首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
It has long been held that the regulation of photosynthesis in source leaves may be controlled by carbohydrates. The mechanisms that govern the diurnal fluctuation of photosynthesis and the potential role of feedback regulation by carbohydrates during photosynthesis in coffee (Coffea arabica) leaves were investigated in three independent and complementary experiments. An integrative approach using gas exchange measurements in addition to carbon isotope labelling and steady-state carbohydrate and amino acid analysis was performed. Canonical correlation analysis was also performed. In field-grown plants under naturally fluctuating environmental conditions (Experiment I), the overall pattern of gas exchange was characterised by both low stomatal conductance (g s) and net carbon assimilation rate (A) in the afternoon; no apparent signs of photoinhibition were observed. Under conditions of low air evaporative demand (Experiment II), only slight decreases (~20%) in A were observed at the end of the day, which were associated with a reduction (~35%) in g s. For both conditions, any increase in carbohydrate and amino acid pools over the course of the day was small. In leaves from girdled branches (Experiment III), a remarkable decrease in A and particularly in g s was observed, as were increases in starch but not in hexoses and sucrose pools. Furthermore, the rate of 14CO2 uptake (assessed under saturating CO2 conditions) and the partitioning of recently fixed 14C were not affected by girdling. It is proposed that the diurnal oscillations in A and the differences in A in leaves from girdled and non-girdled branches were merely a consequence of diffusive limitations rather than from photochemical constraints or direct metabolite-mediated down-regulation of photosynthesis.  相似文献   

3.
Leaf net CO2 assimilation rate (A), stomatal conductance (gs), carboxylation efficiency, and foliar nonstructural carbohydrates were measured on mature, field-grown Vitis vinifera L. (cv Thompson Seedless) vines that had been trunk girdled, sprayed with gibberellic acid, or both, shortly after anthesis. Girdling reduced A, gs, and carboxylation efficiency when measured 2 weeks after imposition of the treatments. Diurnal measurements indicated that A of girdled vines was less than that of control vines between 1000 and 1800 hours. Gibberellic acid mitigated the depressing effect of girdling on gs during the same diurnal measurements. The concentrations of foliar carbohydrates were greatest for the girdled vines, followed by the combination treatment and were lowest for the control vines. Foliar carbohydrates were greater for girdled vines 4 weeks after the treatments were imposed, however, by this time there was no significant difference in A between the control and girdled vines. Two and 4 weeks after the experiment was initiated root carbohydrate concentrations were less for the girdled vines when compared to the control vines. The data indicate that the reduction in A of girdled grapevines is not associated with the accumulation of leaf nonstructural carbohydrates following the girdling treatment.  相似文献   

4.
The effects of girdling on oxidative damage, antioxidant enzyme activity, antioxidant metabolites and proline (Pro) were studied in leaves arising from different shoot types of potted 2-year-old ‘Loretina’ mandarin (Citrus reticulata Blanco) trees during the spring flush period. Girdling increased malonyldialdehyde (MDA) and basal chlorophyll (Chl) a fluorescence (Fo) in young leaves 30 days after girdling but not in the mature leaves (ML) suggesting a disruption of photosynthetic apparatus and oxidative damage in young leaves. This phenomenon was accompanied by increasing levels of Pro. Paralleling these changes, an increase of all antioxidant enzyme activities occurred in leaves from vegetative (VG) and multiflowered leafy shoots (MLY) of girdled trees. Similarly, in ML of girdled trees, ascorbate peroxidase (APX), catalase (CAT) and glutathione reductase (GR) activity also increased. However, dehydroascorbate reductase (DHAR) activity decreased and superoxide dismutase (SOD) activity remained unchanged. Total leaf carbohydrate content and starch also increased as a result of girdling in all shoot types. Whilst soluble sugars increased markedly in young leaves, they increased only slightly in ML. In conclusion, this study provides evidence that girdling gives rise to oxidative damage in Citrus during carbohydrate accumulation, triggering enzymatic and non-enzymatic defence mechanisms.  相似文献   

5.
The effects of girdling on oxidative damage, antioxidant enzyme activity, antioxidant metabolites and proline (Pro) were studied in leaves arising from different shoot types of potted 2-year-old ‘Loretina’ mandarin (Citrus reticulata Blanco) trees during the spring flush period. Girdling increased malonyldialdehyde (MDA) and basal chlorophyll (Chl) a fluorescence (Fo) in young leaves 30 days after girdling but not in the mature leaves (ML) suggesting a disruption of photosynthetic apparatus and oxidative damage in young leaves. This phenomenon was accompanied by increasing levels of Pro. Paralleling these changes, an increase of all antioxidant enzyme activities occurred in leaves from vegetative (VG) and multiflowered leafy shoots (MLY) of girdled trees. Similarly, in ML of girdled trees, ascorbate peroxidase (APX), catalase (CAT) and glutathione reductase (GR) activity also increased. However, dehydroascorbate reductase (DHAR) activity decreased and superoxide dismutase (SOD) activity remained unchanged. Total leaf carbohydrate content and starch also increased as a result of girdling in all shoot types. Whilst soluble sugars increased markedly in young leaves, they increased only slightly in ML. In conclusion, this study provides evidence that girdling gives rise to oxidative damage in Citrus during carbohydrate accumulation, triggering enzymatic and non-enzymatic defence mechanisms.  相似文献   

6.
Huber SC 《Plant physiology》1984,76(2):424-430
The effects of K-deficiency on carbon exchange rates (CER), photosynthate partitioning, export rate, and activities of key enzymes involved in sucrose metabolism were studied in soybean (Glycine max [L.] Merr.) leaves. The different parameters were monitored in mature leaves that had expanded prior to, or during, imposition of a complete K-deficiency (plants received K-free nutrition solution). In general, recently expanded leaves had the highest concentration of K, and imposition of K-stress at any stage of leaf expansion resulted in decreased K concentrations relative to control plants (10 millimolar K). A reduction in CER, relative to control plants, was only observed in leaves that expanded during the K-stress. Stomatal conductance also declined, but this was not the primary cause of the decrease in carbon fixation because internal CO2 concentration was unaffected by K-stress. Assimilate export rate from K-deficient leaves was reduced but relative export, calculated as a percentage of CER, was similar to control leaves. Over all the data, export rate was correlated positively with both CER and activity of sucrose phosphate synthase in leaf extracts. K-deficient leaves had higher concentrations of sucrose and hexose sugars. Accumulation of hexose sugars was associated with increased activities of acid invertase. Neutral invertase activity was low and unaffected by K-nutrition. It is concluded that decreased rates of assimilate export are associated with decreased activities of sucrose phosphate synthase, a key enzyme involved in sucrose formation, and that accumulation of hexose sugars may occur because of increased hydrolysis of sucrose in K-deficient leaves.  相似文献   

7.
The objectives of this study were to determine if the partitioning of recently fixed carbon between starch and water-soluble compounds could be altered by increasing the pod load in the leaf axil, and if the presence of source leaves acropetal to such a node would influence the partitioning of carbon within the subtending leaf. Soybeans (Glycine max L. Merr. cv Hodgson 78) were grown to full-bloom in a controlled environment chamber, and then deflowered at all nodes except the eighth. This treatment resulted in an 83% increase in the number of pods at the eighth node. At 24 days after flowering, one-half of the treated plants were girdled above the untreated node. Forty-two hours later, the eighth trifoliolate was pulsed with 14CO2 and sampled for radiolabeled starch and water-soluble compounds (WSC) at 0.5, 2, 4, 8, 12, and 24th after labeling.

When no girdling was applied above the increased pod load at the eighth node more label was accumulated by the pod walls (+6.9%) and seeds (+6.3%) when compared to the controls. Starch accumulation was not altered in the labeled leaf of the nongirdled plants. When the stem was girdled above the eighth node, significantly less starch was retained in the labeled leaf. Girdling also resulted in an increase in label accumulation by the pod walls (+5.4%) and seeds (+6.6%). These data suggest that the plant will change the distribution patterns of assimilate to supply added sink demand before altering the partitioning of recently fixed carbon in the subtending leaf.

  相似文献   

8.
Net CO2 assimilation rate (A), stomatal conductance (gs), and weight per unit leaf area (W) were determined on Thompson Seedless grapevines grown in the field. Treatments included fruit set applications of gibberellic acid (40 milligrams gibberellic acid (GA3) per liter) to vines, shoots and clusters, alone and in combination with trunk girdling. Leaf A and gs were measured prior to and 3, 6, and 13 days after fruit set. Weight per unit leaf area was determined on leaves collected subsequent to gas exchange measurements. Leaf A of girdled vines was reduced approximately 30% when compared to the control 13 days after treatment. The reduction in A due to girdling was not as great when vines were sprayed with GA3. GA3 sprays alone had no significant effect on A. Stomatal conductance was reduced by girdling 13 days after treatment. Weight per unit leaf area was 17% greater for trunk girdled vines when compared to the controls. Results indicate GA3 affected net CO2 assimilation rate only on girdled vines, a treatment which increased weight per unit leaf area.  相似文献   

9.
Experiments were conducted with soybean (Glycine max [L.] Merr. cv `Ransom') plants to determine if diurnal rhythms in net carbon dioxide exchange rate (CER), stomatal resistance, and sucrose-phosphate synthase (SPS) activity persisted in constant environmental conditions (constant light, LL; constant dark DD) and to assess the importance of these rhythms to the production of nonstructural carbohydrates (starch, sucrose, and hexose). Rhythms in CER, stomatal resistance, and SPS activity were observed in constant environmental conditions but the rhythms differed in period length, amplitude, and phase. The results indicated that these photosynthetic parameters are not controlled in a coordinated manner. The activity of UDPG pyrophosphorylase, another enzyme involved in sucrose formation, did not fluctuate rhythmically in constant conditions but increased with time in plants in LL. In LL, the rhythm in CER was correlated positively with fluctuations in total chlorophyll (r = 0.810) and chlorophyll a (r = 0.791) concentrations which suggested that changes in pigment concentration were associated with, but not necessarily the underlying mechanism of, the rhythm in photosynthetic rate. Assimilate export rate, net starch accumulation rate, and leaf sucrose concentration also fluctuated in constant light. No single photosynthetic parameter was closely correlated with fluctuations in assimilate export during LL; thus, assimilate export may have been controlled by interactions among the endogenous rhythms in CER, SPS activity, or other metabolic factors which were not measured in the present study.  相似文献   

10.
The effects of water stress and CO2 enrichment on photosynthesis, assimilate export, and sucrose-P synthase activity were examined in field grown soybean plants. In general, leaves of plants grown in CO2-enriched atmospheres (300 microliters per liter above unenriched control, which was 349 ± 12 microliters per liter between 0500 and 1900 hours EST over the entire season) had higher carbon exchange rates (CER) compared to plants grown at ambient CO2, but similar rates of export and similar activities of sucrose-P synthase. On most sample dates, essentially all of the extra carbon fixed as a result of CO2 enrichment was partitioned into starch. CO2-enriched plants had lower transpiration rates and therefore had a higher water use efficiency (milligrams CO2 fixed per gram H2O transpired) per unit leaf area compared to nonenriched plants. Water stress reduced CER in nonenriched plants to a greater extent than in CO2-enriched plants. As CER declined, stomatal resistance increased, but this was not the primary cause of the decrease in assimilation because internal CO2 concentration remained relatively constant. Export of assimilates was less affected by water stress than was CER. When CERs were low as a result of the imposed stress, export was supported by mobilization of reserves (mainly starch). Export rate and leaf sucrose concentration were related in a curvilinear manner. When sucrose concentration was above about 12 milligrams per square decimeter, obtained with nonstressed plants at high CO2, there was no significant increase in export rate. Assimilate export rate was also correlated positively with SPS activity and the quantitative relationship varied with CER. Thus, export rate was a function of both CER and carbon partitioning.  相似文献   

11.
Starch, sucrose, and fructose 2,6-bisphosphate (F2, 6BP) levels were measured in pea (Pisum sativum L.), maize (Zea mays L.), onion (Allium cepa L.) and soybean (Glycine max L.) leaves throughout a light/dark cycle. Leaf starch accumulated in pea, maize, and soybean but not in onion. Sucrose was a major leaf storage reserve in pea, maize, and onion but was only found at low levels in soybean. In all species examined, the most dramatic changes in F2,6BP concentration coincided with light/dark transitions. During the light period F2,6BP levels were about 0.1 nanomole/milligram chlorophyll in soybean source leaves and there was a small increase in effector concentration in the dark. Levels of F2,6BP were also low in pea and maize leaves during the light period but then increased 10- or 20-fold in the dark. Dark onion leaf F2,6BP levels were about 1.1 to 1.3 nanomole/milligram chlorophyll and these values decreased by 20 to 30% in the light. Thus, three different patterns were identified that describe diurnal F2,6BP levels in source leaves. These results support the suggestion that F2,6BP is involved in the regulation of sucrose biosynthesis. However, it was not possible to demonstrate that high levels of F2,6BP are essential for starch synthesis in the chloroplast.  相似文献   

12.
Many studies have shown that root–shoot imbalance influences vegetative growth and development of cotton (Gossypium hirsutum L.), but few have examined changes in leaf senescence and endogenous hormones due to stem girdling. The objective of this study was to determine the correlation between some endogenous phytohormones, particularly cytokinins and abscisic acid (ABA), and leaf senescence following stem girdling. Field-grown cotton plants were girdled on the main stem 5 days after squaring (DAS), while the non-girdled plants served as control. Plant biomass, seed cotton yield, main-stem leaf photosynthetic (Pn) rate, chlorophyll (Chl) and malondialdehyde (MDA) concentrations, as well as levels of cytokinins and ABA in main-stem leaves and xylem sap were determined after girdling or at harvest. Main-stem girdling decreased the dry root weight and root/shoot ratio from 5 to 70 days after girdling (DAG) and reduced seed cotton yield at harvest. Main-stem leaf Pn and Chl concentration in girdled plants were significantly lower than in control plants. Much higher levels of MDA were observed in main-stem leaves from 5 to 70 DAG, suggesting that stem girdling accelerated leaf senescence. Girdled plants contained less trans-zeatin and its riboside (t-Z + t-ZR), dihydrozeatin and its riboside (DHZ + DHZR), and isopentenyladenine and its riboside (iP + iPA), but more ABA than control plants in both main-stem leaves and xylem sap. These results suggested that main-stem girdling accelerated leaf senescence due to reduced levels of cytokinin and/or increased ABA. Cytokinin and ABA are involved in leaf senescence following main-stem girdling.  相似文献   

13.
To evaluate leaf carbon balance during rapid pod-fill in soybean (Glycine max [L.] Merrill), measurements were made of CO2 assimilation at mid-day and changes in specific leaf weight, starch, and sucrose concentrations over a 9-hour interval. Assimilate export was estimated from CO2 assimilation and leaf dry matter accumulation. Chamber-grown `Amsoy 71' and `Wells' plants were subjected on the day of the measurements to one of six photosynthetic photon flux densities in order to vary CO2 assimilation rates.

Rate of accumulation of leaf dry matter and rate of export both increased as CO2 assimilation rate increased in each cultivar.

Starch concentrations were greater in Amsoy 71 than in Wells at all CO2 assimilation rates. At low CO2 assimilation rates, export rates in Amsoy 71 were maintained in excess of 1.0 milligram CH2O per square decimeter leaf area per hour at the expense of leaf reserves. In Wells, however, export rate continued to decline with decreasing CO2 assimilation rate. The low leaf starch concentration in Wells at low CO2 assimilation rates may have limited export by limiting carbon from starch remobilization.

Both cultivars exhibited positive correlations between CO2 assimilation rate and sucrose concentration, and between sucrose concentration and export rate. Carbon fixation and carbon partitioning both influenced export rate via effects on sucrose concentration.

  相似文献   

14.
The influence of different leaf-to-fruit (l-t-f) ratios on leaf net photosynthetic rate (P N) and fruit characteristics in Olea europaea L. cv. Frantoio was evaluated in 2001 and 2002. In both years, at the end of June, at the end of July, and in mid-September (first, second, and third time of treatment, respectively), defoliation or fruit thinning were performed to give l-t-f ratios of 1/1, 3/1, 5/1, and 7/1 (about 5.1, 15.3, 25.6, and 35.8 cm2 of leaf area per fruit, respectively) on girdled and ungirdled peripheral shoots. P N showed substantial seasonal and diurnal variations. In ungirdled shoots, no differences due to the different l-t-f ratios were observed, whereas in girdled shoots P N tended to be lower in shoots with a high l-t-f ratio. In general, the values of leaf transpiration rate (E), stomatal conductance (g s), sub-stomatal CO2 concentration (C i), and dark respiration rate (R D) were associated with those of P N. The starch and reducing sugar contents and area leaf dry mass (ADM) tended to be higher in leaves on girdled shoots with high l-t-f ratio, whereas in ungirdled shoots no differences related to the different l-t-f ratios were observed. The higher saccharide content in the leaves and the lower P N, in the presence of a high C i, observed in girdled shoots with a high l-t-f ratio suggests that the depression in P N in these shoots may be the result of a feedback inhibition of the photosynthetic mechanism that regulates such a process. The l-t-f ratio did not have a substantial effect on fruit drop. In ungirdled shoots, the different l-t-f ratios did not produce significant differences in terms of fruit growth and leaf dry matter and saccharide contents, whereas in girdled shoots fruit growth increased as the l-t-f ratio increased, particularly when treatments were applied at the initial stage of fruit development. The percentage of oil in the pulp, on a dry matter basis, was not substantially influenced by girdling and l-t-f ratio. The abundant availability of assimilates seemed to cause earlier fruit ripening and, at the same time, retard fruit senescence (fruit detachment force). Shoot growth was slightly reduced by girdling. The abundant availability of assimilates, induced by girdling associated with high l-t-f ratio, stimulated flower induction.  相似文献   

15.
Three treatments which altered translocation rate were applied to cucumber plants: Girdling of source leaf petiole; removal of all aerial sinks; removal of all source leaves except one. Two different effects were observed, one short-term (during the initial 6 hours), and one long-term (detected after several days).

The short-term effect was observed exclusively in girdled leaves and involved a reduction in 14CO2 fixation rate paralleled by an increase in stomatal resistance. The effects were maximal after 3 hours with subsequent recovery. Stomatal closure apparently resulted from the 5 to 10% water deficit temporarily detected in girdled leaves which probably induced the observed temporary increases in abscisic acid content. Kinetin counteracted the effects of girdling.

The long-term effect was detected 3 days after girdling and 3 to 5 days after sink manipulation. An increase or decrease in 14CO2 fixation rate was observed when the sink-source ratio was increased or decreased respectively, accompanied by a respective decrease or increase in starch content. Changes in the relative amount of 14CO2 incorporated into various photosynthetic products were also observed. Stomatal closure was not involved, and the decrease in CO2 fixation was not counteracted by kinetin.

  相似文献   

16.
The control of photosynthetic starch/sucrose formation in leaves of soybean (Glycine max L. Merr.) cultivars was studied in relation to stage of plant development, photosynthetic photoperiod, and nitrogen source. At each sampling, leaf tissue was analyzed for starch content, activities of sucrose-metabolizing enzymes, and labeling of starch and sucrose (by 14CO2 assimilation) in isolated cells. In three of the four varieties tested, nodulated plants had lower leaf starch levels and higher activities of sucrose phosphate synthetase (SPS), and isolated mesophyll cells incorporated more carbon (percentage of total 14CO2 fixed) into sucrose and less into starch as compared to nonnodulated (nitrate-dependent) plants. The variation among cultivars and nitrogen treatments observed in the activity of SPS in leaf extracts was positively correlated with labeling of sucrose in isolated cells (r = 0.81) and negatively correlated with whole leaf starch content (r = −0.66). The results suggested that increased demand for assimilates by nodulated roots may be accommodated by greater partitioning of carbon into sucrose in the mesophyll cells. We have also confirmed the earlier report (Chatterton, Silvius 1979 Plant Physiol 64: 749-753) that photoperiod affects partitioning of fixed carbon into starch. Within two days of transfer of nodulated soybean Ransom plants from a 14-hour to a 7-hour photoperiod, leaf starch accumulation rates doubled, and this effect was associated with increased labeling of starch and decreased labeling of sucrose in isolated cells. Concurrently, activities of SPS, sucrose synthase, and uridine diphosphatase in leaves were decreased.  相似文献   

17.
Leaf area, chlorophyll content, net CO2 photoassimilation, and the partitioning of fixed carbon between leaf sucrose and starch and soluble protein were examined in Glycine max (L) Merr. cv Williams grown under three different nitrogen regimes. One group (Nod+/+) was inoculated with Bradyrhizobium and watered daily with a nutrient solution containing 6 millimolar NH4NO3. A second set (Nod+/−) was inoculated and had N2 fixation as its sole source of nitrogen. A third group (Nod) was not inoculated and was watered daily with a nutrient solution containing 6 millimolar NH4NO3. The mean net micromole CO2 uptake per square decimeter per hour of the most recently matured source leaves was similar among the three groups of plants, being about 310. Mean leaf area of the source leaves, monitored for net photosynthesis was also similar. However, the mean milligram of chlorophyll per square decimeter of Nod+/− test leaves was about 50% lower than the other groups' leaves and indicated nitrogen deficiency. Thus, Nod+/− utilized their chlorophyll more efficiently for photosynthetic CO2 uptake than the plants of the other treatments. The ratio of foliar carbohydrate:protein content was high in Nod+/− but low in the plants from the other two treatments. This inverse relationship between foliar protein and carbohydrate content suggests that more fixed carbon is diverted to the synthesis of protein when nitrogen availability is high. It was also found that Nod+/− sequestered more storage protein in their paraveinal mesophyll than plants of the other treatments. This study indicates that when inorganic nitrogen regimes are used to control photosynthate partitioning, then both leaf carbohydrate and leaf protein must be considered as end products of carbon assimilate allocation.  相似文献   

18.
To evaluate assimilate export from soybean (Glycine max [L.] Merrill) leaves at night, rates of respiratory CO2 loss, specific leaf weight loss, starch mobilization, and changes in sucrose concentration were measured during a 10-hour dark period in leaves of pod-bearing `Amsoy 71' and `Wells II' plants in a controlled environment. Lateral leaflets were removed at various times between 2200 hours (beginning dark period) and 0800 hours (ending dark period) for dry weight determination and carbohydrate analyses. Respiratory CO2 loss was measured throughout the 10-hour dark period. Rate of export was estimated from the rate of loss in specific leaf weight and rate of CO2 efflux. Rate of assimilate export was not constant. Rate of export was relatively low during the beginning of the dark period, peaked during the middle of the dark period, and then decreased to near zero by the end of darkness. Rate of assimilate export was associated with rate of starch mobilization and amount of starch reserves available for export. Leaves of Amsoy 71 had a higher maximum export rate in conjunction with a greater total change in starch concentration than did leaves of Wells II. Sucrose concentration rapidly declined during the first hour of darkness and then remained constant throughout the rest of the night in leaves of both cultivars. Rate of assimilate export was not associated with leaf sucrose concentration.  相似文献   

19.
Specific leaf weight, percent moisture, and free sugar, starch, and amino nitrogen content of soybean (Glycine max (L.) Merrill) leaves were measured at 1, 3, 7, and 10 day(s) after petiole girdling by threecornered alfalfa hopper,Spissistilus festinus (Say) (Homoptera: Membracidae) nymphs. Leaf starch was increased at 1, 3, and 7 day(s) after girdling and largely accounted for corresponding increases in specific leaf weight and decreases in percent moisture, free sugars, and amino nitrogen. Specific leaf weight was increased at 10 days after girdling despite no increase in starch. Amino nitrogen content was decreased 10 days after girdling. When leaf dry weights were corrected for starch, free sugar content was not affected by girdling, and amino nitrogen content was reduced only at 3 and 10 days. The amino nitrogen: free sugar ratio was reduced only at 10 days after girdling. Changes in leaf starch indicated a rapid but reversible effect of girdling on leaf carbohydrate metabolism.  相似文献   

20.
Liquidambar styraciflua L. seedlings and tissue-cultured plantlets were grown under high, medium, or low (315, 155, or 50 microeinsteins per square meter per second photosynthetically active radiation) quantum flux densities. Net photosynthesis, chlorophyll content, and chloroplast ultrastructure of leaves differentiated from these conditions were investigated. Seedling photosynthetic rates at light saturation were positively related to light pretreatments, being 6.44, 4.73, and 2.75 milligrams CO2 per square decimeter per hour for high, medium, and low light, respectively. Cultured plantlets under all light conditions had appreciably higher photosynthetic rates than noncultured seedlings; corresponding rates were 12.14, 13.55, and 11.36 milligrams CO2 per square decimeter per hour. Chlorophyll in seedlings and plantlets was significantly higher in low light-treated plants. Seedling leaves had chloroplasts with abundant starch regardless of light pretreatment. In high light, starch granules were predominant and associated with disrupted granal structure. Low light seedling chloroplasts had smaller starch grains and well-formed grana. In contrast, tissue culture-differentiated leaves were devoid of starch; grana were well organized in higher quantum flux density treatments, but disorganized at low flux densities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号