首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sexual selection by mate choice represents a very important selective pressure in many animal species and might have evolutionary impacts beyond exaggeration of secondary sexual traits. Describing the shape and strength of the relationships linking mating success and nonsexual traits in natural conditions represents a challenging step in our understanding of adaptive evolution. We studied the effect of behavioral (nest site choice), immunological (trematode level of infection), genetic diversity (measured by mean d2) and morphological (standard length and pectoral fin size) traits on male mating success in a natural population of threespine sticklebacks Gasterosteaus aculeatus. Male mating success was measured by microsatellite genotyping of embryos used to infer female genotypes. First, we analyzed all territorial males (full analysis) but also considered independently only males with a nonzero mating success (reduced analysis) because some of the males with no eggs could have been part of a later breeding cycle. Multiple linear regressions identified a significant negative effect of parasite load in the full analysis, whereas no linear effect was found in the reduced analysis. The quadratic analyses revealed that nest location and parasite load were significantly related to mating success by positive (concave selection) and negative (convex selection) quadratic coefficients respectively, resulting in a saddle-shaped fitness surface. Moreover, there were significant interactions between nest location, mean d2 and parasite load in the reduced analysis. The subsequent canonical rotation of the matrix of quadratic and cross-product terms identified two major axes of the response surface: a vector representing mostly nest site choice and a vector representing parasite load. These results imply that there exists more than one way for a male threespine stickleback to maximize its mating success and that such nonlinear relationships between male mating success induced by female mate choice and male characteristics might have been overlooked in many studies.  相似文献   

2.
Mate recognition is critical to the maintenance of reproductiveisolation, and animals use an array of sensory modalities toidentify conspecific mates. In particular, olfactory informationcan be an important component of mate recognition systems. Weinvestigated whether odor is involved in mate recognition ina sympatric benthic and limnetic species pair of three-spinedsticklebacks (Gasterosteus spp.), for which visual cues andsignals are known to play a role in premating isolation. Weallowed gravid females of each species to choose between waterscented by a heterospecific male and water scented by a conspecificmale. Benthic females preferred the conspecific male stimuluswater significantly more often than the heterospecific malestimulus water, whereas limnetic females showed no preference.These species thus differ in their odor and may also differin their use of olfaction to recognize conspecific mates. Thesedifferences are likely a consequence of adaptation to disparateenvironments. Differences in diet, foraging mode, habitat, andparasite exposure may explain our finding that odor might bean asymmetric isolating mechanism in these sympatric sticklebackspecies.  相似文献   

3.
Stickleback fishes are renowned for the complexity of their nuptial colour signal. In this paper I show that the nuptial signal is in fact multimodal: male-based olfactory cues also transmit information to receptive females. Both female three-spined and brook sticklebacks recognized the scent from each other's males, but discriminated in favour of their own males when asked to choose between conspecific and heterospecific odours. Although females were not attracted to scent from the more distantly related guppy, Poecilia reticulata , changes in their baseline behaviours indicated that they perceived its presence. Olfactory cues act as long distance messages, allowing a female to detect the 'I am here' message from the male before she can actually see him. Studies of interactions between temporally displaced signals indicate that the first cue (in this case chemical) functions to alert the receiver to the presence of the second cue (visual), increasing the probability of its detection and recognition. So, although olfactory cues do not appear to be as species-specific as visual cues, their function as alerting stimuli may not require such fine-tuning. © 2003 The Linnean Society of London, Biological Journal of the Linnean Society , 2003, 80 , 555–572.  相似文献   

4.
Single sticklebacks ( Gasterosteus aculeatus ) were presented with a choice between (a) a shoal and an empty compartment, and (b) two different sized shoals of conspecifics. The choice of hungry test fish (food-deprived for 24 h and 72 h, respectively) was compared to that of fish which were fed to satiation once a day. It was hypothesized that due to the increased level of competition for food in large shoals, hungry fish would spend less time with the larger of two shoals than their well-fed conspecifics. The results showed that there was indeed a significant trend for test fish to spend a decreasing amount of time near the compartment with the larger number of fish with increasing duration of food deprivation.  相似文献   

5.
Changes in the environment due to human activities are becomingincreasingly common. A serious problem in aquatic environmentsis increased water turbidity due to phytoplankton algal growth.This may affect the breeding system of fishes, especially thosewith a visually based mating system. Here we show that increasedturbidity affects sexual selection in the threespine stickleback(Gasterosteus aculeatus) through impaired possibility for visuallybased mate choice. In a laboratory mate preference and matechoice experiment on sticklebacks from the Baltic Sea, whichis an area suffering from increased turbidity due to human activities,we found that females spent more time with and visited moreoften males in clear water than males in turbid water. For malesin turbid water to receive the same amount of interest fromfemales as males in clear water, they needed to court significantlymore. Thus, turbid water induced selection for higher courtshipactivity. However, the final spawning decision of the femalesdid not depend on water turbidity, which suggests that nonvisualcues determined the final spawning decision. Because visualcues are important in mate attraction, increased turbidity affectsan important evolutionary force, sexual selection, which mayhave further consequences for the evolution of the sexual displaysand preferences. Differences in visual conditions could hencebe one factor that has lead to differences among sticklebackpopulation in the use of sexual signals.  相似文献   

6.
SSCP analysis of Mhc class IIB genes in the threespine stickleback   总被引:2,自引:0,他引:2  
Due to its universality, speed, sensitivity, precision and reproducibility, PCR followed by fluorescence SSCP analysis represents an attractive tool for the characterization of Mhc class II B genotypes and the estimation of DNA sequence variability of Mhc genes in natural stickleback Gasterosteus aculeatus populations.  相似文献   

7.
Mate choice by males has been recognized at least since Darwin's time, but its phylogenetic distribution and effect on the evolution of female phenotypes remain poorly known. Moreover, the relative importance of factors thought to underlie the evolution of male mate choice (especially parental investment and mate quality variance) is still unresolved. Here I synthesize the empirical evidence and theory pertaining to the evolution of male mate choice and sex role reversal in insects, and examine the potential for male mating preferences to generate sexual selection on female phenotypes. Although male mate choice has received relatively little empirical study, the available evidence suggests that it is widespread among insects (and other animals). In addition to 'precopulatory' male mate choice, some insects exhibit 'cryptic' male mate choice, varying the amount of resources allocated to mating on the basis of female mate quality. As predicted by theory, the most commonly observed male mating preferences are those that tend to maximize a male's expected fertilization success from each mating. Such preferences tend to favour female phenotypes associated with high fecundity or reduced sperm competition intensity. Among insect species there is wide variation in mechanisms used by males to assess female mate quality, some of which (e.g. probing, antennating or repeatedly mounting the female) may be difficult to distinguish from copulatory courtship. According to theory, selection for male choosiness is an increasing function of mate quality variance and those reproductive costs that reduce, with each mating, the number of subsequent matings that a male can perform ('mating investment') Conversely, choosiness is constrained by the costs of mate search and assessment, in combination with the accuracy of assessment of potential mates and of the distribution of mate qualities. Stronger selection for male choosiness may also be expected in systems where female fitness increases with each copulation than in systems where female fitness peaks at a small number of matings. This theoretical framework is consistent with most of the empirical evidence. Furthermore, a variety of observed male mating preferences have the potential to exert sexual selection on female phenotypes. However, because male insects typically choose females based on phenotypic indicators of fecundity such as body size, and these are usually amenable to direct visual or tactile assessment, male mate choice often tends to reinforce stronger vectors of fecundity or viability selection, and seldom results in the evolution of female display traits. Research on orthopterans has shown that complete sex role reversal (i.e. males choosy, females competitive) can occur when male parental investment limits female fecundity and reduces the potential rate of reproduction of males sufficiently to produce a female-biased operational sex ratio. By contrast, many systems exhibiting partial sex role reversal (i.e. males choosy and competitive) are not associated with elevated levels of male parental investment, reduced male reproductive rates, or reduced male bias in the operational sex ratio. Instead, large female mate quality variance resulting from factors such as strong last-male sperm precedence or large variance in female fecundity may select for both male choosiness and competitiveness in such systems. Thus, partial and complete sex role reversal do not merely represent different points along a continuum of increasing male parental investment, but may evolve via different evolutionary pathways.  相似文献   

8.
Genes of the major histocompatibility complex (MHC) have been a source of considerable research interest, owing in large part to the growing body of evidence that they may be subject to both natural and sexual selection. However, much remains to be learned about the dynamics of MHC genes in subdivided populations, particularly those characterized by divergent ecological pressures. In this study, we attempt to disentangle the relative roles of both parasite-mediated selection and MHC-mediated mate choice in an open estuarine system inhabited by two parapatric, adaptively divergent threespine stickleback (Gasterosteus aculeatus) demes. We sequenced the putative peptide-binding region (PBR) of an estimated four Class IIβ loci from 127 individuals, identifying 329 sequence variants (276 translated amino acid sequences). Demes differed significantly both in the frequency of MHC alleles and in the communities of helminth parasites infecting resident sticklebacks. Strong signatures of natural selection were inferred from analyses of codon substitutions, particularly in the derived (freshwater) rather than the ancestral (marine) deme. Relationships between parasite load and MHC diversity were indicative of balancing selection, but only within the freshwater deme. Signals of MHC-mediated mate choice were weak and differed significantly between demes. Moreover, MHC-mediated mate choice was significantly influenced by environmental salinity and appeared of secondary importance to tendencies towards assortative mating. We discuss the implications of these findings in respect to ecological adaptation and the potential demographic consequences of possible outcomes of MHC-mediated mate choice.  相似文献   

9.
Theory predicts that a 1 : 1 sex ratio is favoured in the absence of countervailing selection pressures. In an experiment with Drosophila melanogaster, we found significantly greater variation in the offspring sex ratios of freely mated flies than would be expected by the binomial distribution. In a surprise result, control flies given no mate choice exhibited significant under-dispersal in their sex ratio variation, possibly from sperm limitation. Both treatments, however, produced populations with a 1 : 1 sex ratio. This supports the hypothesis that sexually antagonistic selection for reproductive success in sons, and fecundity in daughters, may overcome selection for an equal sex ratio. Such precision in sex allocation may allow for the maintenance of genetic variation underlying trade-offs between male and female reproductive success.  相似文献   

10.
Two ciliates and 16 metazoan parasites were identified in 434 0+ year three-spined sticklebacks Gasterosteus aculeatus collected from two small rivers and four lakes located in Schleswig-Holstein, Germany. By repeated sampling and analysis of dispersion patterns of six frequently occurring parasites no consistent evidence was found for mortality induced by a single parasite species. Linear log-variance to log-mean abundance ratios with slopes of c. 2 indicated negative binomial distributions for five of the six parasites. The numbers of these six parasites were combined as multiples of S.D. of each parasite species over all samples to form an 'individual parasitation index' ( I PI), which showed that only in one locality a slight decrease in parasite burden occurred between September and April. In two of the lake populations, however, there was a distinct decline in the degree of dispersion in spring samples. This indicates that a combination of different species might cause parasite-induced host mortality, undetectable by patterns obtained from single species. There were differences in parasite diversity and intensity of infection among river compared to lake populations suggesting a role for parasites as selective agents in the ecological divergence of three-spined sticklebacks.  相似文献   

11.
Trivers' parental investment model states that individuals facinghigher levels of parental investment will become increasinglychoosy in their choice of mates. For humans, this leads to twopredictions. First, both males and females will be choosierin relationships more likely to lead to the production of children.Second, females will be choosier than are males, because theirminimum risk of parental investment is higher. Previous studiesof human mate choice found support for these predictions, withone curious exception: male choosiness was lower for short-termsexual relationships involving no relationship commitment (one-nightstands) than for short-term relationships involving no sexualactivity (single dates). Because the risk of parental investmentwould be higher in a one-night stand, this suggests that truerisk of parental investment was not the underlying factor governingchoosiness levels, either because study subjects assigned differentlevels of sexual activity to the relationships than were intendedby the investigators of the study or because perceived riskis more important in human mate choice than real risk. To confirmthat male/female differences in choosiness criteria exist inhumans, and to evaluate the effect that different expected levelsof real or perceived parental investment may have on choosiness,we studied mate choosiness in the context of five types of relationshipsthat reflected explicitly defined, increasing levels of riskof parental investment for both males and females. The subjectswere 468 undergraduate students, mostly between the ages of18–24. By using questionnaires, male and female participantsrated their minimum requirements in a potential mate for 29personal characteristics with respect to level of relationship.Our results confirm the major predictions of the parental investmentmodel for humans but suggest that sex differences in choosinessare better explained by perceived rather than real risk of parentalinvestment.  相似文献   

12.
A change in anti–predator strategy from hiding to grouping outside a refuge was observed in large three–spined sticklebacks. No such change in strategy was seen in small fish. The body–length dependence of this strategy change is discussed in the context of metabolic constraints.  相似文献   

13.
Ultraviolet (UV) A signals (320–400 nm) are important in mate choice in numerous species. The sensitivity for UV signals is not only assumed to be costly, but also expected to be a function of the prevailing ecological conditions. Generally, those signals are favored by selection that efficiently reach the receiver. A decisive factor for color signaling is the lighting environment, especially in aquatic habitats, as the visibility of signals, and thus costs and benefits, are instantaneously influenced by it. Although ecological aspects of color signal evolution are relatively well-studied, there is little data on specific effects of environmental UV-light conditions on signaling at these shorter wavelengths. We studied wild-caught gravid female 3-spined sticklebacks Gasterosteus aculeatus of 2 photic habitat types (tea-stained and clear-water lakes), possessing great variation in their UV transmission. In 2 treatments, tea-stained and clear-water, preferences for males viewed under UV-present (UV+) and UV-absent (UV–) conditions were tested. A preference for males under UV+ conditions was found for females from both habitat types, thus stressing the significance of UV signals in stickleback’s mate choice decisions. However, females from both habitat types showed the most pronounced preferences for males under UV+ conditions under clear-water test conditions. Moreover, reflectance measurements revealed that the carotenoid-based orange-red breeding coloration in wild-caught males of both habitat types differed significantly in color intensity (higher in clear-water males) and hue (more red shifted in clear-water males) while no significant differences in UV coloration were found. The differential reflection patterns in longer wavelengths suggest that sticklebacks of both habitat types have adapted to the respective water conditions. Adaptations of UV signals in a sexual context to ambient light conditions in both behavior and coloration seem less evident.  相似文献   

14.
Different environmental conditions may lead to diverse morphological, behavioral, and physiological adaptations of different populations of the same species. Lighting conditions, for example, vary vastly especially between aquatic habitats, and have been shown to elicit adaptations. The availability of short-wave ultraviolet (UV) light is especially fluctuating, as UV wavelengths are attenuated strongly depending on water properties. The island of North Uist, Scotland, comprises 2 differential habitat types, tea-stained and clear-water lakes, varying considerably in UV transmission. In previous studies, wild-caught 3-spined stickleback Gasterosteus aculeatus populations (3 populations of each habitat type) were tested with respect to their shoaling and mate preferences for fish viewed under UV-present and UV-absent conditions. The results revealed a habitat-dependent preference of UV cues during shoal choice (tea-stained populations: preference for UV-absent condition in tea-stained water; clear-water populations: no preference in clear-water) but an overall preference for UV-present conditions during mate choice. To assess genetic influences on these behavioral patterns, similar experiments were conducted with lab-bred F1-generations of the same stickleback populations that were raised in a common environment (i.e. standardized clear-water conditions). Offspring of sticklebacks from tea-stained lakes tended to prefer shoals viewed under UV-absent conditions (only in tea-stained water), while sticklebacks from clear-water lakes showed a significant preference for the shoal viewed under UV-present conditions in clear-water but not in tea-stained water. Mate-preference experiments demonstrated that females from the tea-stained lakes significantly preferred and females from the clear-water lakes preferred by trend the male viewed under UV-present conditions in the clear-water treatment. The results for both shoaling- and mate-preference tests were largely similar for wild-caught and lab-bred sticklebacks, thus hinting at a genetic basis for the preference patterns.  相似文献   

15.
Under laboratory conditions, female three-spined sticklebacks(Gasterosteus aculeatus L.) show a mating preference for intenselyred-colored males. We verified this female choice in the fieldby observing a freshwater stickleback population in its naturalhabitat. During the egg collection phase, individual courtingmales were localized with the aid of a dummy of a ripe female,caught and photographed under standardized conditions, and released.After males had stopped collecting eggs, we counted the numberof eggs in the nests. The more intense a male's red breedingcoloration, the more eggs he received. Simultaneous female choiceexperiments in the laboratory suggested that ripe females ofthis population preferred redder males. Breeding activitiesof the males in the field were clustered and seem to be synchronizedwithin clusters. At one of the breeding sites, more intensered males were in better physical condition, but this was notthe case at another site. Although several synchronized breedingcycles were observed, the majority of males seem to completeonly one breeding cycle.  相似文献   

16.
17.
The genetic basis of traits that are under sexual selection and that are involved in recognizing conspecific mates is poorly known, even in systems in which the phenotypic basis of these traits has been well studied. In the present study, we investigate genetic and environmental influences on nuptial colour, which plays important roles in sexual selection and sexual isolation in species pairs of limnetic and benthic threespine sticklebacks ( Gasterosteus aculeatus species complex). Previous work demonstrated that colour differences among species correlate to differences in the ambient light prevalent in their mating habitat. Red fish are found in clear water and black fish in red-shifted habitats. We used a paternal half-sib split-clutch design to investigate the genetic and environmental basis of nuptial colour. We found genetic differences between a red and a black stickleback population in the expression of both red and black nuptial colour. In addition, the light environment influenced colour expression, and genotype by environment interactions were also present. We found evidence for both phenotypic and genetic correlations between our colour traits; some of these correlations are in opposite directions for our red and black populations. These results suggest that both genetic change and phenotypic plasticity underlie the correlation of male colour with light environment.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 94 , 663–673.  相似文献   

18.
An increasing number of empirical studies in animals have demonstrated male mate choice. However, little is known about the evolution of postpairing male choice, specifically which occurs by differential allocation of male parental care in response to female signals. We use a population genetic model to examine whether such postpairing male mate choice can evolve when males face a trade‐off between parental care and extra‐pair copulations (EPCs). Specifically, we assume that males allocate more effort to providing parental care when mated to preferred (signaling) females, but they are then unable to allocate additional effort to seek EPCs. We find that both male preference and female signaling can evolve in this situation, under certain conditions. First, this evolution requires a relatively large difference in parental investment between males mated to preferred versus nonpreferred females. Second, whether male choice and female signaling alleles become fixed in a population versus cycle in their frequencies depends on the additional fecundity benefits from EPCs that are gained by choosy males. Third, less costly female signals enable both signaling and choice alleles to evolve under more relaxed conditions. Our results also provide a new insight into the evolution of sexual conflict over parental care.  相似文献   

19.
Measuring the strength of natural selection is tremendously important in evolutionary biology, but remains a challenging task. In this work, we analyse the characteristics of selection for a morphological change (lateral-plate reduction) in the threespine stickleback Gasterosteus aculeatus. Adaptation to freshwater, leading with the reduction or loss of the bony lateral armour, has occurred in parallel on numerous occasions in this species. Completely-plated and low-plated sticklebacks were introduced into a pond, and the phenotypic changes were tracked for 20 years. Fish from the last generation were genotyped for the Ectodysplasin-A (Eda) locus, the major gene involved in armour development. We found a strong fitness advantage for the freshwater-type fish (on average, 20% fitness advantage for the freshwater morph, and 92% for the freshwater genotype). The trend is best explained by assuming that this fitness advantage is maximum at the beginning of the invasion and decreases with time. Such fitness differences provide a quantifiable example of rapid selection-driven phenotypic evolution associated with environmental change in a natural population.  相似文献   

20.
Genes that mediate mate preferences potentially play a key role in promoting and maintaining biological diversity. In this study, we compare mate preference behavior in two related poeciliid fishes with contrasting behavioral phenotypes and relate these behavioral differences to gene profiles in the brain. Results reveal that one poeciliid fish, the Northern swordtail, exhibits robust mate preference as compared to the Western mosquitofish, which utilizes a coercive mating system. Female swordtails display no significant difference in association time between male- and female-exposure trials, whereas female mosquitofish spend significantly less time associating with males relative to females. Furthermore, the preference strength for large males is significantly lower in female mosquitofish relative to swordtails. We then examine expression of three candidate genes previously shown to be associated with mate preference behavior in female swordtails and linked to neural plasticity in other vertebrates: neuroserpin (NS), neuroligin-3 (NLG-3) and N-methyl-d-aspartate receptor (NMDA-R). Whole brain gene expression patterns reveal that two genes (NS and NLG-3) are positively associated with mate preference behavior in female swordtails, a pattern opposing that of the mosquitofish. In mosquitofish females, these genes are downregulated when females express biases toward males yet are elevated in association with total motor activity patterns under asocial conditions, suggesting that the presence of males in mosquitofish species may inhibit expression of these genes. Both gene expression and female behavioral responses to males exhibit opposing patterns between these species, suggesting that this genetic pathway may potentially act as a substrate for the evolution of mate preference behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号