首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mann  D. G. 《Hydrobiologia》1993,(1):11-20
Sexual reproduction takes many forms within the diatoms. The variation has been classified by several authors, but in most cases the distinctions between their main categories have depended on the number of gametes produced per gametangium (and thus on how many zygotes per pair of copulating cells), and upon whether fusion is oogamous, anisogamous or isogamous. These classifications are not themselves an adequate basis for taxonomic comparison, which should be based on individual characteristics of the sexual process. Diatoms seem to be primitively oogamous. In araphid pennate diatoms and some raphid diatoms the gametes and gametangia are morphologically alike but physiologically distinct; one gametangium produces active gametes and the other passive ones. This may be the primitive condition in pennate diatoms, providing a link to the oogamy of centrics via the morphological anisogamy of Rhabdonema Kütz.  相似文献   

2.
InLicmophora gracilis var.anglica two auxospores are produced per pair of mother-cells, through the allogamic fusion of migratory and stationary gametes. Both active gametes are produced from the same mother-cell and hence both zygotes are formed in the other mother-cell. Pairing can occur between two stalked cells, or between a stalked cell and a detached cell; in the latter case the migratory gametes derive from the detached cell. The auxospores expand parallel to one another and to the apical axis of the donor mother-cell. Behavioural anisogamy of this kind, which may be termed thecis-type, seems to be characteristic of most araphid pennates and contrasts with thetrans-type exhibited byCymbella, Gomphonema and some other raphid taxa, where each mother-cell produces one migratory and one stationary gamete.  相似文献   

3.
Recent studies have led to a rapid increase in knowledge of auxospore formation in diatoms. However, these studies have been limited to centric and raphid pennate diatoms, and there is still very little information for the araphid pennate diatoms. Using LM and SEM, we studied the development of the auxospore and the initial cell of the marine epiphytic diatom Gephyria media Arnott. Auxospores were bipolar and curved in side view, as in many other pennate diatoms. SEM revealed many transverse perizonial bands, all of which were incomplete rings. There was an elongate, sprawling, silicified structure beneath the ventral suture of the transverse perizonial bands. This structure is presumably equivalent to the longitudinal perizonial band in other pennate diatoms, although we could not determine the homologous relationship between the two features. Scales were found both in the inner wall of the perizonium and around the primary perizonial bands. The presence or absence of scales may be of phylogenetic significance in diatoms, only during the final stages of auxospore formation because scales are found in early spherical stages. The distinctive finger‐like structures observed throughout all stage of G. media have not been observed before in the other diatom taxa.  相似文献   

4.
The auxosporulation of Licmophora communis is allogamous and dioecious. Pairing between sessile, shortstalked cells of compatible clones is followed by meiosis and gametogenesis, to form two gametes in each gametangium. The behavior of the gametes differs between the gametangia. In the male gametangium, the gametes detach from the frustule, round up, and migrate out of the gametangium after its dehiscence at the broader, unattached pole. In the female gametangium, both gametes remain attached to the adjacent theca over almost their whole length and do not move. Plasmogamy therefore occurs within the female gametangium and this is where the zygotes are formed and remain. After fertilization, the zygotes detach from the thecae of the female gametangia, contract, and become ellipsoidal, before expanding parallel to the apical axis of the gametangium. We review the types of auxosporulation in other pennate diatoms and the systems used for classifying these. Dioecy and cis‐type anisogamy (in which one gametangium produces active gametes and the other produces passive gametes), as in L. communis, are probably primitive within the pennate group (although there is no information on the AsterionellopsisRhaphoneis clade). However, size can also be restored in various araphid pennates by allogamous sexual reproduction involving the formation of only one gamete per gametangium, or in rare cases by automixis or (apparently) vegetative enlargement.  相似文献   

5.
The diatoms are one of the best characterised algal groups. Despite this, little is known of the evolution of the group from the earliest cell to the myriad of taxa known today. Relationships among taxa at the family or generic level have been recognised in some diatoms. However, relationships at higher taxonomic levels are poorly understood and have often been strongly influenced by the first appearances of key taxa in the fossil record. An independent assessment of relationships among the diatoms at these higher taxonomic levels has been made using rRNA sequence data to infer phylogenetic relationships. In this paper we present an analysis of 18S rRNA data from several chosen centric, araphid and raphid pennate taxa. The phylogenetic inferences from these 18S rRNA sequences are supported by evidence from the fossil record and evidence from ontogenetic data. Ribosomal RNA data indicate that both the centric and araphid pennate lineages may not be monophyletic.  相似文献   

6.
Sato S  Beakes G  Idei M  Nagumo T  Mann DG 《PloS one》2011,6(10):e26923

Background

Diatoms belong to the stramenopiles, one of the largest groups of eukaryotes, which are primarily characterized by a presence of an anterior flagellum with tubular mastigonemes and usually a second, smooth flagellum. Based on cell wall morphology, diatoms have historically been divided into centrics and pennates, of which only the former have flagella and only on the sperm. Molecular phylogenies show the pennates to have evolved from among the centrics. However, the timing of flagellum loss – whether before the evolution of the pennate lineage or after – is unknown, because sexual reproduction has been so little studied in the ‘araphid’ basal pennate lineages, to which Pseudostaurosira belongs.

Methods/Principal Finding

Sexual reproduction of an araphid pennate, Pseudostaurosira trainorii, was studied with light microscopy (including time lapse observations and immunofluorescence staining observed under confocal scanning laser microscopy) and SEM. We show that the species produces motile male gametes. Motility is mostly associated with the extrusion and retrieval of microtubule-based ‘threads’, which are structures hitherto unknown in stramenopiles, their number varying from one to three per cell. We also report experimental evidence for sex pheromones that reciprocally stimulate sexualization of compatible clones and orientate motility of the male gametes after an initial ‘random walk’.

Conclusions/Significance

The threads superficially resemble flagella, in that both are produced by male gametes and contain microtubules. However, one striking difference is that threads cannot beat or undulate and have no motility of their own, and they do not bear mastigonemes. Threads are sticky and catch and draw objects, including eggs. The motility conferred by the threads is probably crucial for sexual reproduction of P. trainorii, because this diatom is non-motile in its vegetative stage but obligately outbreeding. Our pheromone experiments are the first studies in which gametogenesis has been induced in diatoms by cell-free exudates, opening new possibilities for molecular ‘dissection’ of sexualization.  相似文献   

7.
Benthic diatoms are dominant primary producers in intertidal marine sediments, which are characterized by widely fluctuating and often extreme light conditions. To cope with sudden increases in light intensity, benthic diatoms display both behavioural and physiological photoprotection mechanisms. Behavioural photoprotection is restricted to raphid pennate diatoms, which possess a raphe system that enables motility and hence positioning in sediment light gradients (e.g. via vertical migration into the sediment). The main physiological photoprotection mechanism is to dissipate excess light energy as heat, measured as Non-Photochemical Quenching (NPQ) of chlorophyll fluorescence. A trade-off between vertical migration and physiological photoprotection (NPQ) in benthic diatoms has been hypothesized before, but this has never been formally tested. We exposed five epipelic diatom species (which move in between sediment particles) and four epipsammic diatom species (which live in close association with individual sand grains) to high light conditions, and characterized both NPQ and the relative magnitude of the migratory response to high light. Our results reveal the absence of a significant downward migratory response in an araphid diatom, but also in several raphid epipsammic diatoms, while all epipelic species showed a significant migratory response upon high light exposure. In all epipsammic species the upregulation of NPQ was rapid and pronounced; NPQ relaxation in low light conditions, however, occurred faster in the araphid diatom, compared with the raphid epipsammic species. In contrast, all epipelic species lacked a strong and flexible NPQ response and showed higher susceptibility to photodamage when not able to migrate. While overall our results support the vertical migration-NPQ trade-off, the lack of strong relationships between the capacity for vertical migration and NPQ within the epipsammic and epipelic groups suggests that other factors as well, such as cell size, substrate type and photoacclimation, may influence photoprotective strategies.  相似文献   

8.
Origin and evolution of the canal raphe system in diatoms   总被引:1,自引:0,他引:1  
Ruck EC  Theriot EC 《Protist》2011,162(5):723-737
One lineage of pennate diatoms has a slit through the siliceous cell wall, called a "raphe," that functions in motility. Raphid pennate diatoms number in the perhaps tens of thousands of species, with the diversity of raphe forms potentially matching this number. Three lineages-the Bacillariales, Rhopalodiales, and Surirellales-possess a complex and presumably highly derived raphe that is physically separated from the cell interior, most often by a set of siliceous braces. Because the relationship among these three lineages is unclear, the number of origins of the canal raphe system and the homology of it and its constitutive parts among these lineages, is equally unclear. We reconstructed the phylogeny of raphid pennate diatoms and included, for the first time, members of all three canal raphid diatom lineages, and used the phylogeny to test specific hypotheses about the origin of the canal raphe. The canal raphe appears to have evolved twice, once in the common ancestor of Bacillariales and once in the common ancestor of Rhopalodiales and Surirellales, which form a monophyletic group in our analyses. These results recommend careful follow-up morphogenesis studies of the canal raphe in these two lineages to determine the underlying developmental basis for this remarkable case of parallel evolution.  相似文献   

9.
Sequenced fragments of genes coding for silicon transporters (SITs) were analyzed for diatoms of evolutionarily distant classes (centric Chaetoceros muelleri Lemmermann, pennate araphid Synedra acus Kützing, pennate raphid Phaeodactylum tricornutum Bohlin, and pennate Cylindrotheca fusiformis Reimann et Lewin with a keeled raphe system). SITs were found to contain a conserved motif, CMLD. Hydropathy profiles showed that the motif CMLD is between two transmembrane domains lacking Lys and Arg, and the domains were consequently assumed to play a role in the formation of a channel mediating silicic acid transport. The motif CMLD proved to be rare. Since Zn2+ is necessary for silica incorporation into diatom cells, a hypothesis was advanced that the motif CMLD acts as a Zn-binding site. Diatom growth suppression was observed in the presence of the alkylating agent N-iodoacetylamidoethyl-1-aminonaphthalene-5-sulfonic acid (AEDANS), which does not penetrate into the cell. Cys of the motif CMLD was assumed to act as a target for AEDANS. Zinc ions inhibited Cys alkylation in the synthetic peptide NCMLDY, testifying to the above hypothesis.__________Translated from Molekulyarnaya Biologiya, Vol. 39, No. 2, 2005, pp. 303–316.Original Russian Text Copyright © 2005 by Sherbakova, Masyukova, Safonova, Petrova, Vereshagin, Minaeva, Adelshin, Triboy, Stonik, Aizdaitcher, Kozlov, Likhoshway, Grachev.  相似文献   

10.
Mitosis and valve morphogenesis in the pennate diatom Achnanthes coarctata (Bréb. in W. Sm.) Grun. are described. After cytokinesis, both daughter nuclei and their microtubule centers (MCs) are found near one side of the cell. Each new tubular silica deposition vesicle (SDV) arises centrally, forming a single rib running the length of the cell. Each MC then migrates around its nucleus and positions itself directly adjacent to the new SDV. The enlarging silicalemmas with their associated MCs, nuclei, microtubules (MTs) and microfilaments (MFs) appear in mirror image in the daughter cells. Both SDVs soon generate a second longitudinal rib alongside the first; the gap between the ribs ultimately becomes the future raphe fissure. The MC, MTs and nucleus are associated with each fissure. However, the subsequent behavior of the valve secreting machinery now becomes quite different in the daughter cells. In the cell that will form a raphid valve, the silicalemma, flanked by MFs, expands laterally in both directions over the cleavage furrow. Within the expanding SDV, silica secretion continues, eventually generating the structure of the mature valve, and during this phase the raphe fissure becomes delineated as in other raphid diatoms. In the other daughter cell, however, the MC and its MTs withdraw from the silicalemma, and the SDV moves laterally across the cleavage furrow until the double rib is at the corner of the cell. As silica is secreted into this expanding SDV, the raphe fissure completely fills in. This valve, therefore, lacks a raphe when mature and has a symmetry quite different from that of the valve formed in the other daughter cell. These events are compared with the course of morphogenesis described for other raphid diatoms.  相似文献   

11.
Sequencing of fragments of genes coding for silicic acid transport (SIT) proteins of diatoms of evolutionary distant classes (centric Chaetoceros muelleri Lemmermann, pennate araphid Synedra acus Kützing, pennate raphid Phaeodactylum tricornutum Bohlin, and pennate with keeled raphe system Cylindrotheca fusiformis Reimann et Lewin), revealed the presence in these proteins of a conservative amino acid motif CMLD. Hydropathy profiles suggest that CMLD occupies a position between two transmembrane strands which do not contain lysine and arginine residues. The two strands are good candidates for the role of the channel along which transport of silicic acid occurs. CMLD is a rare motif. Diatoms are known to need Zn2+ for the incorporation of silica. Presumably, CMLD is the site of Zn2+ binding of SITs. We found that the growth of diatoms is inhibited by a negatively charged alkylating reagent 5-(2-iodoacetamidoethyl)aminonaphtalene-1-sulfonic acid which cannot penetrate through the cell membrane. Cysteine of CMLD can be a target of this reagent. Synthetic peptide NCMLDY forms a complex with Zn2+, as revealed by the fact that the ion considerably reduces the rate of alkylation of the peptide.  相似文献   

12.
The availability of extensive experimental data and remarkable intra- and interspecific variation in breeding behaviour make Achnanthes Bory sensu stricto an especially good model for studying the reproductive and population biology of pennate diatoms. In most Achnanthes species studied, auxospore formation is accompanied by biparental sexual reproduction, but we found uniparental auxosporulation in Achnanthes cf. subsessilis. Auxosporulation appears to be apomictic and follows contraction of the contents of unpaired cells and then a mitotic division, which is normally acytokinetic: one nucleus aborts before the cell develops into an auxospore. Rarely, both daughter nuclei survive and cytokinesis produces two auxospores (two auxospores per mother cell is highly unusual in pennate diatoms); one may abort. Expansion of auxospores is not accompanied by deposition of a transverse perizonium, but a longitudinal perizonium is produced and consists of a wide central strip (structurally similar to the araphid valve) and at least one narrow lateral strip. This newly discovered asexual lineage in Achnanthes is discussed in relation to other reproductive systems found in the genus, and also in relation to the ‘sex clock’ hypothesis concerning the adaptive significance of the diatom life cycle. Brief information on chloroplast division and nuclear dynamics over the cell cycle is also presented.  相似文献   

13.
Summary Cells of the centric diatomDitylum brightwellii were filmed undergoing cell division and valve secretion, and were fixed for transmission electron microscopy. Attention was directed particularly at the origin of the Labiate Process Apparatus (LPA).As reported previously (li andVolcani 1985 a), the nucleus, centrally situated during interphase, moves laterally to undergo mitosis against the girdle bands. We describe the spindle which splits up into numerous fibres of overlapped polar microtubules (MTs) by metaphase. The chromosomes are diffuse and the spindle elongates rapidly during anaphase. A complex of organelles is found at the poles and ill-defined, dense material extends to the nearby plasmalemma from prophase on. The two Silica Deposition Vesicles (SDVs) are initiated during anaphase close to the poles and by midcleavage, the dense LPA arises on each SDV close to dense polar material. After cleavage, the daughter protoplasts round up and the SDV, already containing a nascent valve, expands over the cleavage furrow. The labiate process, a long straight hollow tube of silica, is rapidly (ca. 25 minutes) secreted from directly under the LPA; a fibrous plug (polysaccharide?) always appears in the SDV immediately adjacent to the LPA during the initiation of this secretion. The ill-defined Microtubule-Organizing Center (MC) from the spindle pole remains close to the LPA and in it can be seen the tiny presumptive primordial spindle on the nuclear envelope.The raphe and the labiate process (LP), both highly differentiated apertures in the valve, probably function in a specialized form of the mucilage secretion involved in generation of movement in raphid diatoms, and in a simple form of movement in some centrics. Morphogenesis of the LP is associated with the LPA while differentiation of the raphe is almost associated with the MC; both MC and LPA have an intimate ontological relationship with the spindle pole and the postmitotic cytoskeletal system of MTs. This association also is seen in the formation of the LP in an araphid pennate,Diatoma (work in progress). Therefore, from functional, morphogenetic and ontogenetic observations, we support the proposal that the raphe of pennate diatoms arose from the LP of centric diatoms.  相似文献   

14.
Diatoms stand out among other microalgae due to the high diversity of species-specific silica frustules whose components (valves and girdle bands) are formed within the cell in special organelles called silica deposition vesicles (SDVs). Research on cell structure and morphogenesis of frustule elements in diatoms of different taxonomic groups has been carried out since the 1950s but is still relevant today. Here, cytological features and valve morphogenesis in the freshwater raphid pennate diatom Encyonema ventricosum (Agardh) Grunow have been studied using light and transmission electron microscopy of cleaned frustules and ultrathin sections of cells, and scanning electron and atomic force microscopy of the frustule surface. Data have been obtained on chloroplast structure: the pyrenoid is spherical, penetrated by a lamella (a stack of two thylakoids); the girdle lamella consists of several short lamellae. The basic stages of frustule morphogenesis characteristic of raphid pennate diatoms have been traced, with the presence of cytoskeletal elements near SDVs being observed throughout this process. Degradation of the plasmalemma and silicalemma is shown to take place when the newly formed valve is released into the space between sister cells. The role of vesicular transport and exocytosis in the gliding of pennate diatoms is discussed.  相似文献   

15.
A marine araphid pennate diatom Plagiostriata goreensis is described from the sand grains of Goree Island, Dakar, Republic of Senegal, based on observations of fine structure of its frustule. The most striking feature of the species is its striation, which is angled at approximately 60° across the robust sternum. The other defining features of the species are its one highly reduced rimoportula and apical pores located at both ends of the valve margin. In the 18S rDNA phylogeny, the species appears as a member of a ‘small‐celled clade’ of araphid pennate diatoms that consist of Nanofrustulum, Opephora and Staurosira. The results of the phylogenetic analyses suggest that the distinct characters of the diatom; namely, oblique striae and apical pores, may have been acquired independently. However, it remains unclear whether the rimoportula of P. goreensis is a reduced state or P. goreensis acquired its morphologically curious rimoportula independently after the loss of an ancient rimoportula at the root of the small‐celled clade.  相似文献   

16.
Valve morphogenesis in two Surirellae (S. ovalis Brebisson and S. robusta Ehrenberg) is described. Mitosis takes place at the broad end of the cell. After cleavage, a new Microtubule Center (MC) arises near each spindle pole and moves to the adjacent plasmalemma. Soon, a specific group of microtubules (MTs) extends from very near the MC around the periphery of the cell. Concurrently, the new tubular Silica Deposition Vesicle (SDV) grows around the periphery of the cell close to these MTs. A double rib of silica is rapidly formed inside the SDV; the space between the ribs becomes the raphe. Mitochondria line up along the MTs, and the SDV may be molded around these to create the canal raphe. Soon, the SDV expands in two directions to create the face and the mantle of the new valve. Meanwhile, each daughter nucleus, accompanied by the MC, moves to its interphase position at the center of the cell; this movement is colchicine-sensitive. As in several other pennate diatoms, an interruption in the raphe of the mature valve coincides with the initial position of the MC. The canal raphe thickens rapidly around the mitochondria; a rudimentary raphe fiber may be associated with the creation of a tiny curvature at the inner raphe fissure. As the SDV expands in the large S. robusta, the daughter cell protoplasts slowly shrink by plasmolysis, thereby creating the complex curved surface of the new valve surmounted by the arching canal raphes which are now quite rigid. In S. ovalis, the daughter cell protoplasts remain appressed and therefore the new valve surface is basically flat. The symmetry of Surirella is quite different from that of other pennate diatoms. However, the cytoplasmic events accompanying valve morphogenesis are similar in all important respects to those described in other raphid pennate diatoms, and clearly supports a naviculoid origin for this genus.  相似文献   

17.
During sexual reproduction, araphid pennate diatoms of the genus Tabularia (Kützing) D. M. Williams and Round released male gametes directly into the medium, sometimes at a considerable distance from the female gametes. This raised the question of how male gametes, suspended in water, manage to reach female ones, given that no locomotive organelles have been described in gametes of pennate diatoms. Optical microscopic investigation revealed cytoplasmic projections produced by male gametes of Tabularia tabulata (C. A. Agardh) Snoeijs and T. fasciculata (C. A. Agardh) D. M. Williams and Round. Morphology and behavior of these projections is consistent with pseudopodia, however, which specific type of pseudopodia they may be, remains inconclusive. The growth and retraction of the pseudopodia coincided with gamete motility and so we postulate that it explains the otherwise apparent random movement of male gametes. Spinning, shuffling and chaotic patterns of motility were documented. In theory, gamete mobility increases the probability of gamete encounter thus enhancing the probability of syngamy. This is the first known case where cytoplasmic projections have been described in diatom gametes, and possibly in mature gametes in general.  相似文献   

18.
The diatom genus Toxarium Bailey has been treated as a pennate because of its elongate shape and benthic lifestyle (it grows attached to solid substrata in the marine sublittoral). Yet its valve face lacks all structures that would ally it with the pennates, such as apical labiate processes, a midrib (sternum) subtending secondary ribs and rows of pores extending perpendicularly out from the midrib, or a raphe system. Instead, pores are scattered irregularly over the valve face and only form two distinct rows along the perimeter of the valve face. In our nuclear small subunit rDNA phylogenies, Toxarium groups with bi‐ and multipolar centrics, as sister to Lampriscus A. Schmidt. Thus, the genus acquired a pennate‐like shape and lifestyle independently from that of the true pennates. The two species known, T. hennedyanum Grunow and T. undulatum Bailey, differ only in a single feature: the valve perimeter of the former shows only a central expansion, whereas that of the latter possesses in addition a regular undulation. Yet both forms were observed in our monoclonal cultures, indicating that the two taxa represent extremes in a plasticity range. Toxarium resembles another elongate and supposedly araphid diatom, Ardissonea De Notaris, in being motile. Cells can move at speeds of up to 4 μm·s ? 1 1 Received 7 June 2002. Accepted 4 October 2002. through secretion of mucilage from the cell poles or they remain stationary for longer periods, when they form short polysaccharide stalks. Division during longer periods of quiescence leads to the formation of small colonies of linked or radiating cells.  相似文献   

19.
20.
Each valve of the araphid pennate diatom Diatoma has a labiate process (LP) at one end; in a frustule, the LPs are at diagonally opposite ends. After mitosis is over, an elongated dense body detaches from the spindle pole and migrates to one end of the daughter cell, always diagonally opposite the LP of the parental valve. This dense body trails a cone-shaped array of microtubules (MTs). Meanwhile, the new valve has begun to form within the Silica Deposition Vesicle (SDV). Having reached the end of the cell, this dense body moves back slightly and then settles onto the SDV, developing a layered substructure as it does so. Immediately beneath it, the LP of the new daughter valve differentiates. This dense object is clearly the homologue of the fibrous Labiate Process Apparatus (LPA) involved in the differentiation of the LP in several centric diatoms. In a few cases, these LPAs also hair been shown to originate from some component of the spindle pole. Thus, the homologue of the LPA of centric diatoms has now been found in an araphid pennate diatom; in each case, the LPA apparently comes from the pole of the spindle and presumably uses a cytoskeleton of MTs to locate the LP in its correct position. These observations support the possibility that the raphe evolved from the LP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号