首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated soil carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) exchanges in an age‐sequence (4, 17, 32, 67 years old) of eastern white pine (Pinus strobus L.) forests in southern Ontario, Canada, for the period of mid‐April to mid‐December in 2006 and 2007. For both CH4 and N2O, we observed uptake and emission ranging from ?160 to 245 μg CH4 m?2 h?1 and ?52 to 21 μg N2O m?2 h?1, respectively (negative values indicate uptake). Mean fluxes from mid‐April to mid‐December across the 4, 17, 32, 67 years old stands were similar for CO2 fluxes (259, 246, 220, and 250 mg CO2 m?2 h?1, respectively), without pattern for N2O fluxes (?3.7, 1.5, ?2.2, and ?7.6 μg N2O m?2 h?1, respectively), whereas the uptake rates of CH4 increased with stand age (6.4, ?7.9, ?10.8, and ?23.3 μg CH4 m?2 h?1, respectively). For the same period, the combined contribution of CH4 and N2O exchanges to the global warming potential (GWP) calculated from net ecosystem exchange of CO2 and aggregated soil exchanges of CH4 and N2O was on average 4%, <1%, <1%, and 2% for the 4, 17, 32, 67 years old stand, respectively. Soil CO2 fluxes correlated positively with soil temperature but had no relationship with soil moisture. We found no control of soil temperature or soil moisture on CH4 and N2O fluxes, but CH4 emission was observed following summer rainfall events. LFH layer removal reduced CO2 emissions by 43%, increased CH4 uptake during dry and warm soil conditions by more than twofold, but did not affect N2O flux. We suggest that significant alternating sink and source potentials for both CH4 and N2O may occur in N‐ and soil water‐limited forest ecosystems, which constitute a large portion of forest cover in temperate areas.  相似文献   

2.
Currently, there is a lack of knowledge about GHG emissions, specifically N2O and CH4, in subtropical coastal freshwater wetland and mangroves in the southern hemisphere. In this study, we quantified the gas fluxes and substrate availability in a subtropical coastal wetland off the coast of southeast Queensland, Australia over a complete wet-dry seasonal cycle. Sites were selected along a salinity gradient ranging from marine (34 psu) in a mangrove forest to freshwater (0.05 psu) wetland, encompassing the range of tidal influence. Fluxes were quantified for CH4 (range ?0.4–483 mg C–CH4 h?1 m?2) and N2O (?5.5–126.4 μg N–N2O h?1 m?2), with the system acting as an overall source for CH4 and N2O (mean N2O and CH4 fluxes: 52.8 μg N–N2O h?1 m?2 and 48.7 mg C–CH4 h?1 m?2, respectively). Significantly higher N2O fluxes were measured during the summer months (summer mean 64.2 ± 22.2 μg N–N2O h?1 m?2; winter mean 33.1 ± 24.4 µg N–N2O h–1 m?2) but not CH4 fluxes (summer mean 30.2 ± 81.1 mg C–CH4 h?1 m?2; winter mean 37.4 ± 79.6 mg C–CH4 h?1 m?2). The changes with season are primarily driven by temperature and precipitation controls on the dissolved inorganic nitrogen (DIN) concentration. A significant spatial pattern was observed based on location within the study site, with highest fluxes observed in the freshwater tidal wetland and decreasing through the mangrove forest. The dissolved organic carbon (DOC) varied throughout the landscape and was correlated with higher CH4 fluxes, but this was a nonlinear trend. DIN availability was dominated by N–NH4 and correlated to changes in N2O fluxes throughout the landscape. Overall, we did not observe linear relationships between CH4 and N2O fluxes and salinity, oxygen or substrate availability along the fresh-marine continuum, suggesting that this ecosystem is a mosaic of processes and responses to environmental changes.  相似文献   

3.
Land use and agricultural practices can result in important contributions to the global source strength of atmospheric nitrous oxide (N2O) and methane (CH4). However, knowledge of gas flux from irrigated agriculture is very limited. From April 2005 to October 2006, a study was conducted in the Aral Sea Basin, Uzbekistan, to quantify and compare emissions of N2O and CH4 in various annual and perennial land-use systems: irrigated cotton, winter wheat and rice crops, a poplar plantation and a natural Tugai (floodplain) forest. In the annual systems, average N2O emissions ranged from 10 to 150 μg N2O-N m−2 h−1 with highest N2O emissions in the cotton fields, covering a similar range of previous studies from irrigated cropping systems. Emission factors (uncorrected for background emission), used to determine the fertilizer-induced N2O emission as a percentage of N fertilizer applied, ranged from 0.2% to 2.6%. Seasonal variations in N2O emissions were principally controlled by fertilization and irrigation management. Pulses of N2O emissions occurred after concomitant N-fertilizer application and irrigation. The unfertilized poplar plantation showed high N2O emissions over the entire study period (30 μg N2O-N m−2 h−1), whereas only negligible fluxes of N2O (<2 μg N2O-N m−2 h−1) occurred in the Tugai. Significant CH4 fluxes only were determined from the flooded rice field: Fluxes were low with mean flux rates of 32 mg CH4 m−2 day−1 and a low seasonal total of 35.2 kg CH4 ha−1. The global warming potential (GWP) of the N2O and CH4 fluxes was highest under rice and cotton, with seasonal changes between 500 and 3000 kg CO2 eq. ha−1. The biennial cotton–wheat–rice crop rotation commonly practiced in the region would average a GWP of 2500 kg CO2 eq. ha−1 yr−1. The analyses point out opportunities for reducing the GWP of these irrigated agricultural systems by (i) optimization of fertilization and irrigation practices and (ii) conversion of annual cropping systems into perennial forest plantations, especially on less profitable, marginal lands.  相似文献   

4.
In order to identify the effects of land-use/cover types, soil types and soil properties on the soil-atmosphere exchange of greenhouse gases (GHG) in semiarid grasslands as well as provide a reliable estimate of the midsummer GHG budget, nitrous oxide (N2O), methane (CH4) and carbon dioxide (CO2) fluxes of soil cores from 30 representative sites were determined in the upper Xilin River catchment in Inner Mongolia. The soil N2O emissions across all of the investigated sites ranged from 0.18 to 21.8 μg N m-2 h-1, with a mean of 3.4 μg N m-2 h-1 and a coefficient of variation (CV, which is given as a percentage ratio of one standard deviation to the mean) as large as 130%. CH4 fluxes ranged from -88.6 to 2,782.8 μg C m-2 h-1 (with a CV of 849%). Net CH4 emissions were only observed from cores taken from a marshland site, whereas all of the other 29 investigated sites showed net CH4 uptake (mean: -33.3 μg C m-2 h-1). CO2 emissions from all sites ranged from 3.6 to 109.3 mg C m-2 h-1, with a mean value of 37.4 mg C m-2 h-1 and a CV of 66%. Soil moisture primarily and positively regulated the spatial variability in N2O and CO2 emissions (R2?=?0.15–0.28, P?<?0.05). The spatial variation of N2O emissions was also influenced by soil inorganic N contents (P?<?0.05). By simply up-scaling the site measurements by the various land-use/cover types to the entire catchment area (3,900 km2), the fluxes of N2O, CH4 and CO2 at the time of sampling (mid-summer 2007) were estimated at 29 t CO2-C-eq d-1, -26 t CO2-C-eq d-1 and 3,223 t C d-1, respectively. This suggests that, in terms of assessing the spatial variability of total GHG fluxes from the soils at a semiarid catchment/region, intensive studies may focus on CO2 exchange, which is dominating the global warming potential of midsummer soil-atmosphere GHG fluxes. In addition, average GHG fluxes in midsummer, weighted by the areal extent of these land-use/cover types in the region, were approximately -30.0 μg C m-2 h-1 for CH4, 2.4 μg N m-2 h-1 for N2O and 34.5 mg C m-2 h-1 for CO2.  相似文献   

5.
Soils provide the largest terrestrial carbon store, the largest atmospheric CO2 source, the largest terrestrial N2O source and the largest terrestrial CH4 sink, as mediated through root and soil microbial processes. A change in land use or management can alter these soil processes such that net greenhouse gas exchange may increase or decrease. We measured soil–atmosphere exchange of CO2, N2O and CH4 in four adjacent land‐use systems (native eucalypt woodland, clover‐grass pasture, Pinus radiata and Eucalyptus globulus plantation) for short, but continuous, periods between October 2005 and June 2006 using an automated trace gas measurement system near Albany in southwest Western Australia. Mean N2O emission in the pasture was 26.6 μg N m−2 h−1, significantly greater than in the natural and managed forests (< 2.0 μg N m−2 h−1). N2O emission from pasture soil increased after rainfall events (up to 100 μg N m−2 h−1) and as soil water content increased into winter, whereas no soil water response was detected in the forest systems. Gross nitrification through 15N isotope dilution in all land‐use systems was small at water holding capacity < 30%, and under optimum soil water conditions gross nitrification ranged between < 0.1 and 1.0 mg N kg−1 h−1, being least in the native woodland/eucalypt plantation < pine plantation < pasture. Forest soils were a constant CH4 sink, up to −20 μg C m−2 h−1 in the native woodland. Pasture soil was an occasional CH4 source, but weak CH4 sink overall (−3 μg C m−2 h−1). There were no strong correlations (R < 0.4) between CH4 flux and soil moisture or temperature. Soil CO2 emissions (35–55 mg C m−2 h−1) correlated with soil water content (R < 0.5) in all but the E. globulus plantation. Soil N2O emissions from improved pastures can be considerable and comparable with intensively managed, irrigated and fertilised dairy pastures. In all land uses, soil N2O emissions exceeded soil CH4 uptake on a carbon dioxide equivalent basis. Overall, afforestation of improved pastures (i) decreases soil N2O emissions and (ii) increases soil CH4 uptake.  相似文献   

6.
The main focus of this study was to evaluate the effects of soil moisture and temperature on temporal variation of N2O, CO2 and CH4 soil-atmosphere exchange at a primary seasonal tropical rainforest (PF) site in Southwest China and to compare these fluxes with fluxes from a secondary forest (SF) and a rubber plantation (RP) site. Agroforestry systems, such as rubber plantations, are increasingly replacing primary and secondary forest systems in tropical Southwest China and thus effect the N2O emission in these regions on a landscape level. The mean N2O emission at site PF was 6.0 ± 0.1 SE μg N m−2 h−1. Fluxes of N2O increased from <5 μg N m−2 h−1 during dry season conditions to up to 24.5 μg N m−2 h−1 with re-wetting of the soil by the onset of first rainfall events. Comparable fluxes of N2O were measured in the SF and RP sites, where mean N2O emissions were 7.3 ± 0.7 SE μg N m−2 h−1 and 4.1 ± 0.5 SE μg N m−2 h−1, respectively. The dependency of N2O fluxes on soil moisture levels was demonstrated in a watering experiment, however, artificial rainfall only influenced the timing of N2O emission peaks, not the total amount of N2O emitted. For all sites, significant positive correlations existed between N2O emissions and both soil moisture and soil temperature. Mean CH4 uptake rates were highest at the PF site (−29.5 ± 0.3 SE μg C m−2 h−1), slightly lower at the SF site (−25.6 ± 1.3 SE μg C m−2 h−1) and lowest for the RP site (−5.7 ± 0.5 SE μg C m−2 h−1). At all sites, CH4 uptake rates were negatively correlated with soil moisture, which was also reflected in the lower uptake rates measured in the watering experiment. In contrast to N2O emissions, CH4 uptake did not significantly correlate with soil temperature at the SF and RP sites, and only weakly correlated at the PF site. Over the 2 month measurement period, CO2 emissions at the PF site increased significantly from 50 mg C m−2 h−1 up to 100 mg C m−2 h−1 (mean value 68.8 ± 0.8 SE mg C m−2 h−1), whereas CO2 emissions at the SF and RP site where quite stable and varied only slightly around mean values of 38.0 ± 1.8 SE mg C m−2 h−1 (SF) and 34.9 ± 1.1 SE mg C m−2 h−1 (RP). A dependency of soil CO2 emissions on changes in soil water content could be demonstrated for all sites, thus, the watering experiment revealed significantly higher CO2 emissions as compared to control chambers. Correlation of CO2 emissions with soil temperature was significant at the PF site, but weak at the SF and not evident at the RP site. Even though we demonstrated that N and C trace gas fluxes significantly varied on subdaily and daily scales, weekly measurements would be sufficient if only the sink/ source strength of non-managed tropical forest sites needs to be identified.  相似文献   

7.
We investigated N2O and CH4 fluxes from soils of Quercus ilex, Quercus pyrenaica and Pinus sylvestris stands located in the surrounding area of Madrid (Spain). The fluxes were measured for 18?months from both mature stands and post fire stands using the static chamber technique. Simultaneously with gas fluxes, soil temperature, soil water content, soil C and soil N were measured in the stands. Nitrous oxide fluxes ranged from ?11.43 to 8.34?μg N2O–N?m?2?h?1 in Q.ilex, ?7.74 to 13.52?μg N2O–N?m?2?h?1 in Q. pyrenaica and ?28.17 to 21.89?μg N2O–N?m?2?h?1 in P. sylvestris. Fluxes of CH4 ranged from ?8.12 to 4.11?μg CH4–C?m?2?h?1 in Q.ilex, ?7.74 to 3.0?μg CH4–C m?2?h?1 in Q. pyrenaica and ?24.46 to 6.07?μg CH4–C?m?2?h?1 in P. sylvestris. Seasonal differences were detected; N2O fluxes being higher in wet months whereas N2O fluxes declined in dry months. Net consumption of N2O was related to low N availability, high soil C contents, high soil temperatures and low moisture content. Fire decreased N2O fluxes in spring. N2O emissions were closely correlated with previous day’s rainfall and soil moisture. Our ecosystems generally were a sink for methane in the dry season and a source of CH4 during wet months. The available water in the soil influenced the observed seasonal trend. The burned sites showed higher CH4 oxidation rates in Q. ilex, and lower rates in P. sylvestris. Overall, the data suggest that fire alters both N2O and CH4 fluxes. However, the magnitude of such variation depends on the site, soil characteristics and seasonal climatic conditions.  相似文献   

8.
The influence of forest stand age in a Picea sitchensis plantation on (1) soil fluxes of three greenhouse gases (GHGs – CO2, CH4 and N2O) and (2) overall net ecosystem global warming potential (GWP), was investigated in a 2‐year study. The objective was to isolate the effect of forest stand age on soil edaphic characteristics (temperature, water table and volumetric moisture) and the consequent influence of these characteristics on the GHG fluxes. Fluxes were measured in a chronosequence in Harwood, England, with sites comprising 30‐ and 20‐year‐old second rotation forest and a site clearfelled (CF) some 18 months before measurement. Adjoining unforested grassland (UN) acted as a control. Comparisons were made between flux data, soil temperature and moisture data and, at the 30‐year‐old and CF sites, eddy covariance data for net ecosystem carbon (C) exchange (NEE). The main findings were: firstly, integrated CO2 efflux was the dominant influence on the GHG budget, contributing 93–94% of the total GHG flux across the chronosequence compared with 6–7% from CH4 and N2O combined. Secondly, there were clear links between the trends in edaphic factors as the forest matured, or after clearfelling, and the emission of GHGs. In the chronosequence sites, annual fluxes of CO2 were lower at the 20‐year‐old (20y) site than at the 30‐year‐old (30y) and CF sites, with soil temperature the dominant control. CH4 efflux was highest at the CF site, with peak flux 491±54.5 μg m−2 h−1 and maximum annual flux 18.0±1.1 kg CH4 ha−1 yr−1. No consistent uptake of CH4 was noted at any site. A linear relationship was found between log CH4 flux and the closeness of the water table to the soil surface across all sites. N2O efflux was highest in the 30y site, reaching 108±38.3 μg N2O‐N m−2 h−1 (171 μg N2O m−2 h−1) in midsummer and a maximum annual flux of 4.7±1.2 kg N2O ha−1 yr−1 in 2001. Automatic chamber data showed a positive exponential relationship between N2O flux and soil temperature at this site. The relationship between N2O emission and soil volumetric moisture indicated an optimum moisture content for N2O flux of 40–50% by volume. The relationship between C : N ratio data and integrated N2O flux was consistent with a pattern previously noted across temperate and boreal forest soils.  相似文献   

9.
There is considerable uncertainty in the estimates of indirect N2O emissions as defined by the Intergovernmental Panel on Climate Change's (IPCC) methodology. Direct measurements of N2O yields and fluxes in aquatic river environments are sparse and more data are required to determine the role that rivers play in the global N2O budget. The objectives of this research were to measure the N2O fluxes from a spring‐fed river, relate these fluxes to the dissolved N2O concentrations and NO3‐N loading of the river, and to try to define the indirect emission factor (EF5‐r) for the river. Gas bubble ebullition was observed at the river source with bubbles containing 7.9 μL N2O L?1. River NO3‐N and dissolved N2O concentrations ranged from 2.5 to 5.3 mg L?1 and 0.4 to 1.9 μg N2O‐N L?1, respectively, with N2O saturation reaching 404%. Floating headspace chambers were used to sample N2O fluxes. N2O‐N fluxes were significantly related to dissolved N2O‐N concentrations (r2=0.31) but not to NO3‐N concentrations. The N2O‐N fluxes ranged from 38 to 501 μg m?2 h?1, averaging 171 μg m?2 h?1 (±SD 85) overall. The measured N2O‐N fluxes equated to an EF5‐r of only 6.6% of that calculated using the IPCC methodology, and this itself was considered to be an overestimate because of the degassing of antecedent dissolved N2O present in the groundwater that fed the river.  相似文献   

10.
There is considerable uncertainty in the estimates of indirect N2O emissions as defined by the intergovernmental panel on climate change's (IPCC) methodology. Direct measurements of N2O yields and fluxes in aquatic river environments are sparse and more data are required to determine the role that rivers play in the global N2O budget. The objectives of this research were to measure the N2O fluxes from a spring‐fed river, relate these fluxes to the dissolved N2O concentrations and NO3‐N loading of the river, and to try and define the indirect emission factor (EF5‐r) for the river. Gas bubble ebullition was observed at the river source with bubbles containing 7.9 μL N2O L?1. River NO3‐N and dissolved N2O concentrations ranged from 2.5 to 5.3 mg L?1 and 0.4 to 1.9 μg N2O‐N L?1, respectively, with N2O saturation reaching 404%. Floating headspace chambers were used to sample N2O fluxes. N2O‐N fluxes were significantly related to dissolved N2O‐N concentrations (r2=30.6) but not to NO3‐N concentrations. The N2O‐N fluxes ranged from 38–501 μg m?2 h?1, averaging 171 μg m?2 h?1 (±SD 85) overall. The measured N2O‐N fluxes equated to an EF5‐r of only 6.6% of that calculated using the IPCC methodology, and this itself was considered to be an overestimate because of the degassing of antecedent dissolved N2O present in the groundwater that fed the river.  相似文献   

11.
The study investigates the effect of land‐use change on nitrous oxide (N2O) and methane (CH4) fluxes from soil, in savanna ecosystems of the Orinoco region (Venezuela). Gas fluxes were measured by closed static chambers, in the wet and dry season, in representative systems of land management of the region: a cultivated pasture, an herbaceous savanna, a tree savanna and a woodland (control site). Higher N2O emissions were observed in the cultivated pasture and in the herbaceous savanna compared with the tree savanna and the woodland, and differences were mainly related to fine soil particle content and soil volumetric water content measured in the studied sites. Overall N2O emissions were quite low in all sites (0–1.58 mg N2O‐N m?2 day?1). The cultivated pasture and the woodland savanna were on average weak CH4 sinks (?0.05±0.07 and ?0.08±0.05 mg CH4 m?2 day?1, respectively), whereas the herbaceous savanna and the tree savanna showed net CH4 production (0.23±0.05 and 0.19±0.05 mg CH4 m?2 day?1, respectively). Variations of CH4 fluxes were mainly driven by variation of soil water‐filled pore space (WFPS), and a shift from net CH4 consumption to net CH4 production was observed at around 30% WFPS. Overall, the data suggest that conversion of woodland savanna to managed landscape could alter both CH4 and N2O fluxes; however, the magnitude of such variation depends on the soil characteristics and on the type of land management before conversion.  相似文献   

12.
Drained organic soils are among the most risky soil types as far as their greenhouse gas emissions are considered. Reed canary grass (RCG) is a potential bioenergy crop in the boreal region, but the atmospheric impact of its cultivation is unknown. The fluxes of N2O and CH4 were measured from an abandoned peat extraction site (an organic soil) cultivated with RCG using static chamber and snow gradient techniques. The fluxes were measured also at an adjacent site which is under active peat extraction and it is devoid of any vegetation (BP site). The 4-year average annual N2O emissions were low being 0.1 and 0.01 g N2O m−2 a−1 at the RCG and BP sites, respectively. The corresponding mean annual CH4 emissions from the RCG and BP sites were also low (0.4 g and 0.9 g CH4 m−2 a−1). These results highlight for the first time that there are organic soils where cultivation of perennial bioenergy crops is possible with low N2O and CH4 emissions.  相似文献   

13.
Willow coppice, energy maize and Miscanthus were evaluated regarding their soil‐derived trace gas emission potential involving a nonfertilized and a crop‐adapted slow‐release nitrogen (N) fertilizer scheme. The N application rate was 80 kg N ha?1 yr?1 for the perennial crops and 240 kg N ha?1 yr?1 for the annual maize. A replicated field experiment was conducted with 1‐year measurements of soil fluxes of CH4, CO2 and N2O in weekly intervals using static chambers. The measurements revealed a clear seasonal trend in soil CO2 emissions, with highest emissions being found for the N‐fertilized Miscanthus plots (annual mean: 50 mg C m?² h?1). Significant differences between the cropping systems were found in soil N2O emissions due to their dependency on amount and timing of N fertilization. N‐fertilized maize plots had highest N2O emissions by far, which accumulated to 3.6 kg N2O ha?1 yr?1. The contribution of CH4 fluxes to the total soil greenhouse gas subsumption was very small compared with N2O and CO2. CH4 fluxes were mostly negative indicating that the investigated soils mainly acted as weak sinks for atmospheric CH4. To identify the system providing the best ratio of yield to soil N2O emissions, a subsumption relative to biomass yields was calculated. N‐fertilized maize caused the highest soil N2O emissions relative to dry matter yields. Moreover, unfertilized maize had higher relative soil N2O emissions than unfertilized Miscanthus and willow. These results favour perennial crops for bioenergy production, as they are able to provide high yields with low N2O emissions in the field.  相似文献   

14.
Wetlands can influence global climate via greenhouse gas (GHG) exchange of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). Few studies have quantified the full GHG budget of wetlands due to the high spatial and temporal variability of fluxes. We report annual open‐water diffusion and ebullition fluxes of CO2, CH4, and N2O from a restored emergent marsh ecosystem. We combined these data with concurrent eddy‐covariance measurements of whole‐ecosystem CO2 and CH4 exchange to estimate GHG fluxes and associated radiative forcing effects for the whole wetland, and separately for open‐water and vegetated cover types. Annual open‐water CO2, CH4, and N2O emissions were 915 ± 95 g C‐CO2 m?2 yr?1, 2.9 ± 0.5 g C‐CH4 m?2 yr?1, and 62 ± 17 mg N‐N2O m?2 yr?1, respectively. Diffusion dominated open‐water GHG transport, accounting for >99% of CO2 and N2O emissions, and ~71% of CH4 emissions. Seasonality was minor for CO2 emissions, whereas CH4 and N2O fluxes displayed strong and asynchronous seasonal dynamics. Notably, the overall radiative forcing of open‐water fluxes (3.5 ± 0.3 kg CO2‐eq m?2 yr?1) exceeded that of vegetated zones (1.4 ± 0.4 kg CO2‐eq m?2 yr?1) due to high ecosystem respiration. After scaling results to the entire wetland using object‐based cover classification of remote sensing imagery, net uptake of CO2 (?1.4 ± 0.6 kt CO2‐eq yr?1) did not offset CH4 emission (3.7 ± 0.03 kt CO2‐eq yr?1), producing an overall positive radiative forcing effect of 2.4 ± 0.3 kt CO2‐eq yr?1. These results demonstrate clear effects of seasonality, spatial structure, and transport pathway on the magnitude and composition of wetland GHG emissions, and the efficacy of multiscale flux measurement to overcome challenges of wetland heterogeneity.  相似文献   

15.
The emission of nitrous oxide (N2O) from streams draining agricultural landscapes is estimated by the Intergovernmental Panel on Climate Change (IPCC) to constitute a globally significant source of this gas to the atmosphere, although there is considerable uncertainty in the magnitude of this source. We measured N2O emission rates and potential controlling variables in 12 headwater streams draining a predominantly agricultural basin on glacial terrain in southwestern Michigan. The study sites were nearly always supersaturated with N2O and emission rates ranged from ?8.9 to 266.8 μg N2O‐N m?2 h?1 with an overall mean of 35.2 μg N2O‐N m?2 h?1. Stream water NO3? concentrations best‐predicted N2O emission rates. Although streams and agricultural soils in the basin had similar areal emission rates, emissions from streams were equivalent to 6% of the anthropogenic emissions from soils because of the vastly greater surface area of soils. We found that the default value of the N2O emission factor for streams and groundwater as defined by the IPCC (EF5‐g) was similar to the value observed in this study lending support to the recent downward revision to EF5‐g. However, the EF5‐g spanned four orders of magnitude across our study sites suggesting that the IPCC's methodology of applying one emission factor to all streams may be inappropriate.  相似文献   

16.
There is uncertainty in the estimates of indirect nitrous oxide (N2O) emissions as defined by the Intergovernmental Panel on Climate Change (IPCC). The uncertainty is due to the challenge and dearth of in situ measurements. Recent work in a subtropical stream system has shown the potential for diurnal variability to influence the downstream N transfer, N form, and estimates of in‐stream N2O production. Studies in temperate stream systems have also shown diurnal changes in stream chemistry. The objectives of this study were to measure N2O fluxes and dissolved N2O concentrations from a spring‐fed temperate river to determine if diurnal cycles were occurring. The study was performed during a 72 h period, over a 180 m reach, using headspace chamber methodology. Significant diurnal cycles were observed in radiation, river temperature and chemistry including dissolved N2O‐N concentrations. These data were used to further assess the IPCC methodology and experimental methodology used. River NO3‐N and N2O‐N concentrations averaged 3.0 mg L−1 and 1.6 μg L−1, respectively, with N2O saturation reaching a maximum of 664%. The N2O‐N fluxes, measured using chamber methodology, ranged from 52 to 140 μg m−2 h−1 while fluxes predicted using the dissolved N2O concentration ranged from 13 to 25 μg m−2 h−1. The headspace chamber methodology may have enhanced the measured N2O flux and this is discussed. Diurnal cycles in N2O% saturation were not large enough to influence downstream N transfer or N form with variability in measured N2O fluxes greater and more significant than diurnal variability in N2O% saturation. The measured N2O fluxes, extrapolated over the study reach area, represented only 6 × 10−4% of the NO3‐N that passed through the study reach over a 72 h period. This is only 0.1% of the IPCC calculated flux.  相似文献   

17.
《Global Change Biology》2018,24(5):1843-1872
Central European grasslands are characterized by a wide range of different management practices in close geographical proximity. Site‐specific management strategies strongly affect the biosphere–atmosphere exchange of the three greenhouse gases (GHG) carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4). The evaluation of environmental impacts at site level is challenging, because most in situ measurements focus on the quantification of CO2 exchange, while long‐term N2O and CH4 flux measurements at ecosystem scale remain scarce. Here, we synthesized ecosystem CO2, N2O, and CH4 fluxes from 14 managed grassland sites, quantified by eddy covariance or chamber techniques. We found that grasslands were on average a CO2 sink (−1,783 to −91 g CO2 m−2 year−1), but a N2O source (18–638 g CO2‐eq. m−2 year−1), and either a CH4 sink or source (−9 to 488 g CO2‐eq. m−2 year−1). The net GHG balance (NGB) of nine sites where measurements of all three GHGs were available was found between −2,761 and −58 g CO2‐eq. m−2 year−1, with N2O and CH4 emissions offsetting concurrent CO2 uptake by on average 21 ± 6% across sites. The only positive NGB was found for one site during a restoration year with ploughing. The predictive power of soil parameters for N2O and CH4 fluxes was generally low and varied considerably within years. However, after site‐specific data normalization, we identified environmental conditions that indicated enhanced GHG source/sink activity (“sweet spots”) and gave a good prediction of normalized overall fluxes across sites. The application of animal slurry to grasslands increased N2O and CH4 emissions. The N2O‐N emission factor across sites was 1.8 ± 0.5%, but varied considerably at site level among the years (0.1%–8.6%). Although grassland management led to increased N2O and CH4 emissions, the CO2 sink strength was generally the most dominant component of the annual GHG budget.  相似文献   

18.
Understanding nitrous oxide (N2O) and methane (CH4) fluxes from agricultural soils in semi‐arid climates is necessary to fully assess greenhouse gas emissions from bioenergy cropping systems, and to improve our knowledge of global terrestrial gaseous exchange. Canola is grown globally as a feedstock for biodiesel production, however, resulting soil greenhouse gas fluxes are rarely reported for semi‐arid climates. We measured soil N2O and CH4 fluxes from a rain‐fed canola crop in a semi‐arid region of south‐western Australia for 1 year on a subdaily basis. The site included N fertilized (75 kg N ha?1 yr?1) and nonfertilized plots. Daily N2O fluxes were low (?1.5 to 4.7 g N2O‐N ha?1 day?1) and culminated in an annual loss of 128 g N2O‐N ha?1 (standard error, 12 g N2O‐N ha?1) from N fertilized soil and 80 g N2O‐N ha?1 (standard error, 11 g N2O‐N ha?1) from nonfertilized soil. Daily CH4 fluxes were also low (?10.3 to 11.9 g CH4‐C ha?1 day?1), and did not differ with treatments, with an average annual net emission of 6.7 g CH4–C ha?1 (standard error, 20 g CH4–C ha?1). Greatest daily N2O fluxes occurred when the soil was fallow, and following a series of summer rainfall events. Summer rainfall increased soil water contents and available N, and occurred when soil temperatures were >25 °C, and when there was no active plant growth to compete with soil microorganisms for mineralized N; conditions known to promote N2O production. The proportion of N fertilizer emitted as N2O, after correction for emissions from the no N fertilizer treatment, was 0.06%; 17 times lower than IPCC default value for the application of synthetic N fertilizers to land (1.0%). Soil greenhouse gas fluxes from bioenergy crop production in semi‐arid regions are likely to have less influence on the net global warming potential of biofuel production than in temperate climates.  相似文献   

19.
Rapid climate change and intensified human activities have resulted in water table lowering (WTL) and enhanced nitrogen (N) deposition in Tibetan alpine wetlands. These changes may alter the magnitude and direction of greenhouse gas (GHG) emissions, affecting the climate impact of these fragile ecosystems. We conducted a mesocosm experiment combined with a metagenomics approach (GeoChip 5.0) to elucidate the effects of WTL (?20 cm relative to control) and N deposition (30 kg N ha?1 yr?1) on carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) fluxes as well as the underlying mechanisms. Our results showed that WTL reduced CH4 emissions by 57.4% averaged over three growing seasons compared with no‐WTL plots, but had no significant effect on net CO2 uptake or N2O flux. N deposition increased net CO2 uptake by 25.2% in comparison with no‐N deposition plots and turned the mesocosms from N2O sinks to N2O sources, but had little influence on CH4 emissions. The interactions between WTL and N deposition were not detected in all GHG emissions. As a result, WTL and N deposition both reduced the global warming potential (GWP) of growing season GHG budgets on a 100‐year time horizon, but via different mechanisms. WTL reduced GWP from 337.3 to ?480.1 g CO2‐eq m?2 mostly because of decreased CH4 emissions, while N deposition reduced GWP from 21.0 to ?163.8 g CO2‐eq m?2, mainly owing to increased net CO2 uptake. GeoChip analysis revealed that decreased CH4 production potential, rather than increased CH4 oxidation potential, may lead to the reduction in net CH4 emissions, and decreased nitrification potential and increased denitrification potential affected N2O fluxes under WTL conditions. Our study highlights the importance of microbial mechanisms in regulating ecosystem‐scale GHG responses to environmental changes.  相似文献   

20.
Natural wetlands are critically important to global change because of their role in modulating atmospheric concentrations of CO2, CH4, and N2O. One 4‐year continuous observation was conducted to examine the exchanges of CH4 and N2O between three wetland ecosystems and the atmosphere as well as the ecosystem respiration in the Sanjiang Plain in Northeastern China. From 2002 to 2005, the mean annual budgets of CH4 and N2O, and ecosystem respiration were 39.40 ± 6.99 g C m?2 yr?1, 0.124 ± 0.05 g N m?2 yr?1, and 513.55 ± 8.58 g C m?2 yr?1 for permanently inundated wetland; 4.36 ± 1.79 g C m?2 yr?1, 0.11 ± 0.12 g N m?2 yr?1, and 880.50 ± 71.72 g C m?2 yr?1 for seasonally inundated wetland; and 0.21 ± 0.1 g C m?2 yr?1, 0.28 ± 0.11 g N m?2 yr?1, and 1212.83 ± 191.98 g C m?2 yr?1 for shrub swamp. The substantial interannual variation of gas fluxes was due to the significant climatic variability which underscores the importance of long‐term continuous observations. The apparent seasonal pattern of gas emissions associated with a significant relationship of gas fluxes to air temperature implied the potential effect of global warming on greenhouse gas emissions from natural wetlands. The budgets of CH4 and N2O fluxes and ecosystem respiration were highly variable among three wetland types, which suggest the uncertainties in previous studies in which all kinds of natural wetlands were treated as one or two functional types. New classification of global natural wetlands in more detailed level is highly expected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号