首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phage lambda lyses the host Escherichia coli at a precisely scheduled time after induction. Lysis timing is determined by the action of phage holins, which are small proteins that induce hole formation in the bacterium's cytoplasmic membrane. We present a two-stage nucleation model of lysis timing, with the nucleation of condensed holin rafts on the inner membrane followed by the nucleation of a hole within those rafts. The nucleation of holin rafts accounts for most of the delay of lysis after induction. Our simulations of this model recover the accurate lysis timing seen experimentally and show that the timing accuracy is optimal. An enhanced holin-holin interaction is needed in our model to recover experimental lysis delays after the application of membrane poison, and such early triggering of lysis is possible only after the inner membrane is supersaturated with holin. Antiholin reduces the delay between membrane depolarization and lysis and leads to an earlier time after which triggered lysis is possible.  相似文献   

2.
3.
Control of phage-induced enzymes in bacteria   总被引:4,自引:0,他引:4  
  相似文献   

4.
Studies of a phage-induced DNA methylase   总被引:1,自引:0,他引:1  
  相似文献   

5.
6.
7.
Phosphorylcholine and cytidine diphosphocholine as well as two enzyme activities, a choline kinase and a cytidine diphosphocholine pyrophosphorylase, were identified in pneumococcal extracts. It is suggested that cytidine diphosphocholine may be a biosynthetic precursor of the choline moiety in the teichoic acids of pneumococcus.  相似文献   

8.
9.
10.
11.
With the introduction of the pneumococcal conjugate vaccine (PCV), the number of cases of non-vaccine type pneumococci and non-encapsulated Streptococcus pneumoniae (NESp) infection have increased. In order to clarify how pspK-harbouring NESp might have emerged, we characterised NESp and analysed the correlation between transformation and non-encapsulation. A total of 26 NESp strains were used in this study. The genetic backgrounds were compared using multilocus sequence typing (MLST). The ΔpspK::ermB strain, in which pspK was replaced by ermB in NESp, was constructed by homologous recombination. The genomic DNA of the ΔpspK::ermB strain was transformed into two types of encapsulated S. pneumoniae via transformation. The fitness of the parent and non-encapsulated transformants was compared using the growth curve. All NESp had pspK instead of capsular coding regions and were classified into 14 types by MLST, which indicated that NESp had several genetic backgrounds. Transformation of ΔpspK::ermB genomic DNA resulted in 10−4‒10−5 non-encapsulated transformants. Non-encapsulated transformants could grow faster than the encapsulated parent strain. The acquisition of pspK region via transformation contributed to the loss of encapsulation with high frequency. The present results suggest that non-encapsulation through pspK acquisition could be a potential mechanism to evade PCV.  相似文献   

12.
Adherence molecules are key players in pathogen-host interactions. These are usually surface-exposed structures that facilitate adherence to host cells, or target host serum proteins of the extracellular matrix. Our knowledge of the function of pneumococcal cell-surface structures, and the basic mechanisms underlying their interaction with host receptor molecules has dramatically increased, through molecular and structural analysis of adherence molecules. In particular, choline-binding proteins have received considerable attention because of their versatility, and their sophisticated role in the interaction with host proteins. Interestingly, subversion of host-protein functions to facilitate host invasion and immune evasion has also been attributed to intracellular or surface-exposed proteins of the pathogen. Many of these molecules do not possess the classic features of bacterial surface proteins.  相似文献   

13.
Hemolysis induced by antimicrobial polymers was examined to gain an understanding of the mechanism of polymer toxicity to human cells. A series of cationic amphiphilic methacrylate random copolymers containing primary ammonium groups as the cationic functionality and either butyl or methyl groups as hydrophobic side chains have been prepared by radical copolymerization. Polymers with 0-47 mol % methyl groups in the side chains, relative to the total number of monomeric units, showed antimicrobial activity but no hemolysis. The polymers with 65 mol % methyl groups or 27 mol % butyl groups displayed both antimicrobial and hemolytic activity. These polymers induced leakage of the fluorescent dye calcein trapped in human red blood cells (RBCs), exhibiting the same dose-response curves as for hemoglobin leakage. The percentage of disappeared RBCs after hemolysis increased in direct proportion to the hemolysis percentage, indicating complete release of hemoglobin from fractions of RBCs (all-or-none leakage) rather than partial release from all cells (graded leakage). An osmoprotection assay using poly(ethylene glycol)s (PEGs) as osmolytes indicated that the PEGs with MW > 600 provided protection against hemolysis while low molecular weight PEGs and sucrose had no significant effect on the hemolytic activity of polymers. Accordingly, we propose the mechanism of polymer-induced hemolysis is that the polymers produce nanosized pores in the cell membranes of RBCs, causing an influx of small solutes into the cells and leading to colloid-osmotic lysis.  相似文献   

14.
L forms from pneumococci   总被引:1,自引:1,他引:0       下载免费PDF全文
  相似文献   

15.
Reciprocal capsular transformations of pneumococci   总被引:22,自引:13,他引:9       下载免费PDF全文
  相似文献   

16.
17.
Examination of 329 pneumococcal strains showed that 41.2 per cent of the cultures had lysozyme activity. The frequency of the lysozyme feature depended on the method used. The lysozyme active strains were more frequently isolated from patients than from healthy persons and characterized by antibiotic resistance. The lysozyme feature correlated with the pneumococcal virulence with respect to albino mice, capacity for capsule formaiton and resistance to phagocytosis.  相似文献   

18.
19.
20.
Ethanol has been shown to inhibit the assembly of cross-linked peptidoglycan and to induce cell lysis in Escherichia coli. These effects of ethanol appear to result from the weakening of hydrophobic interactions by ethanol rather than from the intercalation of ethanol into membranes. Other chaotropic agents also inhibited cross-linking and induced lysis. The potency of chaotropic anions with regard to this effect followed the expected chaotropic series. Antichaotropic agents, which strengthened hydrophobic interactions, antagonized ethanol-induced lysis. The weakening of hydrophobic interactions by ethanol is proposed as a general mechanism by which ethanol and other chaotropic agents could affect membrane-associated enzyme activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号