首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Enzymes that modify the proteome, referred to as post‐translational modifying (PTM) enzymes, are central regulators of cellular signaling. Determining the substrate specificity of PTM enzymes is a critical step in unraveling their biological functions both in normal physiological processes and in disease states. Advances in peptide chemistry over the last century have enabled the rapid generation of peptide libraries for querying substrate recognition by PTM enzymes. In this article, we highlight various peptide‐based approaches for analysis of PTM enzyme substrate specificity. We focus on the application of these technologies to proteases and also discuss specific examples in which they have been used to uncover the substrate specificity of other types of PTM enzymes, such as kinases. In particular, we highlight our multiplex substrate profiling by mass spectrometry (MSP‐MS) assay, which uses a rationally designed, physicochemically diverse library of tetradecapeptides. We show how this method has been applied to PTM enzymes to uncover biological function, and guide substrate and inhibitor design. We also briefly discuss how this technique can be combined with other methods to gain a systems‐level understanding of PTM enzyme regulation and function.  相似文献   

2.
Despite their unparalleled catalytic prowess and environmental compatibility, enzymes have yet to see widespread application in synthetic chemistry. This lack of application and the resulting underuse of their enormous potential stems not only from a wariness about aqueous biological catalysis on the part of the typical synthetic chemist but also from limitations on enzyme applicability that arise from the high degree of substrate specificity possessed by most enzymes. This latter perceived limitation is being successfully challenged through rational protein engineering and directed evolution efforts to alter substrate specificity. However, such programs require considerable effort to establish. Here we report an alternative strategy for expanding the substrate specificity, and therefore the synthetic utility, of a given enzyme through a process of "substrate engineering". The attachment of a readily removable functional group to an alternative glycosyltransferase substrate induces a productive binding mode, facilitating rational control of substrate specificity and regioselectivity using wild-type enzymes.  相似文献   

3.
Many enzymes are active at interfaces in the living world (such as in the signaling processes at the surface of cell membranes, digestion of dietary lipids, starch and cellulose degradation, etc.), but fundamental enzymology remains largely focused on the interactions between enzymes and soluble substrates. The biochemical and kinetic characterization of lipolytic enzymes has opened up new paths of research in the field of interfacial enzymology. Lipases are water-soluble enzymes hydrolyzing insoluble triglyceride substrates, and studies on these enzymes have led to the development of specific interfacial kinetic models. Structure-function studies on lipases have thrown light on the interfacial recognition sites present in the molecular structure of these enzymes, the conformational changes occurring in the presence of lipids and amphiphiles, and the stability of the enzymes present at interfaces. The pH-dependent activity, substrate specificity and inhibition of these enzymes can all result from both "classical" interactions between a substrate or inhibitor and the active site, as well as from the adsorption of the enzymes at the surface of aggregated substrate particles such as oil drops, lipid bilayers or monomolecular lipid films. The adsorption step can provide an alternative target for improving substrate specificity and developing specific enzyme inhibitors. Several data obtained with gastric lipase, classical pancreatic lipase, pancreatic lipase-related protein 2 and phosphatidylserine-specific phospholipase A1 were chosen here to illustrate these specific features of interfacial enzymology.  相似文献   

4.
Substrate-assisted catalysis (SAC) is the process by which a functional group in a substrate contributes to catalysis by an enzyme. SAC has been demonstrated for representatives of three major enzyme classes: serine proteases, GTPases, and type II restriction endonucleases, as well as lysozyme and hexose-1-phosphate uridylyltransferase. Moreover, structure-based predictions of SAC have been made for many additional enzymes. Examples of SAC include both naturally occurring enzymes such as type II restriction endonucleases as well as engineered enzymes including serine proteases. In the latter case, a functional group from a substrate can substitute for a catalytic residue replaced by site-directed mutagenesis. From a protein engineering perspective, SAC provides a strategy for drastically changing enzyme substrate specificity or even the reaction catalyzed. From a biological viewpoint, SAC contributes significantly to the activity of some enzymes and may represent a functional intermediate in the evolution of catalysis. This review focuses on advances in engineering enzyme specificity and activity by SAC, together with the biological significance of this phenomenon.  相似文献   

5.
Lipids play critical roles in several major chronic diseases of our times, including those that involve inflammatory sequelae such as metabolic syndrome including obesity, insulin sensitivity, and cardiovascular diseases. However, defining the substrate specificity of enzymes of lipid metabolism is a challenging task. For example, phospholipase A2 (PLA2) enzymes constitute a superfamily of degradative, biosynthetic, and signaling enzymes that all act stereospecifically to hydrolyze and release the fatty acids of membrane phospholipids. This review focuses on how membranes interact allosterically with enzymes to regulate cell signaling and metabolic pathways leading to inflammation and other diseases. Our group has developed “substrate lipidomics” to quantify the substrate phospholipid specificity of each PLA2 and coupled this with molecular dynamics simulations to reveal that enzyme specificity is linked to specific hydrophobic binding subsites for membrane phospholipid substrates. We have also defined unexpected headgroup and acyl chain specificity for each of the major human PLA2 enzymes, which explains the observed specificity at a structural level. Finally, we discovered that a unique hydrophobic binding site—and not each enzyme’s catalytic residues or polar headgroup binding site—predominantly determines enzyme specificity. We also discuss how PLA2s release specific fatty acids after allosteric enzyme association with membranes and extraction of the phospholipid substrate, which can be blocked by stereospecific inhibitors. After decades of work, we can now correlate PLA2 specificity and inhibition potency with molecular structure and physiological function.  相似文献   

6.
Since wild-type enzymes do not always have the properties needed for various applications, enzymes are often engineered to obtain desirable properties through protein engineering techniques. In the past decade, complementary to the widely used rational protein design and directed evolution techniques, noncanonical amino acid incorporation (NCAAI) has become a new and effective protein engineering technique. Recently, NCAAI has been used to improve intrinsic functions of proteins, such as enzymes and fluorescent proteins, beyond the capacities obtained with natural amino acids. Herein, recent progress on improving enzyme properties through NCAAI in vivo is reviewed and the challenges of current approaches and future directions are also discussed. To date, both NCAAI methods-residue- and site-specific incorporation-have been primarily used to improve the catalytic turnover number and substrate binding affinity of enzymes. Numerous strategies used to minimize structural perturbation and stability loss of a target enzyme upon NCAAI are also explored. Considering the generality of NCAAI incorporation, we expect its application could be expanded to improve other enzyme properties, such as substrate specificity and solvent resistance in the near future.  相似文献   

7.
Arg292 of E. coli aspartate aminotransferase was substituted with valine or leucine by site-directed mutagenesis. In comparison with the wild-type enzyme, either of the mutant enzymes showed a decrease by over 5 orders of magnitude of kcat/km values for aspartate and glutamate. This supports the contention that Arg292 is important for determining the specificity of this enzyme for dicarboxylic substrates. In contrast, mutant enzymes displayed a 5- to 10-fold increase in kcat/Km values for aromatic amino acids as substrates. Thus, introduction of an uncharged, hydrophobic side chain into position 292 leads to a striking alteration in substrate specificity of this enzyme, thereby improving catalytic efficiency toward aromatic amino acids.  相似文献   

8.
Partially acetylated chitosan oligosaccharides (paCOS) have various potential applications in agriculture, biomedicine, and pharmaceutics due to their suitable bioactivities. One method to produce paCOS is partial chemical hydrolysis of chitosan polymers, but that leads to poorly defined mixtures of oligosaccharides. However, the effective production of defined paCOS is crucial for fundamental research and for developing applications. A more promising approach is enzymatic depolymerization of chitosan using chitinases or chitosanases, as the substrate specificity of the enzyme determines the composition of the oligomeric products. Protein‐engineering of these enzymes to alter their substrate specificity can overcome the limitations associated with naturally occurring enzymes and expand the spectrum of specific paCOS that can be produced. Here, engineering the substrate specificity of Bacillus sp. MN chitosanase is described for the first time. Two muteins with active site substitutions can accept N‐acetyl‐D‐glucosamine units at their subsite (?2), which is impossible for the wildtype enzyme.  相似文献   

9.
Many attempts have been made to endow enzymes with new catalytic activities. One general strategy involves the creation of random combinatorial libraries of mutants associated with an efficient screening or selection scheme. Phage display has been shown to greatly facilitate the selection of polypeptides with desired properties by establishing a close link between the polypeptide and the gene that encodes it. Selection of phage displayed enzymes for new catalytic activities remains a challenge. The aim of this study was to display the serine protease subtilisin 309 (savinase) from Bacillus lentus on the surface of filamentous fd phage and to develop selection schemes that allow the extraction of subtilisin variants with a changed substrate specificity from libraries. Subtilisins are produced as secreted preproenzyme that mature in active enzyme autocatalytically. They have a broad substrate specificity but exhibit a significant preference for hydrophobic residues and very limited reactivity toward charged residues at the P4 site in the substrate. Here, we show that savinase can be functionally displayed on phage in the presence of the proteic inhibitor CI2. The free enzyme is released from its complex with CI2 upon addition of the anionic detergent LAS. The phage-enzyme can be panned on streptavidin beads after labelling by reaction with (biotin-N-epsilon-aminocaproyl-cystamine-N'-glutaryl)-l-Ala-l-Ala-l-P ro-Phe(P)-diphenyl ester. Reactions of libraries, in which residues 104 and 107 forming part of the S4 pocket have been randomised, with (biotin-N-epsilon-aminocaproyl-cystamine-N'-glutaryl)-alpha-l-Lys-l-A la-l-Pro-Phe(P)-diphenylester allowed us to select enzymes with increased specific activity for a substrate containing a lysine in P4. Parameters influencing the selection as for instance the efficiency of maturation of mutant enzymes in libraries have been investigated.  相似文献   

10.
Selective neutrality and enzyme kinetics   总被引:1,自引:0,他引:1  
This article appeals to a recent theory of enzyme evolution to show that the properties, neutral or adaptive, which characterize the observed allelic variation in natural populations can be inferred from the functional parameters, substrate specificity, and reaction rate. This study delineates the following relations between activity variables, and the forces—adaptive or neutral—determining allelic variation: (1) Enzymes with broad substrate specificity: The observed polymorphism is adaptive; mutations in this class of enzymes can result in increased fitness of the organism and hence be relevant for positive selection. (2) Enzymes with absolute substrate specificity and diffusion-controlled rates: Observed allelic variation will be absolutely neutral; mutations in this class of enzymes will be either deleterious or have no effect on fitness. (3) Enzymes with absolute or group specificity and nondiffusion-controlled rates: Observed variation will be partially neutral; mutants which are selectively neutral may become advantageous under an appropriate environmental condition or different genetic background. We illustrate each of the relations between kinetic properties and evolutionary states with examples drawn from enzymes whose evolutionary dynamics have been intensively studied. Received: 12 December 1996 / Accepted: 22 April 1997  相似文献   

11.
In this paper we present an HPLC method developed for quick activity and specificity analysis of serine proteinases. The method applies a carefully designed peptide library in which the individual components differ only at the potential cleavage site for enzymes. The library has seven members representing seven different cleavage sites and it offers substrates for both trypsin and chymotrypsin-like enzymes. The individual peptide substrates compete for the proteinase during the enzymatic reaction. The reaction is monitored by RP-HPLC separation of the components. We describe the systematic design of the competitive peptide substrate library and the test of the system with eight different serine proteinases. The specificity profiles of the investigated enzymes as determined by the new method were essentially identical to the ones reported in the literature, verifying the ability of the system to characterize substrate specificity. The tests also demonstrated that the system could detect even subtle specificity differences of two isoforms of an enzyme. In addition to recording qualitative specificity profiles, data provided by the system can be analyzed quantitatively, yielding specificity constant values. This method can be a useful tool for quick analysis of uncharacterized gene products as well as new forms of enzymes generated by protein engineering.  相似文献   

12.
We are interested in constructing a model for the substrate-binding site of fatty acid elongase-1 3-ketoacyl CoA synthase (FAE1 KCS), the enzyme responsible for production of very long chain fatty acids of plant seed oils. Arabidopsis thaliana and Brassica napus FAE1 KCS enzymes are highly homologous but the seed oil content of these plants suggests that their substrate specificities differ with respect to acyl chain length. We used in vivo and in vitro assays of Saccharomyces cerevisiae-expressed FAE1 KCSs to demonstrate that the B. napus FAE1 KCS enzyme favors longer chain acyl substrates than the A. thaliana enzyme. Domains/residues responsible for substrate specificity were investigated by determining catalytic activity and substrate specificity of chimeric enzymes of A. thaliana and B. napus FAE1 KCS. The N-terminal region, excluding the transmembrane domain, was shown to be involved in substrate specificity. One chimeric enzyme that included A. thaliana sequence from the N terminus to residue 114 and B. napus sequence from residue 115 to the C terminus had substrate specificity similar to that of A. thaliana FAE1 KCS. However, a K92R substitution in this chimeric enzyme changed the specificity to that of the B. napus enzyme without loss of catalytic activity. Thus, this study was successful in identifying a domain involved in determining substrate specificity in FAE1 KCS and in engineering an enzyme with novel activity.  相似文献   

13.
Thermoactinomyces vulgaris R-47 produces two alpha-amylases, TVAI and TVAII, differing in substrate specificity from each other. TVAI favors high-molecular-weight substrates like starch, and scarcely hydrolyzes cyclomaltooligosaccharides (cyclodextrins) with a small cavity. TVAII favors low-molecular-weight substrates like oligosaccharides, and can efficiently hydrolyze cyclodextrins with various sized cavities. To understand the relationship between the structure and substrate specificity of these enzymes, we precisely examined the roles of key residues for substrate recognition by X-ray structural and kinetic parameter analyses of mutant enzymes and successfully obtained mutants in which the substrate specificity of each enzyme is partially converted into that of another.  相似文献   

14.
Cheriyan M  Toone EJ  Fierke CA 《Biochemistry》2012,51(8):1658-1668
The substrate specificity of enzymes is frequently narrow and constrained by multiple interactions, limiting the use of natural enzymes in biocatalytic applications. Aldolases have important synthetic applications, but the usefulness of these enzymes is hampered by their narrow reactivity profile with unnatural substrates. To explore the determinants of substrate selectivity and alter the specificity of Escherichia coli 2-keto-3-deoxy-6-phosphogluconate (KDPG) aldolase, we employed structure-based mutagenesis coupled with library screening of mutant enzymes localized to the bacterial periplasm. We identified two active site mutations (T161S and S184L) that work additively to enhance the substrate specificity of this aldolase to include catalysis of retro-aldol cleavage of (4S)-2-keto-4-hydroxy-4-(2'-pyridyl)butyrate (S-KHPB). These mutations improve the value of k(cat)/K(M)(S-KHPB) by >450-fold, resulting in a catalytic efficiency that is comparable to that of the wild-type enzyme with the natural substrate while retaining high stereoselectivity. Moreover, the value of k(cat)(S-KHPB) for this mutant enzyme, a parameter critical for biocatalytic applications, is 3-fold higher than the maximal value achieved by the natural aldolase with any substrate. This mutant also possesses high catalytic efficiency for the retro-aldol cleavage of the natural substrate, KDPG, and a >50-fold improved activity for cleavage of 2-keto-4-hydroxy-octonoate, a nonfunctionalized hydrophobic analogue. These data suggest a substrate binding mode that illuminates the origin of facial selectivity in aldol addition reactions catalyzed by KDPG and 2-keto-3-deoxy-6-phosphogalactonate aldolases. Furthermore, targeting mutations to the active site provides a marked improvement in substrate selectivity, demonstrating that structure-guided active site mutagenesis combined with selection techniques can efficiently identify proteins with characteristics that compare favorably to those of naturally occurring enzymes.  相似文献   

15.
A set of amino acid side chains that confer specificity for the coenzyme NADPH and the substrate glutathione in the flavoprotein disulphide oxidoreductase, glutathione reductase, has been identified. Systematic replacement of these amino acid residues in the coenzyme-binding site switches the specificity of the enzyme from its natural strong preference for NADPH to a marked preference for NADH. The amino acids replaced all lie in a structural motif within the dinucleotide-binding domain of the protein. Since this domain is a feature common to most dehydrogenases (reductases) that use nicotinamide coenzymes, it may be that the coenzyme specificities of all such enzymes can be manipulated in this way. Similarly, amino acid residues involved in the selective recognition of trypanothione by trypanothione reductase, an enzyme related to glutathione reductase and exclusive to trypanosomatids, were identified. Suitable mutation of the corresponding residues in E. coli glutathione reductase switched its substrate specificity towards trypanothione. A better understanding of the substrate specificity of these enzymes could open up a route to the chemotherapy of trypanosomal infections.  相似文献   

16.
Directed evolution of enzymes for applied biocatalysis   总被引:5,自引:0,他引:5  
Directed evolution has rapidly emerged as a powerful new strategy for improving the characteristics of enzymes in a targeted manner. By coupling various protocols for generating large variant libraries of genes, together with high-throughput screens that select for specific properties of an enzyme, such as thermostability, catalytic activity and substrate specificity, it is now possible to optimize biocatalysts for specific applications. However, further work is required to broaden the range of screens that can be used, particularly in terms of reaction type, such as hydroxylation and carbon-carbon bond formation, and functional characteristics, such as enantioselectivity and regioselectivity, so that directed evolution can be used in a routine manner for biocatalyst development.  相似文献   

17.
Glycoside phosphorylases (GPs) with specificity for β-(1 → 3)-gluco-oligosaccharides are potential candidate biocatalysts for oligosaccharide synthesis. GPs with this linkage specificity are found in two families thus far—glycoside hydrolase family 94 (GH94) and the recently discovered glycoside hydrolase family 149 (GH149). Previously, we reported a crystallographic study of a GH94 laminaribiose phosphorylase with specificity for disaccharides, providing insight into the enzyme's ability to recognize its' sugar substrate/product. In contrast to GH94, characterized GH149 enzymes were shown to have more flexible chain length specificity, with preference for substrate/product with higher degree of polymerization. In order to advance understanding of the specificity of GH149 enzymes, we herein solved X-ray crystallographic structures of GH149 enzyme Pro_7066 in the absence of substrate and in complex with laminarihexaose (G6). The overall domain organization of Pro_7066 is very similar to that of GH94 family enzymes. However, two additional domains flanking its catalytic domain were found only in the GH149 enzyme. Unexpectedly, the G6 complex structure revealed an oligosaccharide surface binding site remote from the catalytic site, which, we suggest, may be associated with substrate targeting. As such, this study reports the first structure of a GH149 phosphorylase enzyme acting on β-(1 → 3)-gluco-oligosaccharides and identifies structural elements that may be involved in defining the specificity of the GH149 enzymes.  相似文献   

18.
DNA glycosylases, the pivotal enzymes in base excision repair, are faced with the difficult task of recognizing their substrates in a large excess of unmodified DNA. We present here a kinetic analysis of DNA glycosylase substrate specificity, based on the probability of error. This novel approach to this subject explains many features of DNA surveillance and catalysis of lesion excision by DNA glycosylases. This approach also is applicable to the general issue of substrate specificity. We discuss determinants of substrate specificity in damaged DNA and in the enzyme, as well as methods by which these determinants can be identified.  相似文献   

19.
Borgaro JG  Chang A  Machutta CA  Zhang X  Tonge PJ 《Biochemistry》2011,50(49):10678-10686
β-Ketoacyl-ACP synthase (KAS) enzymes catalyze Claisen condensation reactions in the fatty acid biosynthesis pathway. These reactions follow a ping-pong mechanism in which a donor substrate acylates the active site cysteine residue after which the acyl group is condensed with the malonyl-ACP acceptor substrate to form a β-ketoacyl-ACP. In the priming KASIII enzymes the donor substrate is an acyl-CoA while in the elongating KASI and KASII enzymes the donor is an acyl-ACP. Although the KASIII enzyme in Escherichia coli (ecFabH) is essential, the corresponding enzyme in Mycobacterium tuberculosis (mtFabH) is not, suggesting that the KASI or II enzyme in M. tuberculosis (KasA or KasB, respectively) must be able to accept a CoA donor substrate. Since KasA is essential, the substrate specificity of this KASI enzyme has been explored using substrates based on phosphopantetheine, CoA, ACP, and AcpM peptide mimics. This analysis has been extended to the KASI and KASII enzymes from E. coli (ecFabB and ecFabF) where we show that a 14-residue malonyl-phosphopantetheine peptide can efficiently replace malonyl-ecACP as the acceptor substrate in the ecFabF reaction. While ecFabF is able to catalyze the condensation reaction when CoA is the carrier for both substrates, the KASI enzymes ecFabB and KasA have an absolute requirement for an ACP substrate as the acyl donor. Provided that this requirement is met, variation in the acceptor carrier substrate has little impact on the k(cat)/K(m) for the KASI reaction. For the KASI enzymes we propose that the binding of ecACP (AcpM) results in a conformational change that leads to an open form of the enzyme to which the malonyl acceptor substrate binds. Finally, the substrate inhibition observed when palmitoyl-CoA is the donor substrate for the KasA reaction has implications for the importance of mtFabH in the mycobacterial FASII pathway.  相似文献   

20.
Detailed studies on the enzyme machinery responsible for the biosynthesis of protein-bound oligosaccharides of the Asn-GlcNAc and Ser(Thr)-GalNAc linkage types have allowed the formulation of some general rules which explain, at least in part, the branching patterns and microheterogeneity of these structures. These rules are discussed under the following headings: competition of two or more enzymes for a common substrate; controls at the level of enzyme substrate specificity (e.g., critical sugar residues which turn enzyme activity on or off, branch specificity, and the role of the polypeptide in the glycoprotein substrate); substrate availability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号