首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Postischemic inhibition of cerebral cortex pyruvate dehydrogenase   总被引:11,自引:0,他引:11  
Postischemic, mitochondrial respiratory impairment can contribute to prolonged intracellular lactic acidosis, secondary tissue deenergization, and neuronal cell death. Specifically, reperfusion-dependent inhibition of pyruvate dehydrogenase (PDH) may determine the degree to which glucose is metabolized aerobically vs. anaerobically. In this study, the maximal activities of pyruvate and lactate dehydrogenase (LDH) from homogenates of canine frontal cortex were measured following 10 min of cardiac arrest and systemic reperfusion from 30 min to 24 h. Although no change in PDH activity occurred following ischemia alone, a 72% reduction in activity was observed following only 30 min of reperfusion and a 65% inhibition persisted following 24 h of reperfusion. In contrast, no significant alteration in LDH activity was observed in any experimental group relative to nonarrested control animals. A trend toward reversal of PDH inhibition was observed in tissue from animals treated following ischemia with acetyl-L-carnitine, a drug previously reported to inhibit brain protein oxidation, and lower postischemic cortical lactate levels and improve neurological outcome. In vitro experiments indicate that PDH is more sensitive than LDH to enzyme inactivation by oxygen dependent free radical-mediated protein oxidation. This form of inhibition is potentiated by either elevated Ca2+ concentrations or substrate/cofactor depletion. These results suggest that site-specific protein oxidation may be involved in reperfusion-dependent inhibition of brain PDH activity.  相似文献   

2.
Apoptosis is one of the major mechanisms of cell death during cerebral ischemia and reperfusion injury. Flurbiprofen has been shown to reduce cerebral ischemia/reperfusion injury in both focal and global cerebral ischemia models, but the mechanism remains unclear. This study aimed to investigate the potential association between the neuroprotective effect of flurbiprofen and the apoptosis inhibiting signaling pathways, in particularly the Akt/GSK-3β pathway. A focal cerebral ischemia rat model was subjected to middle cerebral artery occlusion (MCAO) for 120 min and then treated with flurbiprofen at the onset of reperfusion. The infarct volume and the neurological deficit scores were evaluated at 24 h after reperfusion. Cell apoptosis, apoptosis-related proteins and the levels of p-Akt and p-GSK-3β in ischemic penumbra were measured using TUNEL and western blot. The results showed that administration of flurbiprofen at the doses of 5 and 10 mg/kg significantly attenuated brain ischemia/reperfusion injury, as shown by a reduction in the infarct volume, neurological deficit scores and cell apoptosis. Moreover, flurbiprofen not only inhibited the expression of Bax protein and p-GSK-3β, but also increased the expression of Bcl-2 protein, the ratio of Bcl-2/Bax as well as the P-Akt level. Taken together, these results suggest that flurbiprofen protects the brain from ischemia/reperfusion injury by reducing apoptosis and this neuroprotective effect may be partly due to the activation of Akt/GSK-3β signaling pathway.  相似文献   

3.
Recent studies have shown 5-hydroxymethyl-2-furfural (5-HMF) has favorable biological effects, and its neuroprotection in a variety of neurological diseases has been noted. Our previous study showed that treatment of 5-HMF led to protection against permanent global cerebral ischemia. However, the underlying mechanisms in cerebral ischemic injury are not fully understood. This study was conducted to investigate the neuroprotective effect of 5-HMF and elucidate the nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) signaling pathway mechanism in the striatum after transient global cerebral ischemia. C57BL/6 mice were subjected to bilateral common carotid artery occlusion for 20 min and sacrificed 24 h after reperfusion. 5-HMF (12 mg/kg) or an equal volume of vehicle was intraperitoneally injected 30 min before ischemia and 5 min after the onset of reperfusion. At 24 h after reperfusion, neurological function was evaluated by neurological disability status scale, locomotor activity test and inclined beam walking test. Histological injury of the striatum was observed by cresyl violet staining and terminal deoxynucleotidyl transferase (TdT)-mediated dNTP nick end labeling (TUNEL) staining. Oxidative stress was evaluated by the carbonyl groups introduced into proteins, and malondialdehyde (MDA) levels. An enzyme-linked immunosorbent assay (ELISA)-based measurement was used to detect Nrf2 DNA binding activity. Nrf2 and its downstream ARE pathway protein expression such as heme oxygenase-1, NAD (P)H:quinone oxidoreductase 1, glutamate-cysteine ligase catalytic subunit and glutamate-cysteine ligase modulatory subunit were detected by western blot. Our results showed that 5-HMF treatment significantly ameliorated neurological deficits, reduced brain water content, attenuated striatum neuronal damage, decreased the carbonyl groups and MDA levels, and activated Nrf2/ARE signaling pathway. Taken together, these results demonstrated that 5-HMF exerted significant antioxidant and neuroprotective effects following transient cerebral ischemia, possibly through the activation of the Nrf2/ARE signaling pathway.  相似文献   

4.
Time course of oxidative modification of forebrain neural proteins was investigated in the rat model of global and partial cerebral ischemia/reperfusion. Animals were subjected to 4-vessel occlusion for 15 min (global ischemia). After the end of ischemia and at different reperfusion times (2, 24 and 48 h), lipoperoxidation-dependent and direct oxidative modification neural protein markers were measured in the forebrain total membrane fraction (tissue homogenate). Ischemia itself causes significant changes only in levels of tryptophan and bityrosine fluorescence when compared to controls. All tested parameters of protein modification altered significantly and were maximal at later reperfusion stage. Content of carbonyl group in re-flow period steadily increased and culminated at 48 h of reperfusion. The highest increase in the fluorescence of bityrosines was detected after 24 h of reperfusion and was statistically significant to both sham operated and ischemic groups. The changes in fluorescence intensity of tryptophan decreased during a reperfusion time dependent manner. Formation of lysine conjugates with lipoperoxidation end-products significantly increased only at later stages of reperfusion. Total forebrain membranes from animals subjected to 3-vessel occlusion model to 15 min (partial ischemia) show no altered content of oxidatively modified proteins compared to controls. Restoration of blood flow for 24 h significantly decreased only fluorescence of aromatic tryptophan. Partial forebrain ischemia/reperfusion resulted in no detectable significant changes in oxidative products formation in extracerebral tissues (liver and kidney) homogenates. Our results suggest that global ischemia/reperfusion initiates both the lipoperoxidation-dependent and direct oxidative modifications of neural proteins. The findings support the view that spatial and temporal injury at later stages of ischemic insult at least partially involves oxidative stress-induced amino acid modification. The results might have important implications for the prospective post-ischemic antioxidant therapy.  相似文献   

5.
目的:证实抗氧化酶活性上调是肢体远程预处理(remote preconditioning,RPC)诱导兔脊髓缺血耐受效应的主要机制之一。方法:60只雄性新西兰大白兔随机分成对照组、远程预处理组、缺血组及RPC 缺血组(对照组n=6,余组n=18)。RPC组行双下肢短暂缺血2次(每次10min,间隔10min);缺血组仅行脊髓缺血模型;RPC 缺血组在远程预处理后1h行脊髓缺血;对照组为假手术组。对照组于脊髓缺血再灌注后48h行神经功能评分后取脊髓,作为对照。余三组分别于再灌注后6h、24h及48h评分后取材,各时间点各取6只。所有动物于缺血前、缺血20min、再灌注20min及再灌注6h采动脉血测血清抗氧化酶活性和丙二醛(MDA)含量;于取材后测定脊髓匀浆抗氧化酶活性和MDA含量。结果:再灌注后6h、24h及48h时对照组、远程预处理组及远程预处理 缺血组神经功能评分均明显高于缺血组(P<0.05)。血浆超氧化物歧化酶(SOD)活性和过氧化氢酶(CAT)活性在每个时间点RPC组均高于对照组,RPC 缺血组高于缺血组(P<0.05);其中缺血20min时,缺血组血浆SOD、CAT活性低于对照组,RPC 缺血组低于RPC组(P<0.05);而与缺血前相比,缺血20min时缺血组及RPC 缺血组SOD和CAT活性显著下降(P<0.05)再灌注24h和48h时,脊髓匀浆SOD、CAT活性对照组低于RPC组,缺血组低于RPC 缺血组(P<0.01);而MDA含量再灌注24h时对照组高于RPC组,缺血组高于RPC 缺血组(P<0.05)。脊髓匀浆SOD、CAT活性与神经功能评分具有显著相关性。结论:RPC诱导脊髓缺血耐受的机制可能为上调抗氧化酶活性,增强机体在缺血再灌注过程中清除氧自由基的能力,从而减少氧自由基介导的损伤,发挥脊髓保护作用。  相似文献   

6.
Remote limb ischemic preconditioning (RIPC) is a clinically feasible strategy to protect against ischemia/reperfusion injury, but the knowledge concerning the mechanism underlying RIPC is scarce. This study was performed to examine the effect of RIPC on brain tissue suffering from ischemia challenge and explore its underlying mechanism in a rat model. The animals were divided into four groups: Sham, middle cerebral artery occlusion (MCAO), RIPC, and MCAO+RIPC. We found that previous exposure to RIPC significantly attenuated neurological dysfunction and lessened brain edema in MCAO+RIPC group. Moreover, other important events were observed in MCAO+RIPC group, including substantial decrements in the concentrations of oxidative response indicators [malondialdehyde (MDA), 8-hydroxy-2-deoxyguanosine (8-OHdG), and protein carbonyl], significant reductions in levels of inflammation mediators [myeloperoxidase (MPO), tumor necrosis factor-a (TNF-a), interleukin-1β (IL-1β), and IL-6], and significant decline in neuronal apoptosis revealed by a smaller number of TUNEL-positive cells. Interestingly, both MCAO and RIPC groups exhibited meaningful elevations in the levels of HIF-1a, HSP70, and AMP-activated protein kinase (AMPK) compared to Sham group, and previous exposure to RIPC further elevated the levels of HIF-1a, HSP70, and AMPK in MCAO+RIPC group. Furthermore, the administration of YC-1 (HIF-1 inhibitor), 8-bAMP (AMPK inhibitor), and Quercetin (HSP70 inhibitor) to MCAO+RIPC rats demonstrated that HIF-1α/AMPK/HSP70 was involved in RIPC-mediated protection against cerebral ischemia.  相似文献   

7.
Hepatic ischemia-reperfusion (IR) injury, a major clinical drawback during surgery, is abolished by L-3,3',5-triiodothyronine (T(3)) administration. Considering that the triggering mechanisms are unknown, the aim of this study is to assess the role of oxidative stress in T(3) preconditioning using N-acetylcysteine (NAC) before T(3) administration. Male Sprague-Dawley rats given a single dose of 0.1 mg of T(3)/kg were subjected to 1 h ischemia followed by 20 h reperfusion, in groups of animals pretreated with 0.5 g of NAC/kg 0.5 h before T(3) or with the respective control vehicles. At the end of the reperfusion period, blood and liver samples were taken for analysis of serum aspartate aminotransferase (AST) and hepatic histology, glutathione (GSH) and protein carbonyl contents, and nuclear factor-kappaB (NF-kappaB) and activating protein 1 (AP-1) DNA binding. The IR protocol used led to a 4.5-fold increase in serum AST levels and drastic changes in liver histology, with significant GSH depletion and enhancement of protein carbonyl levels and of the protein carbonyl/GSH content ratio, whereas NF-kappaB and AP-1 DNA binding was decreased and enhanced, respectively. In a time window of 48 h, T(3) exerted protection against hepatic IR injury, with 88% reduction in the protein carbonyl/GSH ratio and normalization of NF-kappaB and AP-1 DNA binding, changes that were suppressed by NAC administration before T(3). Data presented suggest that a transient increase in the oxidative stress status of the liver is an important trigger for T(3) preconditioning, evidenced in a warm IR injury model through antioxidant intervention.  相似文献   

8.
The synergistic scavenger effects of selenium and melatonin collectively we called Se-Mel was studied on the prevention of neuronal injury induced by ischemia/reperfusion. Male Wistar rats were treated with sodium selenite (0.1 mg/kg, i.p.) and melatonin (10 mg/kg, i.p.) 30 min before the middle carotid artery occlusion (MCAO) and immediately after MCAO to male Wistar rats and was continued for 3 days once daily at the interval of 24 h. Behavioral activity (spontaneous motor activity and motor deficit) was improved in Se-Mel-treated rats as compared to MCAO group rats. The level of glutathione and the activity of antioxidant enzymes was depleted significantly while the content of thiobarbituric acid reactive substances, protein carbonyl, and nitric oxide radical (NO·) was increased significantly in MCAO group. Systemic administration of Se-Mel ameliorated oxidative stress and improves ischemia/reperfusion-induced focal cerebral ischemia. Se-Mel also inhibited inducible nitric oxide synthase expression in Se-Mel+MCAO group as compared to MCAO group rats. Thus, Se-Mel has shown an excellent neuroprotective effect against ischemia/reperfusion injury through an anti-ischemic pathway. In conclusion, we demonstrated that the pretreatment with Se-Mel at the onset of reperfusion, reduced post-ischemic damage, and improved neurological outcome following transient focal cerebral ischemia in male Wistar rat.  相似文献   

9.
目的: 观察中风胶囊对脑缺血/再灌注损伤(CIRI)模型鼠脑组织自噬相关蛋白表达的影响,初步揭示其对神经元损伤保护的分子机制。方法: 采用改良线栓法构建大鼠脑缺血/再灌注损伤模型,随机将60只雄性SD大鼠分为假手术组、模型组、丁苯酞组(0.054 g/kg)、中风胶囊高剂量组(1.08 g/kg)、中风胶囊中剂量组(0.54 g/kg)、中风胶囊低剂量组(0.27 g/kg),每组10只。造模结束后灌胃给药10 d,每天1次,实验结束后处死各组大鼠,摘取脑组织。各组大鼠末次给药24 h后进行神经功能评分;HE染色法观察各组大鼠脑组织病理形态;ELISA法检测各组大鼠血清雌二醇(E2)和卵泡刺激素(FSH);RT-PCR法与Western blot法分别测定各组大鼠脑组织PI3K/Akt/Beclin1信号通路关键基因及蛋白的表达。结果: 与假手术组比较,模型组大鼠体重及脑组织中p-PI3K、p-Akt等蛋白表达均显著降低,脑指数、神经功能缺损评分及脑组织Beclin1、LC3基因和蛋白表达均显著升高(P<0.05或P<0.01),脑组织结构排列疏松,间质水肿,神经细胞呈三角形,核固缩深染。与模型组相比,中风胶囊高剂量组大鼠体重显著升高,神经功能缺损评分显著下降(P<0.05),脑组织病理损伤较模型组明显改善;中风胶囊各剂量组的脑指数及脑组织Beclin1、LC3的基因和蛋白表达均显著降低,脑组织中p-PI3K、p-Akt等蛋白表达均显著升高(P<0.05或P<0.01)。结论: 中风胶囊通过调控PI3K/Akt/Beclin1信号通路中Beclin1和LC3的表达来抑制CIRI模型鼠的自噬反应,从而发挥保护其脑神经元损伤的作用。  相似文献   

10.
为了观察脑缺血再灌注(cerebral ischemia reperfusion, CIR)大鼠缺血灶周边脑组织不同时间点神经血管单元(neurovascular unit, NVU)超微结构变化,研究三七总皂苷(Panax notoginseng saponins, PNS)对脑缺血再灌注大鼠脑组织NVU超微结构的影响,本研究采用改良Zea Longa法制作局灶性大脑中动脉闭塞(MCAO)模型,缺血2 h后再灌注;采用Longa法评分标准检测各组大鼠术后4 h神经功能评分,随之各组进行干预,分别在缺血再灌注后24 h、72 h、7 d、3周进行神经功能评分和透射电镜下观察各组大鼠缺血灶周边脑组织的NVU超微结构变化。研究结果表明,干预前即术后4 h治疗组和对照组神经功能评分比较无明显差异;PNS干预后治疗组大鼠神经功能评分逐渐改善,缺血再灌注后24 h与对照组比较,差异无统计学意义(p>0.05),再灌注72 h、7 d、3周的大鼠神经缺损评分与同时间点对照组相比差异具有统计学意义(p<0.05)。电镜观察发现再灌注24 h、72 h、7 d、3周治疗组大鼠脑组织NVU超微结构的病理形态损伤均较同时间点对照组明显减轻。本研究结论认为,PNS通过整合促进脑缺血后NVU的神经元、胶质细胞和微血管的修复,改善神经功能缺损症状,对脑缺血具有保护作用。  相似文献   

11.
Evidence has shown therapeutic potential of irisin in cerebral stroke. The present study aimed to assess the effects of recombinant irisin on the infarct size, neurological outcomes, blood–brain barrier (BBB) permeability, apoptosis and brain-derived neurotrophic factor (BDNF) expression in a mouse model of stroke. Transient focal cerebral ischemia was established by middle cerebral artery occlusion (MCAO) for 45 min and followed reperfusion for 23 h in mice. Recombinant irisin was administrated at doses of 0.1, 0.5, 2.5, 7.5, and 15 µg/kg, intracerebroventricularly (ICV), on the MCAO beginning. Neurological outcomes, infarct size, brain edema and BBB permeability were evaluated by modified neurological severity score (mNSS), 2,3,5-triphenyltetrazolium chloride (TTC) staining and Evans blue (EB) extravasation methods, respectively, at 24 h after ischemia. Apoptotic cells and BDNF protein were detected by TUNEL assay and immunohistochemistry techniques. The levels of Bcl-2, Bax and caspase-3 proteins were measured by immunoblotting technique. ICV irisin administration at doses of 0.5, 2.5, 7.5 and 15 µg/kg, significantly reduced infarct size, whereas only in 7.5 and 15 µg/kg improved neurological outcome (P?<?0.001). Treatment with irisin (7.5 µg/kg) reduced brain edema (P?<?0.001) without changing BBB permeability (P?>?0.05). Additionally, irisin (7.5 µg/kg) significantly diminished apoptotic cells and increased BDNF immunoreactivity in the ischemic brain cortex (P?<?0.004). Irisin administration significantly downregulated the Bax and caspase-3 expression and upregulated the Bcl-2 protein. The present study indicated that irisin attenuates brain damage via reducing apoptosis and increasing BDNF protein of brain cortex in the experimental model of stroke in mice.  相似文献   

12.
Diabetes leads to exacerbating brain injury after ischemic stroke, but the underlying mechanisms and whether therapeutic intervention with anesthetic post-conditioning can induce neuroprotection in this population are not known. We tested the hypothesis that alteration of brain mitochondrial (mito) KATP channels might cause exacerbating brain injury after ischemic stroke and attenuate anesthetic post-conditioning induced neuroprotection in diabetes. We also examined whether hyperglycemic correction with insulin would restore anesthetic post-conditioning in diabetes. Non-diabetic rats and diabetic rats treated with or without insulin were subjected to focal cerebral ischemia for 2 h followed by 24 h of reperfusion. Post-conditioning was performed by exposure to sevoflurane for 15 min, immediately at the onset of reperfusion. The role of the mitoKATP channel was assessed by administration of a selective blocker 5-hydroxydecanoate (5-HD) before sevoflurane post-conditioning or by diazoxide (DZX), a mitoKATP channel opener, given in place of sevoflurane. Compared with non-diabetic rats, diabetic rats had larger infarct volume and worse neurological outcome at 24 h after ischemia. Sevoflurane or DZX reduced the infarct volume and improved neurological outcome in non-diabetic rats but not in diabetic rats, and the protective effects of sevoflurane in non-diabetic rats were inhibited by pretreatment with 5-HD. Molecular studies revealed that expression of Kir6.2, an important mitoKATP channel component, was decreased in the brain of diabetic rats as compared to non-diabetic rats. In contrast, hyperglycemic correction with insulin in diabetic rats normalized expression of brain Kir6.2, reduced ischemic brain damage and restored neuroprotective effects of sevoflurane post-conditioning. Our findings suggest that decreased brain mitoKATP channel contributes to exacerbating ischemic brain injury and the failure of neuroprotection by anesthetic post-conditioning in diabetes. Insulin glycemic control in diabetes may restore the neuroprotective effects of anesthetic post-conditioning by modulation of brain mitoKATP channel.  相似文献   

13.

Aims

Pre-treatment with statins is known to ameliorate ischemic brain damage after experimental stroke, and is independent of cholesterol levels. We undertook pre- vs post-ischemic treatment with atorvastatin after focal cerebral ischemia in rats.

Main methods

Male Sprague–Dawley rats underwent transient 90-min middle cerebral artery occlusion (MCAO). Atorvastatin (20 mg/kg/day) or vehicle was administered orally. Rats were divided into vehicle-treated, atorvastatin pre-treatment, atorvastatin post-treatment, and atorvastatin continuous-treatment groups. In the pre-treatment, rats were given atorvastatin or vehicle for 7 days before MCAO. In the post-treatment, rats received atorvastatin or vehicle for 7 days after MCAO. Measurement of infarct volume, as well as neurological and immunohistochemical assessments, were done 24 h and 7 days after reperfusion.

Key findings

Each atorvastatin-treated group demonstrated significant reductions in infarct and edema volumes compared with the vehicle-treated group 24 h after reperfusion. Seven days after reperfusion, infarct volumes in the post-treatment group and continuous-treatment group (but not the pre-treatment group) were significantly smaller than in the vehicle-treated group. Only the continuous-treatment group had significantly improved neurological scores 7 days after reperfusion compared with the vehicle group. Post-treatment and continuous-treatment groups had significantly decreased lipid peroxidation, oxidative DNA damage, microglial activation, expression of tumor necrosis factor-alpha, and neuronal damage in the cortical ischemic boundary area after 7 days of reperfusion.

Significance

These results suggest that continuous oral administration (avoiding withdrawal) with statins after stroke may reduce the extent of post-ischemic brain damage and improve neurological outcome by inhibiting oxidative stress and inflammatory responses.  相似文献   

14.
Alterations in phospholipid content and Cu/Zn superoxide dismutase (SOD) activity were examined in rat brain after 15 min of global ischemia (four-vessel occlusion) followed by 2-, 24- or 48-h reperfusion. Phosphatidylcholine (PC) and phosphatidylethanolamine (PE), the main brain phospholipids, were markedly decreased in ischemic rats and remained decreased during the whole reperfusion period. Concentrations of phosphatidylinositol (PI) and sphingomyelin (SM) were also significantly reduced during ischemia but recovered during reperfusion period. In contrast, phosphatidylserine (PS) and lysophospholipids (LysoPL) were unchanged during ischemia but were elevated after 24 h of reperfusion. Significant reductions in blood plasma phospholipids were also demonstrated. 24-48 h of reperfusion markedly decreased PE, PC and PS contents, while the concentrations were almost unchanged by ischemia alone. Brain SOD activity decreased significantly during ischemia and was recovered to control value already after 2 h of reperfusion. These results suggest that ischemia/reperfusion is accompanied by a significant and selective degradation of brain phospholipids that may be attributable to oxidative stress and activation of phospholipases.  相似文献   

15.
Focal brain ischemia leads to a slow type of neuronal death in the penumbra that starts several hours after ischemia and continues to mature for days. During this maturation period, blood flow, cellular ATP and ionic homeostasis are gradually recovered in the penumbral region. In striking contrast, protein synthesis is irreversibly inhibited. This study used a rat focal brain ischemia model to investigate whether or not irreversible translational inhibition is due to abnormal aggregation of translational complex components, i.e. the ribosomes and their associated nascent polypeptides, protein synthesis initiation factors and co-translational chaperones. Under electron microscopy, most rosette-shaped polyribosomes were relatively evenly distributed in the cytoplasm of sham-operated control neurons, but clumped into large abnormal aggregates in penumbral neurons subjected to 2 h of focal ischemia followed by 4 h of reperfusion. The abnormal ribosomal protein aggregation lasted until the onset of delayed neuronal death at 24-48 h of reperfusion after ischemia. Biochemical study further suggested that translational complex components, including small ribosomal subunit protein 6 (S6), large subunit protein 28 (L28), eukaryotic initiation factors 2alpha, 4E and 3eta, and co-translational chaperone heat-shock cognate protein 70 (HSC70) and co-chaperone Hdj1, were all irreversibly clumped into large abnormal protein aggregates after ischemia. Translational complex components were also highly ubiquitinated. This study clearly demonstrates that focal ischemia leads to irreversible aggregation of protein synthesis machinery that contributes to neuronal death after focal brain ischemia.  相似文献   

16.
Ischemic stroke induces microglial activation and release of proinflammatory cytokines, contributing to the expansion of brain injury and poor clinical outcome. Propofol has been shown to ameliorate neuronal injury in a number of experimental studies, but the precise mechanisms involved in its neuroprotective effects remain unclear. We tested the hypothesis that propofol confers neuroprotection against focal ischemia by inhibiting microglia-mediated inflammatory response in a rat model of ischemic stroke. Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO) for 2 h followed by 24 h of reperfusion. Propofol (50 mg/kg/h) or vehicle was infused intravenously at the onset of reperfusion for 30 minutes. In vehicle-treated rats, MCAO resulted in significant cerebral infarction, higher neurological deficit scores and decreased time on the rotarod compared with sham-operated rats. Propofol treatment reduced infarct volume and improved the neurological functions. In addition, molecular studies demonstrated that mRNA expression of microglial marker Cd68 and Emr1 was significantly increased, and mRNA and protein expressions of proinflammatory cytokines tumor necrosis factor-α, interleukin-1β and interleukin-6 were augmented in the peri-infarct cortical regions of vehicle-treated rats 24 h after MCAO. Immunohistochemical study revealed that number of total microglia and proportion of activated microglia in the peri-infarct cortical regions were markedly elevated. All of these findings were ameliorated in propofol-treated rats. Furthermore, vehicle-treated rats had higher plasma levels of interleukin-6 and C-reactive protein 24 h after MCAO, which were decreased after treatment with propofol. These results suggest that propofol protects against focal cerebral ischemia via inhibition of microglia-mediated proinflammatory cytokines. Propofol may be a promising therapeutic agent for the treatment of ischemic stroke and other neurodegenerative diseases associated with microglial activation.  相似文献   

17.
Poloxamer 188 (P188), a multiblock copolymer surfactant, has been shown to protect against ischemic tissue injury of cardiac muscle, testes and skeletal muscle, but the mechanisms have not been fully understood. In this study, we explored whether P188 had a protective effect against cerebral ischemia/reperfusion injury and its underlying mechanisms. The in vivo results showed that P188 significantly reduced the infarct volume, ameliorated the brain edema and neurological symptoms 24 h after ischemia/reperfusion. In the long-term outcome study, P188 markedly alleviated brain atrophy and motor impairments and increased survival rate in 3 weeks of post stroke period. Additionally, P188 protected cultured hippucampal HT22 cells against oxygen–glucose deprivation and reoxygenation (OGD/R) injury. The ability in membrane sealing was assessed with two fluorescent membrane-impermeant dyes. The results showed that P188 treatment significantly reduced the PI-positive cells following ischemia/reperfusion injury and repaired the HT22 cell membrane rupture induced by Triton X-100. In addition, P188 inhibited ischemia/reperfusion-induced activation of matrix metalloproteinase (MMP)-9 and leakage of Evans blue. Therefore, the present study concludes that P188 can protect against cerebral ischemia/reperfusion injury, and the protection involves multi-mechanisms in addition to the membrane resealing.  相似文献   

18.
Oxygen-derived free radicals are important agents of tissue injury during ischemia and reperfusion. The aim of this study was to investigate changes in protein and lipid oxidation and antioxidant status in beating heart coronary artery surgery and conventional bypass and to compare oxidative stress parameters between the two bypass methods. Serum lipid hydroperoxide, nitric oxide, protein carbonyl, nitrotyrosine, vitamin E, and β-carotene levels and total antioxidant capacity were measured in blood of 30 patients undergoing beating heart coronary artery surgery (OPCAB, off-pump coronary artery bypass grafting) and 12 patients undergoing conventional bypass (CABG, on-pump coronary artery bypass grafting). In the OPCAB group, nitric oxide and nitrotyrosine levels decreased after reperfusion. Similarly, β-carotene level and total antioxidant capacity also decreased after anesthesia and reperfusion. In the CABG group, nitric oxide and nitrotyrosine levels decreased after ischemia and reperfusion. However, protein carbonyl levels elevated after ischemia and reperfusion. Vitamin E, β-carotene, and total antioxidant capacity decreased after ischemia and reperfusion. Significantly decreased nitration and impaired antioxidant status were seen after reperfusion in both groups. Moreover, elevated protein carbonyls were found in the CABG group. The off-pump procedure is associated with lower degree of oxidative stress than on-pump coronary surgery.  相似文献   

19.
Anesthetics such as propofol can provide neuroprotective effects against cerebral ischemia. However, the underlying mechanism of this beneficial effect is not clear. Therefore, we subjected male Sprague–Dawley rats to 2 h of middle cerebral artery occlusion and investigated how post-ischemic administration of propofol affected neurologic outcome and the expression of basic fibroblast growth factor (bFGF). After 2 h of ischemia, just before reperfusion, the animals were randomly assigned to receive either propofol (20 mg kg?1 h?1) or vehicle (10 % intralipid, 2 ml kg?1 h?1) intravenously for 4 h. Neurologic scores, infarct volume, and brain water content were measured at different time points after reperfusion. mRNA level of bFGF was measured by real-time PCR, and the protein expression level of bFGF was analyzed by immunohistochemistry and Western blot. At 6, 24, 72 h, and 7 days of reperfusion, infarct volume was significantly reduced in the propofol-treated group compared to that in the vehicle-treated group (all P < 0.05). Propofol post-treatment also attenuated brain water content at 24 and 72 h and reduced neurologic deficit score at 72 h and 7 days of reperfusion (all P < 0.05). Additionally, in the peri-infarct area, bFGF mRNA and protein expression were elevated at 6, 24, and 72 h of reperfusion compared to that in the vehicle-treated group (all P < 0.05). These results show that post-ischemic administration of propofol provides neural protection from cerebral ischemia–reperfusion injury. This protection may be related to an early increase in the expression of bFGF.  相似文献   

20.
Endoplasmic reticulum (ER) stress has been implicated in the pathology of cerebral ischemia. Apoptotic cell death occurs during prolonged period of stress or when the adaptive response fails. Hypothermia blocked the TNF or Fas-mediated extrinsic apoptosis pathway and the mitochondria pathway of apoptosis, however, whether hypothermia can block endoplasmic reticulum mediated apoptosis is never known. This study aimed to elucidate whether hypothermia attenuates brain cerebral ischemia/reperfusion (I/R) damage by suppressing ER stress-induced apoptosis. A 15 min global cerebral ischemia rat model was used in this study. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) positive cells in hippocampus CA1 were assessed after reperfusion of the brain. The expressions of C/EBP-homolo gous protein (CHOP) and glucose-regulated protein 78 (GRP78) in ischemic hippocampus CA1 were measured at 6, 12, 24 and 48 h after reperfusion. The results showed that hypothermia significantly attenuated brain I/R injury, as shown by reduction in cell apoptosis, CHOP expression, and increase in GRP78 expression. These results suggest that hypothermia could protect brain from I/R injury by suppressing ER stress-induced apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号