adherence was studied with colony counting, HPLC, fluorescence microscopy and fluorometric techniques. According to our findings, S. aureus adherence to pharynx cells was enhanced (40%) after neuraminidase treatment, and neuraminidase also cleave great amount of Detroit 562 cells surface sialic acid (39–60%). Adherence assay with various monosaccharides‐pretreated bacteria, and lectin competitive inhibition, showed that the residual subterminal galactose, fucose and N‐acetyl‐d ‐glucosamine remaining on desialylated Detroit 562 cell surface glycoproteins responsible for this binding. Conclusion: The results are the first to show that galactose, fucose and N‐acetyl‐d ‐glucosamine remaining on desialylated pharynx cell surface glycoproteins serve as the adhesine receptors for S. aureus. Significance and Impact of the Study: This study may explain the predisposition of severe S. aureus pneumonia complication in respiratory viral infections.  相似文献   

18.
A unicellular cyanobacterium that produces a large amount of exopolysaccharide (EPS) was isolated from a rice field in Phu Tho Province, Vietnam. Morphological characteristics and phylogenetic analysis using a partial sequence of the 16S rRNA gene revealed that the isolate was closely related to the genus Cyanothece. The isolate, named Cyanothece sp. Viet Nam 01, grew at a wide range of temperatures (25–40 °C), but was not viable below 20 °C. The isolate had an ability of aerobic nitrogen fixation. The EPS was purified using NaOH extraction and ethanol precipitation, and the absolute molecular weight was estimated to be 4.5?×?104 kDa. The pattern of the Fourier transform infrared spectrum indicated that the EPS had carbonyl and sulfate groups, as well as the typical functional groups of sugars. The uronic acid and sulfur contents were 23 and 8.4 mol% per total monosaccharide, respectively. The EPS constituent monosaccharides were rhamnose, glucose, galactose, xylose, mannose, fucose, arabinose, ribose, and unknown sugar, with molar compositions of 38.6:13.8:4.8:4.8:2.4:3.5:2.0:0.6:6.5, respectively.  相似文献   

19.
Aims: This work was aimed to isolate, purify and characterize an extracellular polysaccharide (EPS) produced by a freshwater dynamic sediment‐attached micro‐organism, Bacillus megaterium RB‐05, and study its emulsifying potential in different hydrocarbon media. Methods and Results: Bacillus megaterium RB‐05 was found to produce EPSs in glucose mineral salts medium, and maximum yield (0·864 g l?1) was achieved after 24‐h incubation. The recovery rates of the polysaccharide material by ion‐exchange and gel filtration chromatography were around 67 and 93%, respectively. As evident from HPLC and FT‐IR analyses, the polysaccharide was found to be a heteropolymer‐containing glucose, galactose, mannose, arabinose, fucose and N‐acetyl glucosamine. Different oligosaccharide combinations namely hexose3, hexose4, hexose5deoxyhexose1 and hexose5deoxyhexose1pentose3 were obtained after partial hydrolysis of the polymer using MALDI‐ToF‐MS. The polysaccharide with an average molecular weight of 170 kDa and thermal stability up to 180°C showed pseudoplastic rheology and significant emulsifying activity in hydrocarbon media. Conclusions: Isolated polysaccharide was found to be of high molecular weight and thermally stable. The purified EPS fraction was composed of hexose, pentose and deoxyhexose sugar residues, which is a rare combination for bacterial polysaccharides. Emulsifying property was either better or comparable to that of other commercially available natural gums and polysaccharides. Significance and Impact of the Study: This is probably one of the few reports about characterizing an emulsifying EPS produced by a freshwater sediment‐attached bacterium. The results of this study contribute to understand the influence of chemical composition and material properties of a new microbial polysaccharide on its application in industrial biotechnology. Furthermore, this work reconfirms freshwater dynamic sediment as a potential habitat for bioprospecting extracellular polymer–producing bacteria. This study will improve our knowledge on the exploitation of a nonconventional renewable resource, which also seems to be ecologically significant.  相似文献   

20.
An exopolysaccharide-producing Gram negative bacterium was isolated and determined to be a Sphingomonas sp. (CS101). A sugar composition analysis of an exopolysaccharide indicated that the Sphingomonas sp. CS101 secreted an exopolysaccharide composed of glucose, mannose, fucose, and rhamnose in the ratio of 2.1:1.1:1.0:0.1, suggesting that this exoplysaccharide is an unusual type of sphingan family. The mean molecular weight of the exopolysaccharide was determined to be 4.2×105 Da by size exclusion chromatography coupled with multi-angle laser-light scattering (SEC/MALLS) analysis. An exopolysaccharide was produced up to 17 g/l (pH 7; 30 °C) with the optimal medium condition over 4 days of cultivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号