首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Here we present the genomic sequence of the African cultivated rice, Oryza glaberrima, and compare these data with the genome sequence of Asian cultivated rice, Oryza sativa. We obtained gene‐enriched sequences of O. glaberrima that correspond to about 25% of the gene regions of the O. sativa (japonica) genome by methylation filtration and subtractive hybridization of repetitive sequences. While patterns of amino acid changes did not differ between the two species in terms of the biochemical properties, genes of O. glaberrima generally showed a larger synonymous–nonsynonymous substitution ratio, suggesting that O. glaberrima has undergone a genome‐wide relaxation of purifying selection. We further investigated nucleotide substitutions around splice sites and found that eight genes of O. sativa experienced changes at splice sites after the divergence from O. glaberrima. These changes produced novel introns that partially truncated functional domains, suggesting that these newly emerged introns affect gene function. We also identified 2451 simple sequence repeats (SSRs) from the genomes of O. glaberrima and O. sativa. Although tri‐nucleotide repeats were most common among the SSRs and were overrepresented in the protein‐coding sequences, we found that selection against indels of tri‐nucleotide repeats was relatively weak in both African and Asian rice. Our genome‐wide sequencing of O. glaberrima and in‐depth analyses provide rice researchers not only with useful genomic resources for future breeding but also with new insights into the genomic evolution of the African and Asian rice species.  相似文献   

2.
The monophyletic genus Wolffiella (Lemnaceae) comprises 10 species divided taxonomically into three sections. Relative to other genera of Lemnaceae, Wolffiella has a restricted range, with species distributed in warm temperate to tropical areas of Africa and the Americas, with only one species occurring in both areas. Sequence data from coding (rbcL and matK) and non‐coding (trnK and rpl16 introns) regions of cpDNA were analyzed phylogenetically to resolve relationships within Wolffiella, and these results were compared to earlier allozyme and morphological studies. Allozymes, cpDNA and morphology all supported the recognition of three sections. Relationships among species were similar in most respects between the allozyme and cpDNA trees, as well as among the different plastid partitions. In Wolffiella, both non‐synonymous and synonymous substitutions were greater in matK than in rbcL, as observed in other taxa. The synonymous substitution rate in matK was similar to the substitution rate of the non‐coding regions. All partitions, including coding regions, exhibited some homoplasy. Biogeographical reconstructions from a combination of cpDNA partitions indicated that Wolffiella originated in Africa with early movement to and radiation in the Americas. The one species found in both Africa and the Americas, W. welwitschii, likely originated in the Americas and subsequently dispersed to Africa. Using the SOWH test, the cpDNA data could reject two alternative biogeographical hypotheses suggested from analyses of morphological and allozyme data. The present distribution of Wolffiella can be explained by two major dispersal events and this contrasts with the more complex species distributions in other Lemnaceae genera. Limited dispersal in Wolffiella relative to other Lemnaceae genera may be due to more recent origins of species, lower dispersibility and poorer colonizing ability. © 2003 The Linnean Society of London, Biological Journal of the Linnean Society, 2003, 79 , 565–576.  相似文献   

3.
DNA variation in the alcohol dehydrogenase (Adh2) region of the wild rice Oryza rufipogon and its related species was analyzed to clarify maintenance mechanisms of the DNA variation in these species. A dimorphic pattern was detected in the Adh2 region of O. rufipogon. The silent nucleotide diversity (π) in the Adh2 region in O. rufipogon was 0.011, which was higher than that of the Adh1 region in O. rufipogon. Especially, a high nucleotide diversity was detected at synonymous sites of the catalytic domain 1. Average nucleotide diversity at silent sites within each of the dimorphic sequence types of the Adh2 region was similar to that in the Adh1 region, indicating that the high level of silent polymorphism in the Adh2 region was caused by the difference between the dimorphic sequence types. On the other hand, the level of replacement polymorphism in the Adh2 region was as low as that in the Adh1 region. The neutrality test of Fu and Li indicated significantly negative deviation from the neutral mutation model for the replacement sites of the Adh2 region. This result suggests purifying selection on the replacement sites of the Adh2 region, as detected for the Adh1 region. Significant linkage disequilibria (16.4% of the tests) were detected between the Adh1 and Adh2 regions. Even when nonrandom association was tested for the strains belonging to one of the divergent sequence types of the Adh2 region, significant interlocus linkage disequilibria were detected. The close physical distance and/or epistasis between the two Adh regions could be invoked to explain these nonrandom associations.  相似文献   

4.
Natural hybridization in Taraxacum between native sexual diploids and introduced agamospermous triploids occurring in Japan was studied by means of chloroplast DNA (cpDNA) marker. We first determined the nucleotide sequences between trnT (UGU) and trnF (GAA) of cpDNA for 22 plants obtained from Japan and Europe. The sequences analyzed were about 1,574 base pairs long. Among all accessions, the total numbers of polymorphic characters were 56 nucleotide substitutions, three insertions/deletions (ins/dels), and one repeat number polymorphism of mononucleotide motif. Of these polymorphic characters, four nucleotides and one ins/del were applicable in the discrimination between Japanese and European taxa of dandelions. We selected the ins/del in an intergenic region between trnL (UAA) 3′ exon and trnF (GAA) as a cpDNA marker. Using a newly developed cpDNA marker, 225 plants of putative Taraxacum officinale collected from 11 populations in Niigata City were investigated. Eighty-two percent of them showed a Japanese haplotype of cpDNA, and they were regarded as hybrids. Compared with the previous studies, it is likely that the prevalence of the hybrid plants is a general phenomena at least in urban areas in Japan. The validity of the cpDNA marker for screening Taraxacum hybrids is discussed. Electronic Publication  相似文献   

5.
This study aimed at the indentification of the species and genotypes of the genus Crataegus in Syria and determination of the genetic relationships among them based on the analysis of genomic and chloroplast DNA (cpDNA) using ISSRs and CAPS techniques. Morphological characterization carried out on 49 Crataegus samples collected from different geographical regions of Syria revealed four Crataegus species: momogyna, C. sinaica, C. aronia and C. azarolus. In the dendrogram constructed for those samples based on ISSRs (20 primers), all samples that belong to C. monogyna were clustered in one cluster. Samples of the other three species were overlaped in another cluster. Two samples of these were the most distant from all other samples in the dendrogram and were suggested to represent hybrid species or subspecies. When CAPS technique was applied on four Crataegus samples that represent the four suggested species using 22 cpDNA regions and 90 endonucleases, no polymorphism was detected neither in amplification products sizes nor in restriction profiles. The inability of detection of variation in cpDNA among species suggested can be attributed to the low level of evolution of the cpDNA in the genus, and to the possibility that some of these species are either subspecies or hybrids since the cpDNA is inherited through one parent only.  相似文献   

6.
The diversity and maternal lineage in wild and cultivated soybeans have previously been assayed using restriction fragment length polymorphism (RFLP) and sequencing analyses of chloroplast DNA (cpDNA). Here we describe a method based on PCR-RFLP for the identification of nucleotides at four mutation sites in non-coding regions of cpDNA. Of the four sites, two were located in restriction enzyme sites and two were not. For the latter two sites, new primers were designed to artificially create restriction sites that spanned them. The PCR-RFLP method enabled us to identify nucleotides at each of the four mutation sites easily and reliably. Fifty-seven wild and sixty-seven cultivated soybeans of different origins and different cpDNA types (types I, II, and III) were assayed. All of the samples tested could be classified into four haplotypes. All of the type-I and -II accessions had the same nucleotides at each of the four mutation sites, while all of the type-III accessions, except for 3 wild ones, had nucleotides that were different from those of types I and II. A sequencing analysis revealed that the 3 wild accessions possessed other single-base variations in the non-coding regions of trnH-psbA and trnT-trnL. The results of this study suggest that the type-I and type-II chloroplast genomes form a group that is distinct from the type-III chloroplast genome. Received: 14 April 2000 / Accepted: 11 July 2000  相似文献   

7.
Summary A physical map of the Bromus inermis chloroplast genome was constructed using heterologous probes of barley and wheat chloroplast DNA (cpDNA) to locate restriction sites. The map was aligned from data obtained from filter hybridization experiments on single and double enzyme digests. Cleavage sites for the enzymes PstI, SalI, KpnI, XhoI and PvuII were mapped. The chloroplast genome of B. inermis is similar in physical organization to that of other grasses. The circular cpDNA molecule of B. inermis has the typical small (12.8 kbp) and large (81.3 kbp) single-copy regions separated by a pair of inverted repeat (21 kbp) regions. The cpDNA molecule of B. inermis is collinear in sequence to that of wheat, rye, barley and oats. No structural rearrangements or major deletions were observed, indicating that the cpDNA of Bromus is a useful tool in phylogenetic studies.  相似文献   

8.
Genetic markers from the nuclear, chloroplast, and mitochondrial genomes were developed to distinguish unambiguously among four larch species [Larix laricina (Du Roi) K. Koch, Larix decidua (Mill.), Larix kaempferi (Lamb.) Sarg., and Larix sibirica (Ledeb.)] used in intensive forestry in eastern North America. Nine random amplified polymorphic DNA (RAPD) fragments had good diagnostic value, and 3 out of 12 nuclear genes were found to harbor fixed interspecific polymorphisms implicating a total of 17 single nucleotide polymorphisms (SNPs) and 2 indels. The sequencing of five mtDNA introns (cox1-intron1, matR-intron1, nad1-intron b/c, nad3-intron1, and nad5-intron1) and four cpDNA regions (matK, trnL-intron, trnTtrnL and trnL–trnF intergenic spacers) resulted in the identification of 14 sites with fixed interspecific differences among the four species. Including the ten Larix species, one polymorphic site per 47 nucleotide sites sampled was observed for nuclear genes, one per 283 sites for cpDNA, and one per 374 sites for mtDNA. The phylogeny of the genus could be estimated from variation among the ten species detected in two cpDNA intergenic regions and four mtDNA introns. There was congruence between cpDNA and mtDNA phylogenies with three large groups delineated: the North American, North Eurasian, and South Asian taxa. The position of L. sibirica differed between organelle genomes. It was regrouped with South Asian species on the cpDNA tree, but with its North Eurasian congenerics on the mtDNA tree. To simplify the detection of diagnostic DNA sequence polymorphisms among the four main Larix species, cleaved amplified polymorphic sequence (CAPS) assays were developed from the polymorphisms identified in the various genomes. Seventeen primer–enzyme combinations were tested, and six were selected for their high level of informativeness. These new species-specific diagnostic markers should be useful for the certification of larch breeding materials and hybrid stocks used in intensive forestry in the northern hemisphere.  相似文献   

9.
How Quaternary climatic oscillations affected range distributions and intraspecific divergence of alpine plants on the Qinghai‐Tibetan Plateau (QTP) remains largely unknown. Here, we report a survey of chloroplast DNA (cpDNA) and nuclear ribosomal internal transcribed spacer (ITS) DNA variation aimed at exploring the phylogeographical history of the QTP alpine endemic Aconitum gymnandrum. We sequenced three cpDNA fragments (rpl20–rps12 intergenic spacer, the trnV intron and psbA‐trnH spacer) and also the nuclear (ITS) region in 245 individuals from 23 populations sampled throughout the species’ range. Two distinct lineages, with eastern and western geographical distributions respectively, were identified from a phylogenetic analysis of ITS sequence variation. Based on a fast substitution rate, these were estimated to have diverged from each other in the early Pleistocene approximately 1.45 Ma. The analysis of cpDNA variation identified nine chlorotypes that clustered into two major clades that were broadly congruent in geographical distribution with the two ITS lineages. The east–west split of cpDNA divergence was supported by an amova which partitioned approximately half of the total variance between these two groups of populations. Analysis of the spatial distribution of chlorotypes showed that each clade was subdivided into two groups of populations such that a total of four population groups existed in the species. It is suggested that these different groups derive from four independent glacial refugia that existed during the Last Glacial Maximum (LGM), and that three of these refugia were located at high altitude on the QTP platform itself at that time. Coalescent simulation of chlorotype genealogies supported both an early Pleistocene origin of the two main cpDNA clades and also the ‘four‐refugia’ hypothesis during the LGM. Two previous phylogeographical studies of QTP alpine plants indicated that such plants retreated to refugia at the eastern/south‐eastern plateau edge during the LGM and/or previous glacial maxima. However, the results for A. gymnandrum suggest that at least some of these cold‐tolerant species may have also survived centrally on the QTP platform throughout the Quaternary.  相似文献   

10.
Summary Restriction fragment analysis of chloroplast (cp) DNAs from 35 wheat (Triticum) and Aegilops species, including their 42 accessions, was carried out with the use of 13 restriction enzymes to clarify variation in their cpDNAs. Fourteen fragment size mutations (deletions/insertions) and 33 recognition site changes were detected among 209 restriction sites sampled. Based on these results, the 42 accessions of wheat-Aegilops could be classified into 16 chloroplast genome types. Most polyploids and their related diploids showed identical restriction fragment patterns, indicating the conservatism of the chloroplast genome during speciation, and maternal lineages of most polyploids were disclosed. This classification of cpDNAs was principally in agreement with that of the plasma types assigned according to phenotypes arising from nucleus-cytoplasm interactions. These mutations detected by restriction fragment analysis were mapped on the physical map of common wheat cpDNA, which was constructed with 13 restriction endonucleases. Length mutations were more frequently observed in some regions than in others: in a 16.0 kilo base pairs (kbp) of DNA region, including rbcL and petA genes, 6 of 14 length mutations were concentrated. This indicates that hot spot regions exist for deletions/insertions in chloroplast genome. On the other hand, 33 recognition site mutations seemed to be distributed equally throughout the genome, except in the inverted repeat region where only one recognition site change was observed. Base substitution rate (p) of cpDNA was similar to that of other plants, such as Brassica, pea and Lycopersicon, showing constant base substitution rates among related taxa and slow evolution of cpDNA compared with animal mitochondrial DNA. Phylogenetic relationships among Triticum and Aegilops species were discussed, based on the present data.Contributions no. 45 and no. 490 from the Kihara Institute for Biological Research, Yokohama City University and the Laboratory of Genetics, Faculty of Agriculture, Kyoto University, respectively.  相似文献   

11.
利用trnL intron、trnL-trnF、trnS-psbC和accD-psa I等4个叶绿体DNA片段对来自湖北省的88份梨属种质资源进行系统进化和遗传多样性分析。结果表明,4个cpDNA片段共检测到变异位点11个,其中单一突变位点6个,插入/缺失(Indel)位点5个。acc D-psa I多态性最高,其变异位点数、核苷酸多态性和单倍型多样性均为最高。供试梨种质的核苷酸多样性和单倍型多样性分别为0.00112和0.769;Tajima's D检验值在P0.10水平上均不显著,表明所检测的4个区域以及合并后的片段均遵循中性进化模型;4个序列合并共检测到叶绿体单倍型10个,其中兴山梨种质中检测到的单倍型最多,荆门其次;Hap2和Hap5是2个主要单倍型,分别占总样本数的31.82%和30.68%;中介邻接网络图显示东方梨和西洋梨独立进化,而较为原始的稀有单倍型Hap8和Hap9均位于荆门,暗示该地区可能为砂梨的起源中心或多样性中心之一。  相似文献   

12.
Abstract Acetylcholinesterase (AChE) plays a vital role in the nervous system of insects and other animal species and serves as the target for many chemical agents such as organophosphate and carbamate insecticides. The mosquito, Culex pipiens complex, a vector of human disease, has evolved to be resistant to insecticides by a limited number of amino acid substitutions in AChE1, which is encoded by the ace‐1 gene. The aims of this study are to identify single nucleotide polymorphism (SNP) sites in the ace‐1 gene of the C. pipiens complex and explore an economical high‐throughput method to differentiate the genotypes of these sites in mosquitoes collected in the field. We identified 22 SNP sites in exon regions of the ace‐1 gene. Four of them led to non‐synonymous mutations, that is, Y163C, G247S, C677S and T682A. We used matrix‐assisted laser desorption ionization – time‐of‐flight mass spectrometry for genotyping at these four sites and another site F416V, which was relevant to insecticide resistance, in 150 mosquitoes collected from 15 field populations. We were able to synchronize analysis of the five SNP sites in each well of a 384‐well plate for each individual mosquito, thus decreasing the cost to one‐fifth of the routine analysis. Heterozygous genotypes at Y163C and G247S sites were observed in one mosquito. The possible influence of the five SNP sites on the activity or function of the enzyme is discussed based on the predicted tertiary structure of the enzyme.  相似文献   

13.
Restriction site variation in the chloroplast genome (cpDNA) was surveyed among 37 taxa or cytotypes (40 accessions) of the genus Hordeum. Seventeen restriction enzymes were employed, and a total of 491 restriction sites were assayed. Of these, 120 were variable among the taxa, including 70 synapomorphies. The level of sequence divergence (p) among species of Hordeum varied from 0.0 to 0.017, indicating that Hordeum possesses an about-average level of cpDNA diversity as compared to most other genera of flowering plants for which data are available. Wagner and polymorphism parsimony phytogenies were constructed from the restriction site data. These analyses divided the genus into several distinct groups; 1) American taxa; 2) diploid H. marinum; 3) Asian taxa; 4) H. vulgare-H. bulbosum; and 5) the H. murinum complex. Bootstrap-based confidence limits provided statistical support for the monophylesis of the latter three groups. The cpDNA data showed remarkably good congruence with previously published isoenzymatic, molecular, cytological, and crossing data.  相似文献   

14.
Recombination between homologous loci is accompanied by formation of heteroduplexes. Repairing mismatches in heteroduplexes often leads to single nucleotide substitutions in a process known as gene conversion. Gene conversion was shown to be GC‐biased in different organisms; that is, a W(A or T)→S(G or C) substitution is more likely in this process than a S→W substitution. Here, we show that the insertion/deletion ratio for short noncoding indels that reach fixation between species is positively correlated with the recombination rate in Drosophila melanogaster, Homo sapiens, and Saccharomyces cerevisiae. This correlation is both due to an increase of the fixation rate of insertions and decrease of the fixation rate of deletions in regions of high recombination. Whole‐genome data on indel polymorphism and divergence in D. melanogaster rule out mutation biases and selection as the cause of this trend, pointing to insertion‐biased gene conversion as the most likely explanation. The bias toward insertions is the strongest for single‐nucleotide indels, and decreases with indel length. In regions of high recombination rate this bias leads to an up to ~5‐fold excess of fixed short insertions over deletions, and substantially affects the evolution of DNA segments.  相似文献   

15.
Brassica napus (rapeseed) is a recent allotetraploid plant and the second most important oilseed crop worldwide. The origin of B. napus and the genetic relationships with its diploid ancestor species remain largely unresolved. Here, chloroplast DNA (cpDNA) from 488 B. napus accessions of global origin, 139 B. rapa accessions and 49 B. oleracea accessions were populationally resequenced using Illumina Solexa sequencing technologies. The intraspecific cpDNA variants and their allelic frequencies were called genomewide and further validated via EcoTILLING analyses of the rpo region. The cpDNA of the current global B. napus population comprises more than 400 variants (SNPs and short InDels) and maintains one predominant haplotype (Bncp1). Whole‐genome resequencing of the cpDNA of Bncp1 haplotype eliminated its direct inheritance from any accession of the B. rapa or B. oleracea species. The distribution of the polymorphism information content (PIC) values for each variant demonstrated that B. napus has much lower cpDNA diversity than B. rapa; however, a vast majority of the wild and cultivated B. oleracea specimens appeared to share one same distinct cpDNA haplotype, in contrast to its wild C‐genome relatives. This finding suggests that the cpDNA of the three Brassica species is well differentiated. The predominant B. napus cpDNA haplotype may have originated from uninvestigated relatives or from interactions between cpDNA mutations and natural/artificial selection during speciation and evolution. These exhaustive data on variation in cpDNA would provide fundamental data for research on cpDNA and chloroplasts.  相似文献   

16.
Aim Here we explore the variation in chloroplast DNA (cpDNA) in a widespread Eurasian diploid forage grass, meadow fescue (Festuca pratensis Huds.), to address its phylogeographical history. In particular, we aim to answer whether the post‐glacial migration routes of meadow fescue are associated with the spread of agriculture or concurrent with well‐documented natural migration pathways from glacial refugia. Location A total of 56 Eurasian accessions of F. pratensis were analysed, representing the entire native distribution area as well as non‐native areas in northernmost Europe. Methods Based on initial sequencing of 10 non‐coding cpDNA regions, three regions were sequenced for all F. pratensis accessions. For reference, three closely related species [the diploid Lolium perenne L. and the polyploids Festuca arundinacea Schreb. and Festuca gigantea (L.) Vill.] were also sequenced, as well as the more distantly related Festuca ovina L. Divergence times were estimated assuming a simple molecular clock, calibrated using a previously published estimate of 9 Myr for the divergence between fine‐leaved (F. ovina) and broad‐leaved fescues (F. pratensis, F. arundinacea and F. gigantea). Results Limited, but geographically structured, cpDNA variation was observed in F. pratensis. Three haplotypes, estimated to have diverged 0.16 Ma, were identified: one western European (A), one with a wide eastern distribution from central‐eastern Europe into Asia (B) and one Caucasian (C). The haplotypes of the polyploids and L. perenne were estimated to have diverged from haplotype A in F. pratensis 0.8–1.3 Ma. Main conclusions We found no definite evidence for migration of the diploid F. pratensis associated with the spread of agriculture from the Fertile Crescent after the last glaciation. The distinct geographical structuring of the present‐day variation in cpDNA can rather be explained by northwards expansion of the western haplotype from an Iberian refugium, expansion of the eastern haplotype from an unlocated (south‐)eastern refugium and glacial survival without subsequent expansion from a Caucasian refugium. The high level of cpDNA divergence observed between this diploid and the polyploids which have probably been derived from it may suggest that the very low level of cpDNA variation in the diploid is caused by a recent bottleneck. Today, F. pratensis is widespread in the open agricultural landscape but appears otherwise confined to naturally open habitats such as river banks, and its populations may have been decimated when dense forests dominated in the previous interglacial.  相似文献   

17.
Summary Chloroplast DNA (cpDNA) restriction analysis was used to classify five reforestation seedlots as to species. The material included two Sitka spruce (Picea sitchensis (Bong.) Carr.), one white spruce (P. glauca (Moench) Voss) from interior British Columbia, and two putative hybrid seedlots from the coast-interior introgression zone in British Columbia. The cpDNA patterns generated by Bam-HI and Bc1-I from individual trees of Sitka spruce, white spruce, western white spruce (P. glauca var. albertiana (S. Brown)), and Engelmann spruce (P. engelmanni (Parry)) were species-specific. They were used as reference patterns for comparisons. In addition, two controlled crosses between white and Sitka spruce were analyzed to demonstrate the paternal inheritance of cpDNA in spruces. The cpDNA restriction patterns for the five seedlots were obtained from composite samples of seedlings from each lot and compared to the typical cpDNA patterns of each species. Restriction patterns for the two Sitka spruce seedlots agreed with those from the Sitka spruce tree, while patterns for the white spruce seedlots from British Columbia agreed with those from the white spruce tree, lacking evidence of any Engelmann spruce component in the sample. On the other hand, one putative hybrid seedlot showed cpDNA patterns similar to white spruce while the other showed fragments unique to both Sitka and white spruce, indicating that this was a hybrid seedlot. The analysis of cpDNA restriction polymorphism has proven to be an effective tool for classifying seedlots in regions of introgression. To our knowledge, these results provide the first demonstration of the use of cpDNA analysis for solving practical forestry problems.  相似文献   

18.
Summary Three annual widespread species of Hordeum were investigated by the fragment pattern method on their chloroplast (cp) DNA. The species were H. glaucum, H. leporinum and H. murinum; H. vulgare was surveyed for comparison. Twelve restriction enzymes were used, nine recognizing 6 bp, one 5 bp and two 4 bp, thus, randomly surveyed, a total of 2,113 bp or 1.6% of the cp genome. Differences in patterns were found in three enzymes, HindIII, CfoI and MspI. CfoI characterizes H. glaucum from the other two species. HindIII and MspI revealed polymorphisms within species. These results confirm previous numerical taxonomic relationships among these three closely related species. Furthermore, cpDNA polymorphism in Hordeum is discussed in view of earlier reports on cpDNA polymorphism in H. vulgare. The taxonomic implications of cpDNA polymorphism are discussed after reviewing several articles using the fragment pattern method on cpDNA. The importance of using material from several populations representative of a species is stressed.  相似文献   

19.
Aims To unravel isolation and differentiation of the genetic structure of the Euphrasia transmorrisonensis complex, a showy herb, among alpine regions of mountain peaks in subtropical Taiwan and to infer its evolutionary history. Location Alpine ecosystems of high‐montane regions of Taiwan. Methods Phylogenetic analyses of the trnL intron and the trnL–trnF intergenic spacer of chloroplast (cp) DNA, and the intertranscribed spacer (ITS) of nuclear ribosomal (nr) DNA between 18S and 26S were carried out on 18 populations of the E. transmorrisonensis complex in Taiwan. Results In total, 10 haplotypes for cpDNA and 14 haplotypes for nrDNA were detected. Three population groups located in the northern, north‐eastern, and south‐central regions of the Central Mountain Range (CMR) were revealed according to the frequencies of haplotypes and haplotype lineages of nrDNA. Balancing selection might have played a role in the evolution of Euphrasia in Taiwan. Main conclusions By integrating the spatial‐genetic patterns of cpDNA and nrDNA, two possible evolutionary histories of Euphrasia in Taiwan were inferred. The favourable hypotheses for interpreting the data suggest at least three origins of the E. transmorrisonensis complex in Taiwan, corresponding to each nuclear lineage in the northern (II), northern/north‐eastern (I), and central/southern regions (III) with subsequent hybridization between lineages I and II and lineages II and III. These lineage boundaries are strengthened by the finding that haplotypes of C derived from cpDNA were found in the geographical region of lineage II of nrDNA, while haplotypes of A derived from cpDNA were found in the region of lineage III of nrDNA. Thus, the origin of chloroplasts exclusive to lineages II and III supports their long‐term isolation from one another.  相似文献   

20.
Ulva compressa L. is a heterothallic macroalga considered to be in the early evolutionary stage between isogamy and anisogamy. Two genetic lines of this species, each consisting of gametophytes with opposite mating types, were collected on the coasts of Ehime and Iwate prefectures: MGEC‐1 (mt+) and MGEC‐2 (mt?) from Ehime, and MGEC‐5 (mt+) and MGEC‐6 (mt?) from Iwate. Their relative gamete sizes (i.e., cell volumes) do not correspond to their mating types: MGEC‐6 (19.8 μm3) > MGEC‐1 (18.6 μm3) > MGEC‐5 (17.0 μm3) > MGEC‐2 (10.1 μm3). The pattern of organelle inheritance is an important sexual characteristic in many eukaryotes. We therefore investigated the relationship between gamete size and the inheritance of chloroplast DNA (cpDNA). Polymorphisms between the cpDNA of the two lines were used as markers. We found a 24 bp insertion between psbF and psbL, and the substitution of a StyI site (from C CAAGG to T CAAGG) in the intergenic region between petD and accD. Two interline crosses (MGEC‐1 × MGEC‐6 and MGEC‐2 × MGEC‐5) produced 42 and 38 zygotes, respectively. PCR and PCR–RFLP analyses showed that the cpDNA of the mt+ gametes was consistently inherited in both crosses. The cpDNA is inherited from one parent only, and it depends not on gamete size but on being mt+. The cpDNA was observed during crossing and in the zygotes 6 h after mating. In 6% of the zygotes, the cpDNA derived from the mt? gametes disappeared 3–4 h after mating. Preferential digestion of the cpDNA in the zygote’s mt? gamete may form the basis for uniparental inheritance of cpDNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号