首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Male and nulliparous female mosquitoes were surveyed for evidence of vertical WNV infection in East Baton Rouge Parish, Louisiana. Adult male mosquitoes collected by trapping and aspiration, and adult male and nulliparous female mosquitoes reared from field‐collected larvae were tested. Adult male Culex spp., female Aedes albopictus (Skuse), and female Culex quinquifasciatus Say mosquitoes that were collected as larvae were test‐positive for WNV RNA. Infectious WNV was detected using virus isolation in field‐collected male Aedes triseriatus Say and Culex salinarius Coquillett; these data represent the first field evidence of vertical transmission of WNV in Ae. triseriatus and Cx. salinarius.  相似文献   

2.
West Nile virus spread rapidly from east to west across North America, despite the north‐south migratory flyways of its avian hosts. In this issue, Venkatesan & Rasgon (2010) present new data on the population genetics of Culex tarsalis, the dominant West Nile virus vector in the Western United States, suggesting that patterns of mosquito gene flow may better reflect the virus’s expansion from the Midwest to the Pacific than patterns of bird movement. These findings suggest a more significant role for vector dispersal in arboviral range expansion than has previously been appreciated, and they highlight the value of molecular genetic studies of insect vector populations for understanding epidemiology and disease ecology.  相似文献   

3.
Physiological and molecular characteristics of natural populations of Culex pipiens Linnaeus, 1758 (Diptera: Culicidae) were investigated to elucidate how this species is potentially involved in the transmission of West Nile virus in Tunisia. A total of 215 Cx. pipiens females from 11 breeding habitats were analysed in the laboratory to estimate autogeny and stenogamy rates. They were tested individually for the locus CQ11 to distinguish between the two Cx. pipiens forms, pipiens and molestus. All tested Cx. pipiens populations were stenogamous. Females from underground breeding sites were all autogeneous, whereas females from above‐ground habitats were mostly anautogeneous. Of all the females tested, 59.7% were identified as pipiens, 22.4% as molestus, and 17.9% as hybrid pipiens/molestus. Furthermore, both Cx. pipiens forms and their hybrids were found to co‐occur in sympatry in all sites. The results of this study represent the first evidence that both Cx. pipiens forms and their hybrids are present in Tunisia. Because hybrids able to act as bridge vectors are present in all studied habitats, Tunisia can be considered to have a high degree of receptivity for the establishment of West Nile virus zoonotic cycles.  相似文献   

4.
Population genetic structure of the West Nile Virus vector Culex tarsalis was investigated in 5 states in the western United States using 5 microsatellite loci and a fragment of the mitochondrial reduced form of nicotinamide adenine dinucleotide dehydrogenase 4 (ND4) gene. ND4 sequence analysis revealed a lack of isolation by distance, panmixia across all populations, an excess of rare haplotypes, and a star-like phylogeny. Microsatellites revealed moderate genetic differentiation and isolation by distance, with the largest genetic distance occurring between populations in southern California and New Mexico (F(ST) = 0.146). Clustering analysis and analysis of molecular variance on microsatellite data indicated the presence of 3 broad population clusters. Mismatch distributions and site-frequency spectra derived from mitochondrial ND4 sequences displayed pattern's characteristic of population expansion. Fu and Li's D* and F*, Fu's F(S), and Tajima's D statistics performed on ND4 sequences all revealed significant, negative deviations from mutation-drift equilibrium. Microsatellite-based multilocus heterozygosity tests showed evidence of range expansion in the majority of populations. Our results suggest that C. tarsalis underwent a range expansion across the western United States within the last 375,000-560,000 years, which may have been associated with Pleistocene glaciation events that occurred in the midwestern and western United States between 350,000 and 1 MYA.  相似文献   

5.
Since its introduction in 1999, West Nile virus (WNV) has spread across North America. Culex tarsalis is a highly efficient WNV vector species. Many traits such as virus susceptibility, autogeny and host preference vary geographically and temporally in C. tarsalis. Culex tarsalis genomic libraries were developed and were highly enriched for microsatellite inserts (42–96%). We identified 12 loci that were polymorphic in wild C. tarsalis populations. These microsatellites are the first DNA‐based genetic markers developed for C. tarsalis and will be useful for investigating population structure and constructing genetic maps in this mosquito.  相似文献   

6.
West Nile virus (WNV) is now endemic in California, with annual transmission documented by the statewide surveillance system. Although much is known about the horizontal avian‐mosquito transmission cycle, less is known about vertical transmission under field conditions, which may supplement virus amplification during summer and provide a mechanism to infect overwintering female mosquitoes during fall. The current study identified clusters of WNV‐infected mosquitoes in Sacramento and Yolo Counties, CA, during late summer 2011 and tested field‐captured ovipositing female mosquitoes and their progeny for WNV RNA to estimate the frequency of vertical transmission. Space‐time clustering of WNV‐positive Culex pipiens complex pools was detected in the northern Elk Grove area of Sacramento County between July 18 and September 18, 2011 (5.22 km radius; p<0.001 and RR=7.80). Vertical transmission by WNV‐infected females to egg rafts was 50% and to larvae was 40%. The estimated minimal filial infection rate from WNV‐positive, ovipositing females was 2.0 infected females/1,000. The potential contribution of vertical transmission to WNV maintenance and amplification are discussed.  相似文献   

7.
西尼罗病毒研究进展   总被引:1,自引:0,他引:1  
任军 《生命科学》2005,17(5):445-448
西尼罗病毒(West Nile virus,WNV)属黄病毒科,为正单链RNA病毒。它在人类中的感染导致以发热为主要症状的传染性疾病,主要由蚊虫叮咬传播。自20世纪50年代首例报告西尼罗病毒自然感染所致脑炎后的几十年内,西尼罗病毒脑炎在欧洲及中亚地区散在、小规模流行。西尼罗病毒脑炎于1999年在美国的爆发及随后几年在北美的流行引起了极大的关注。这次爆发流行中新出现的种种迹象,如其中间宿主——野生鸟类的大量死亡,人类感染者中中枢神经系统受损比例的增高等,提示近期的遗传变异已使西尼罗病毒感染的病理学与流行病学发生了较显著的变化。另外,随着感染的流行,蚊虫叮咬以外的传播途径,如输血、器官移植、母婴传播等日益受到人们重视。同时,人们对阻止疫情所急需的疫苗的研制也在进行之中。本文就近几年来对西尼罗病毒的感染、免疫与流行病学方面的研究进展进行了综述。  相似文献   

8.
We characterized the first microsatellite loci in the white-dotted mosquito, Culex restuans, a critical early spring West Nile virus vector. An enrichment protocol yielded 960 positive clones of which we sequenced 300. We designed primers to amplify 29 unique di-, tri- and tetranucleotide microsatellites and chose 17 that amplified consistently across populations and were polymorphic. We developed three multiplex primer combinations for all 17 loci. A survey of 44 individuals revealed two to 20 alleles across loci, and expected heterozygosity ranging from 0.17 to 0.89. These markers will allow examination of the life history of this mysterious early season encephalitis vector.  相似文献   

9.
Since the emergence of West Nile virus (WNV) in North America in 1999, there have been several reports of WNV activity in Central and South American countries. To detect WNV in Brazil, we performed a serological survey of horses from different regions of Brazil using recombinant peptides from domain III of WNV. Positive samples were validated with the neutralisation test. Our results showed that of 79 ELISA-positive horses, nine expressed WNV-specific neutralising antibodies. Eight of the infected horses were from the state of Mato Grosso do Sul and one was from the state of Paraíba. Our results provide additional evidence for the emergence of WNV in Brazil and for its circulation in multiple regions of the country.  相似文献   

10.
The flaviviral nonstructural 3 protease (NS3pro) is essential for virus replication and is therefore a pharmaceutically relevant target to fight Dengue and West Nile virus (WNV). NS3pro is a chymotrypsin‐like serine protease which requires a polypeptide cofactor (NS2B) for activation. Recent X‐ray crystallography studies have led to the suggestion that the substrate binds to the two‐component NS2B‐NS3pro enzyme by an induced‐fit mechanism. Here, multiple explicit water molecular dynamics simulations of the WNV NS2B‐NS3pro enzyme show that the active conformation of the NS2B cofactor (in which its β‐loop is part of the substrate binding site) is stable over a 50‐ns time scale even in the absence of the inhibitor. The partial and reversible opening of the NSB2 β‐loop and its correlated motion with an adjacent NS3pro loop, both observed in the simulations started from the active conformation, are likely to facilitate substrate binding and product release. Moreover, in five of eight simulations without inhibitor (started from two X‐ray structures both with improperly formed oxyanion hole) the Thr132‐Gly133 peptide bond flips spontaneously thereby promoting the formation of the catalytically competent oxyanion hole, which then stays stable until the end of the runs. The simulation results provide evidence at atomic level of detail that the substrate binds to the NS2B‐NS3pro enzyme by conformational selection, rather than induced‐fit mechanism.  相似文献   

11.
12.
Seasonal epizootics of vector-borne pathogens infecting multiple species are ecologically complex and difficult to forecast. Pathogen transmission potential within the host community is determined by the relative abilities of host species to maintain and transmit the pathogen and by ecological factors influencing contact rates between hosts and vectors. Increasing evidence of strong feeding preferences by a number of vectors suggests that the host community experienced by the pathogen may be very different from the local host community. We developed an empirically informed transmission model for West Nile virus (WNV) in four sites using one vector species (Culex pipiens) and preferred and non-preferred avian hosts. We measured strong feeding preferences for American robins (Turdus migratorius) by Cx. pipiens, quantified as the proportion of Cx. pipiens blood meals from robins in relation to their abundance (feeding index). The model accurately predicted WNV prevalence in Cx. pipiens at three of four sites. Sensitivity analysis revealed feeding preference was the most influential parameter on intensity and timing of peak WNV infection in Cx. pipiens and a threshold feeding index for transmission was identified. Our findings indicate host preference-induced contact heterogeneity is a key mediator of vector-borne pathogen epizootics in multi-species host communities, and should be incorporated into multi-host transmission models.  相似文献   

13.
West Nile virus (WNV) is a zoonotic arboviral pathogen transmitted by mosquitoes in a cycle that involves wild birds as reservoir hosts. The virus is responsible for outbreaks of viral encephalitis in humans and horses. In Europe, Culex pipiens (Diptera: Culicidae) is considered to be the main vector of WNV, but other species such as Stegomyia albopicta (=Aedes albopictus) (Diptera: Culicidae) may also act as competent vectors of this virus. Since 2008 human cases of WNV disease have been reported in northeast Italy. In 2011, new areas of southern Italy became involved and a first outbreak of WNV lineage 1 occurred on the island of Sardinia. On the assumption that a potential involvement of St. albopicta in WNV transmission cannot be excluded, and in order to evaluate the competence of this species for the virus, an experimental infection of an St. albopicta laboratory colony, established from mosquitoes collected in Sardinia, was carried out. The results were compared with those obtained in a colony of the main vector Cx. pipiens. The study showed St. albopicta collected on Sardinia to be susceptible to WNV infection, which suggests this Italian mosquito species is able to act as a possible secondary vector, particularly in urban areas where the species reaches high levels of seasonal abundance.  相似文献   

14.
In 1999 West Nile (WN) virus was introduced to North America where this flavivirus has spread rapidly among wildlife (especially birds) transmitted by various species of mosquitoes (Diptera: Culicidae). Increasing numbers of cases and deaths among humans, horses and other domestic animals require development of effective vaccines. 'ChimeriVax-West Nile(vet)' is being developed for use as a veterinary vaccine to protect against WN infection. This chimeric virus contains the pre-membrane (prM) and envelope (E) genes from the wild-type WN NY99 virus (isolated from a flamingo in New York zoo during the 1999 WN epidemic) in the backbone of yellow fever (YF) 17D vaccine virus. Replication kinetics of ChimeriVax-WN(vet) virus were evaluated in mosquito cell culture (Aedes albopictus C6/36), in WN vector mosquitoes [Culex tritaeniorhynchus Giles, Cx. nigripalpus Theobald and Cx. quinquefasciatus Say (Diptera: Culicidae)] and in YF vectors [Aedes aegypti (L) and Ae. albopictus (Skuse)], to determine whether these mosquitoes become infected through feeding on a viraemic vaccine, and their potential infectivity to transmit the virus. Growth of ChimeriVax-WN(vet) virus was found to be restricted in mosquitoes, compared to WN virus in Ae. albopictus C6/36 cells. When inoculated intrathoracically, ChimeriVax-WN(vet) and YF 17D viruses did not replicate in Cx. tritaeniorhynchus or Cx. nigripalpus; replication was very restricted compared to the wild-type WN virus in Cx. quinquefasciatus, Ae. aegypti and Ae. albopictus. When fed on hanging drops with ChimeriVax-WN(vet) virus (7.7 log10 PFU/mL), none of the Culex mosquitoes became infected; one Ae. albopictus and 10% of the Ae. aegypti became infected, but the titre was very low and virus did not disseminate to head tissue. ChimeriVax-WN(vet) virus had a replication profile similar to that of the attenuated vaccine virus YF 17D, which is not transmitted by mosquitoes. These results suggest that the natural mosquito vectors of WN and YF viruses, which may incidentally take a bloodmeal from a vaccinated host, will not become infected with ChimeriVax-WN(vet) virus.  相似文献   

15.
采用C6/36细胞培养分离活病毒、间接免疫荧光染色检测病毒抗原、RT-PCR扩增病毒基因片段和PCR产物测序等方法,对实验感染的三带喙库蚊Culex tritaeniorhynchus和来亨鸡血液样本中的西尼罗病毒进行分离和鉴定。结果表明,接种实验感染蚊虫研磨液和来亨鸡血液样本的C6/36细胞出现细胞融合、空泡形成的病变效应; 用西尼罗病毒抗血清进行间接免疫荧光染色,感染病毒的细胞呈现黄绿色荧光,为阳性反应; 采用3对不同引物的RT- PCR体系扩增分别出现预期的408 bp、498 bp和559 bp的基因片段,序列测定证实扩增序列与实验所用毒株相应的基因序列基本相同。从而证实实验感染三带喙库蚊和来亨鸡体血液内的西尼罗病毒与实验感染所用的西尼罗病毒Chin-01株一致。  相似文献   

16.
West Nile virus (WNV), the most widely distributed virus of the encephalitic flaviviruses, is a vector-borne pathogen of global importance. The transmission cycle exists in rural and urban areas where the virus infects birds, humans, horses and other mammals. Multiple factors impact the transmission and distribution of WNV, related to the dynamics and interactions between pathogen, vector, vertebrate hosts and environment. Hence, among other drivers, weather conditions have direct and indirect influences on vector competence (the ability to acquire, maintain and transmit the virus), on the vector population dynamic and on the virus replication rate within the mosquito, which are mostly weather dependent. The importance of climatic factors (temperature, precipitation, relative humidity and winds) as drivers in WNV epidemiology is increasing under conditions of climate change. Indeed, recent changes in climatic conditions, particularly increased ambient temperature and fluctuations in rainfall amounts, contributed to the maintenance (endemization process) of WNV in various locations in southern Europe, western Asia, the eastern Mediterranean, the Canadian Prairies, parts of the USA and Australia. As predictions show that the current trends are expected to continue, for better preparedness, any assessment of future transmission of WNV should take into consideration the impacts of climate change.  相似文献   

17.
The distribution of the West Nile virus (WNV) in the organs and tissues of the mosquito Culex pipiens pallens, a potential vector of WNV in China, was investigated up to 14 days after oral infection. The WNV antigen was detected in paraffin‐embedded mosquitoes using immunocytochemistry and viral titers of post‐infected mosquitoes determined by plaque assay. Viral titers sharply decreased 24 h post‐infection, were undetectable for the first few days, then rose over the course of infection. The first midgut infection appeared after one day, and the overall infection rate (based on midgut infection) was 43.9%. Other tissues, including hindgut, foregut, ovarian follicles, Malpighian tubules, and ommatidia, showed weak WNV antigens as early as three days post‐infection. Staining in the salivary glands first appeared after seven days, and the salivary gland infection rate on the 14th day was 37.5%. Specimens with no detectable WNV antigens in any tissues, and with positive results confined to the midgut, anterior midgut, and hindgut, were observed on the 14th day. The route of viral dissemination from the midgut, and the relative importance of amplifying tissues in mosquitoes' susceptibility to infection, were evaluated. The results indicate that Cx. p. pallens has the ability to harbor WNV throughout its alimentary system and that midgut epithelial cells may be the initial site of the replication of this virus in this species.  相似文献   

18.
Wolbachia (Rickettsiales: Anaplasmataceae) infects a wide range of arthropods, including several mosquito species. The bacterium is known to induce a plethora of phenotypes in its host, examples being the reproductive phenotype cytoplasmic incompatibility or resistance against infection with arboviruses. The latter is especially relevant when assessing the vector competence of mosquito species for emerging arboviruses. Thus, knowledge of Wolbachia infection status is important for the assessment of vector competence. To facilitate Wolbachia screening in mosquito populations, a quantitative polymerase chain reaction (qPCR) assay was developed to enable high‐throughput analysis of mosquito samples. Using this assay, the Wolbachia infection status of the two most common Culex mosquito species in Germany, Culex pipiens biotype pipiens Linnaeus (Diptera: Culicidae) and Culex torrentium Martini (Diptera: Culicidae), was assessed. About 93% of all tested C. pipiens biotype pipiens individuals were positive for Wolbachia, whereas none of the C. torrentium samples was found to be infected. Furthermore, other applications of the qPCR assay were explored by assessing a potential link between the levels of Wolbachia and West Nile virus (WNV) infections in German C. pipiens biotype pipiens mosquitoes. No relationship was found between the two variables, indicating that a Wolbachia‐induced antiviral phenotype in this mosquito population is not exclusively attributable to the general level of bacterial infection.  相似文献   

19.
In this paper, we analyse the interaction of different species of birds and mosquitoes on the dynamics of West Nile virus (WNV) infection. We study the different transmission efficiencies of the vectors and birds and the impact on the possible outbreaks. We show that the basic reproductive number is the weighted mean of the basic reproductive number of each species, weighted by the relative abundance of its population in the location. These results suggest a possible explanation of why there are no outbreaks of WNV in Mexico.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号