首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding the effect of human-induced landscape fragmentation on gene flow and evolutionary potential of wild populations has become a major concern. Here, we investigated the effect of riverscape fragmentation on patterns of genetic diversity in the freshwater resident European brook lamprey (Lampetra planeri) that has a low ability to pass obstacles to migration. We tested the hypotheses of (i) asymmetric gene flow following water current and (ii) an effect of gene flow with the closely related anadromous river lamprey (L. fluviatilis) ecotype on L. planeri genetic diversity. We genotyped 2472 individuals, including 225 L. fluviatilis, sampled from 81 sites upstream and downstream barriers to migration, in 29 western European rivers. Linear modelling revealed a strong positive relationship between genetic diversity and the distance from the river source, consistent with expected patterns of decreased gene flow into upstream populations. However, the presence of anthropogenic barriers had a moderate effect on spatial genetic structure. Accordingly, we found evidence for downstream-directed gene flow, supporting the hypothesis that barriers do not limit dispersal mediated by water flow. Downstream L. planeri populations in sympatry with L. fluviatilis displayed consistently higher genetic diversity. We conclude that genetic drift and slight downstream gene flow drive the genetic make-up of upstream L. planeri populations whereas gene flow between ecotypes maintains higher levels of genetic diversity in L. planeri populations sympatric with L. fluviatilis. We discuss the implications of these results for the design of conservation strategies of lamprey, and other freshwater organisms with several ecotypes, in fragmented dendritic river networks.Subject terms: Conservation biology, Ecological genetics, Evolutionary genetics, Genetic variation  相似文献   

2.
Field survey of the entomopathogenic fungus Beauveria bassiana in association with the red turpentine beetle, Dendroctonus valens, was undertaken in three pine plantations in Northern China. In total, 88 strains of B. bassiana sensu lato were isolated from the soil, bark, beetle frass, living adult and cadaver samples and soil was proved to be an important inoculum reservoir for fungal entomopathogens. Of these, 77 isolates were included for genetic diversity analysis by PCR for inter-simple sequence repeats (ISSR). Genetic diversity and population structure analysis of the isolates from three sites and five niches demonstrated high genetic diversity and heterogeneity between and/or within populations. Wright's statistics revealed a high gene flow rate (4.529) among the three populations, especially among the soil-derived isolate subpopulations. Low variation was mainly caused (94.8%) by variation among different substrates, suggesting the importance of microhabitat substrates on genetic diversity of B. bassiana. Phylogenetic variation was not associated with geographic distance.  相似文献   

3.
Functional connectivity is crucial for the persistence of a metapopulation, because migration among subpopulations enables recolonization and counteracts genetic drift, which is especially important in small subpopulations. We studied the degree and drivers of connectivity among occupied patches of a coastal dune metapopulation of the Natterjack Toad (Epidalea calamita Laurenti), on the basis of microsatellite variation. As spatial landscape heterogeneity is expected to influence dispersal and genetic structure, we analyzed which landscape features affect functional connectivity and to what extent. Sixty different landscape resistance scenarios as well as the isolation-by-distance model were compared using two landscape genetics approaches. We identified three subpopulations with unidirectional levels of gene flow among the two most geographically separated subpopulations, while inferred gene flow into the geographically intermediate subpopulation was limited. Urbanization and vegetation height negatively affected connectivity. Low estimates of genetic diversity and effective population size indicate that conservation measures in the smallest and most isolated subpopulation are required.  相似文献   

4.
G. Rowe  T. J. C. Beebee  T. Burke 《Oikos》2000,88(3):641-651
Although it is widely recognised that spatial subdivision of populations is common in nature, there is no consensus as to how metapopulation dynamics affect genetic diversity. We investigated the genetic differentiation of natterjack toads, Bufo calamita , in three regions of Britain where habitat continuity indicated the likely occurrence of extensive metapopulations. Our intention was to determine whether genetic analysis supported the existence of metapopulation structures, if so of what type, and to identify barriers to migration between subpopulations. Allele frequencies were determined across eight polymorphic microsatellite loci for a total of 24 toad subpopulations at three separate sites. Genetic differentiation was assessed using five measures of genetic distance, notably F ST , R ST , Nei's standard distance D s , Δμ2 and the Cavalli-Sforza chord distance D c . B. calamita exhibited small but significant levels of genetic differentiation between subpopulations in all three study areas, and genetic and geographic distance correlations indicated isolation-by-distance effects in all three cases. The effects on correlation strengths of compensation for positive (sea, rivers, urban development) and negative (pond clusters) barriers to toad migration between the subpopulations in each area were also determined. D c , a measure which assumes that differentiation is caused by drift with negligible mutation effect, yielded the most plausible interpretation of metapopulation structures. Overall the patterns of genetic variation suggested the existence of a mixed metapopulation model for this species, with high levels of gene flow compatible with one version of the classical model but often supported by particularly stable subpopulations as in the mainland-island model.  相似文献   

5.
Deschampsia caespitosa is a widespread grass common in moist areas of the alpine tundra of the Rocky Mountains. Enzyme electrophoresis was used to examine population genetic structure along two soil moisture gradients in Rocky Mountain National Park, Colorado. Introduced plants used in a revegetation project were also sampled at one of the sites. At both sites, there were significant differences among subpopulations in allele frequencies, but these differences were distributed in a patchy fashion and were not correlated with the apparent soil moisture gradients. The degree of genetic subdivision differed between the two sites. At one site, gene flow appeared to be high and differences in allele frequencies are attributed to selection in a mosaic environment. At the other site, gene flow appeared more restricted and differences in allele frequencies between subpopulations are attributed to selection and limited gene flow acting simultaneously. Overall, 15% of the genetic variability is between subpopulations and gene flow is high, even between subpopulations separated by up to 1.5 km, but local conditions can apparently limit gene flow and increase the degree of genetic subdivision. The mean genetic distance between introduced plants and the native subpopulations was significantly higher than the mean genetic distance between all other subpopulations. Despite the high gene flow apparent in alpine tundra subpopulations of Deschampsia caespitosa, significant genetic structuring of these subpopulations has developed.  相似文献   

6.
Considering the rapid degradation of coral reefs, it is becoming increasingly important to assess factors such as levels of intraspecific genetic diversity and degree of connectivity between populations and reefs. In this study, five DNA microsatellite markers were used to infer migration patterns and levels of genetic diversity in ten populations of the faviid coral Platygyra daedalea along the coast of East Africa. Populations from reef-slopes and offshore islands had significantly greater genetic diversity, measured as expected heterozygosity and allelic richness than those of inshore lagoonal reefs. A combination of F-statistics and individual assignment tests indicated moderate to high levels of gene flow among lagoonal populations, and less migration between lagoonal sites and the reef-slope and island sites. These results suggest that reef-slope and island reefs could be important reservoirs of genetic diversity for this coral species. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
Dendrothrips minowai Priesner (Thysanoptera: Thripidae) is one of the most destructive insect pests on tea plants. Although outbreaks of this pest occur annually in South China, especially in Guizhou Province, little is known about its population genetics, such as genetic diversity and gene flow. To investigate its population genetic structure and migration routes in Guizhou Province, we analyzed 24 D. minowai populations across Guizhou using six microsatellite loci. We detected the moderate genetic diversity and the population genetic structure of this thrip species. Neighbor‐joining (NJ) phylogenetic tree and STRUCTURE analyses recognized two clusters within the studied populations. No correlation between genetic and geographical distances (r = 0.0139, P = 0.5830) was detected and more than 89% of the variation occurred among samples within populations. Gene flow analysis revealed high migration rates (74.0 – 894.1) among D. minowai populations. Overall, the trend of asymmetrical gene flow was from northeast to southwest. Our analyses demonstrated that D. minowai derived or originated from multiple sites and could be eventually divided into two groups in Guizhou.  相似文献   

8.
Random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) markers were used to investigate the genetic structure of four subpopulations of Mystus nemurus in Thailand. The 7 RAPD and 7 ISSR primers were selected. Of 83 total RAPD fragments, 80 (96.39%) were polymorphic loci, and of 81 total ISSR fragments, 75 (92.59%) were polymorphic loci. Genetic variation and genetic differentiation obtained from RAPD fragments or ISSR fragments showed similar results. Percentage of polymorphic loci (%P), observed number of alleles, effective number of alleles, Nei’s gene diversity (H) and Shannon’s information index revealed moderate to high level of genetic variations within each M. nemurus subpopulation and overall population. High levels of genetic differentiations were received from pairwise unbiased genetic distance (D) and coefficient of differentiation. Mantel test between D or gene flow and geographical distance showed a low to moderate correlation. Analysis of molecular variance indicated that variations among subpopulations were higher than those within subpopulations. The UPGMA dendrograms, based on RAPD and ISSR, showing the genetic relationship among subpopulations are grouped into three clusters; Songkhla (SK) subpopulation was separated from the other subpopulations. The candidate species-specific and subpopulation-specific RAPD fragments were sequenced and used to design sequence-characterized amplified region primers which distinguished M. nemurus from other species and divided SK subpopulation from the other subpopulations. The markers used in this study should be useful for breeding programs and future aquacultural development of this species in Thailand.  相似文献   

9.
The taxonomic status of brown bears in the Caucasus remains unclear. Several morphs or subspecies have been identified from the morphological (craniological) data, but the status of each of these subspecies has never been verified by molecular genetic methods. We analysed mitochondrial DNA sequences (control region) to reveal phylogenetic relationships and infer divergence time between brown bear subpopulations in the Caucasus. We estimated migration and gene flow from both mitochondrial DNA and microsatellite allele frequencies, and identified possible barriers to gene flow among the subpopulations. Our suggestion is that all Caucasian bears belong to the nominal subspecies of Ursus arctos. Our results revealed two genetically and geographically distinct maternal haplogroups: one from the Lesser Caucasus and the other one from the Greater Caucasus. The genetic divergence between these haplogroups dates as far back as the beginning of human colonization of the Caucasus. Our analysis of the least‐cost distances between the subpopulations suggests humans as a major barrier to gene flow. The low genetic differentiation inferred from microsatellite allele frequencies indicates that gene flow between the two populations in the Caucasus is maintained through the movements of male brown bears. The Likhi Ridge that connects the Greater and Lesser Caucasus mountains is the most likely corridor for this migration.  相似文献   

10.
Surveys of genomic variation have improved our understanding of the relationship between fitness‐related phenotypes and their underlying genetic basis. In some cases, single large‐effect genes have been found to underlie important traits; however, complex traits are expected to be under polygenic control and elucidation of multiple gene interactions may be required to fully understand the genetic basis of the trait. In this study, we investigated the genetic basis of the ocean‐ and river‐maturing ecotypes in anadromous Pacific lamprey (Entosphenus tridentatus). In Pacific lamprey, the ocean‐maturing ecotype is distinguished by advanced maturity of females (e.g., large egg mass) at the onset of freshwater migration relative to immature females of the river‐maturing ecotype. We examined a total of 219 adult Pacific lamprey that were collected at‐entry to the Klamath River over a 12‐month period. Each individual was genotyped at 308 SNPs representing known neutral and adaptive loci and measured at morphological traits, including egg mass as an indicator of ocean‐ and river‐maturing ecotype for females. The two ecotypes did not exhibit genetic structure at 148 neutral loci, indicating that ecotypic diversity exists within a single population. In contrast, we identified the genetic basis of maturation ecotypes in Pacific lamprey as polygenic, involving two unlinked gene regions that have a complex epistatic relationship. Importantly, these gene regions appear to show stronger effects when considered in gene interaction models than if just considered additive, illustrating the importance of considering epistatic effects and gene networks when researching the genetic basis of complex traits in Pacific lamprey and other species.  相似文献   

11.
Genetic diversity within and among three wild-type natural populations and one melanic laboratory population of Mythimna separata (Walker) (Lepidoptera: Noctuidae) were evaluated using amplified fragment length polymorphism (AFLP) analysis. Although extensive genetic diversity occurs among individuals from different geographic populations (P = 54.5%, h = 0.209, I = 0.305), the majority of the genetic diversity is within populations and not between populations (G(ST) = 0.172), indicating high gene flow (N(M) = 2.403) and suggesting that M. separata in northern China are a part of a single large metapopulation. Genetic diversity in the natural populations was significantly higher than that in the melanic laboratory population (with P = 43.4% versus P = 25.9%, h = 0.173 versus h = 0.086, and I = 0.251 versus I = 0.127), suggesting that the melanic laboratory population is narrowly genetic-based and genetically uniform. Genetic similarities based on AFLP data were calculated, and cluster analysis was preformed to graphically display groupings between individuals and populations. Individuals from the same region were not grouped together in cluster analysis of three natural populations, whereas melanic individuals from laboratory population were grouped together very well. Four subpopulations were clustered into two broad groups. Melanic laboratory population became a single group, which had apparent differentiation from the other group in which three natural subpopulations were included. These results indicated that although high genetic variability existed among the individuals of natural populations, there was little genetic differentiation among three geographic populations that could be explained by the effects of the long distance migration of the oriental armyworm in China enhanced the level of gene flow. Influences of migration on the genetic polymorphism and differentiations that make a significant contribution to evolution in this insect are reviewed.  相似文献   

12.
The genetic structure of three subpopulations of the Naikpod tribe of Andhra Pradesh, India, was examined by studying three blood group, six red cell enzyme, and five protein systems and phenylthiocarbamide taste sensitivity. The gene frequency data of 15 loci are compared among the subpopulations as well as with those reported for other population groups from India. The analysis of gene diversity revealed that the gene differentiation among the subpopulations relative to total population is only 0.02, indicating that the genetic differentiation between subpopulations is very small compared with that within them. This is corroborated by the small genetic distances found among them. The effect of differentiation of microgeographical and breeding isolation on gene diversity and genetic differentiation among the three subpopulations is apparently low.  相似文献   

13.
We investigated the distribution of genetic variation within and between seven subpopulations in a riparian population of Silene tatarica in northern Finland by using amplified fragment length polymorphism (AFLP) markers. A Bayesian approach-based clustering program indicated that the marker data contained not only one panmictic population, but consisted of seven clusters, and that each original sample site seems to consist of a distinct subpopulation. A coalescent-based simulation approach shows recurrent gene flow between subpopulations. Relative high FST values indicated a clear subpopulation differentiation. However, amova analysis and UPGMA-dendrogram did not suggest any hierarchical regional structuring among the subpopulations. There was no correlation between geographical and genetic distances among the subpopulations, nor any correlation between the subpopulation census size and amount of genetic variation. Estimates of gene flow suggested a low level of gene flow between the subpopulations, and the assignment tests proposed a few long-distance bidirectional dispersal events between the subpopulations. No apparent difference was found in within-subpopulation genetic diversity among upper, middle and lower regions along the river. Relative high amounts of linkage disequilibrium at subpopulation level indicated recent population bottlenecks or admixture, and at metapopulation levels a high subpopulation turnover rate. The overall pattern of genetic variation within and between subpopulations also suggested a 'classical' metapopulation structure of the species suggested by the ecological surveys.  相似文献   

14.
Current threats to biodiversity, such as climate change, are thought to alter the within-species genetic diversity among microhabitats in highly heterogeneous alpine environments. Assessing the spatial organization and dynamics of genetic diversity within species can help to predict the responses of organisms to environmental change. In this study, we evaluated whether small-scale heterogeneity in snowmelt timing restricts gene flow between microhabitats in the common long-lived dwarf shrub Salix herbacea L. We surveyed 273 genets across 12 early- and late-snowmelt sites (that is, ridges and snowbeds) in the Swiss Alps for phenological variation over 2 years and for genetic variation using seven SSR markers. Phenological differentiation triggered by differences in snowmelt timing did not correlate with genetic differentiation between microhabitats. On the contrary, extensive gene flow appeared to occur between microhabitats and slightly less extensively among adjacent mountains. However, ridges exhibited significantly lower levels of genetic diversity than snowbeds, and patterns of effective population size (Ne) and migration (Nem) between microhabitats were strongly asymmetric, with ridges acting as sources and snowbeds as sinks. As no recent genetic bottlenecks were detected in the studied sites, this asymmetry is likely to reflect current meta-population dynamics of the species dominated by gene flow via seeds rather than ancient re-colonization after the last glacial period. Overall, our results suggest that seed dispersal prevents snowmelt-driven genetic isolation, and snowbeds act as sinks of genetic diversity. We discuss the consequences of such small-scale variation in gene flow and diversity levels for population responses to climate change.  相似文献   

15.
Mejía O  Polaco OJ  Zúñiga G 《Genetica》2004,122(3):325-333
Lampreys are the only surviving representatives of the oldest known vertebrates. The Mexican lamprey L. geminis (nonparasitic), is particularly interesting, because it is an endemic, biogeographical relict, and a threatened species. RAPD markers were used to describe genetic diversity in L. geminis A total of 77 specimens were collected from five populations, three in the R'o Grande de Morelia-Cuitzeo basin and two in the R'o Duero-Lerma-Chapala basin, Mexico. Eighty-eight RAPD markers were obtained from eight primers. Genetic diversity within each population was estimated using Shannon's index (S), heterozygosity (H) and gene diversity (h). These estimates revealed significant variation within populations, although a variance homogeneity test (HOMOVA) showed no significant differences among populations or between basins. Nei genetic distance values indicate a low genetic differentiation among populations. Analysis of molecular variance (AMOVA) indicates that most of the genetic diversity occurs within populations (91.4%), but that a statistically significant amount is found among populations (P0.001). Principal coordinates and cluster analyses of RAPD phenotypes show that specimens are not grouped by geographical origin. The genetic diversity found within L. geminispopulations may be explained by its breeding system and an overlapping of generations. The scarce genetic differentiation among populations is likely to the low rate of DNA change that characterizes the lamprey group.  相似文献   

16.
Roads can substantially impact the population connectivity of a wide range of terrestrial vertebrates, often resulting in loss of genetic diversity and an increase of spatial genetic structure. We studied the Western Diamond-backed Rattlesnake (Crotalus atrox), a large and abundant venomous predator, to test the hypothesis that a large and relatively new roadway in Arizona (Interstate Highway I-10) is a barrier that impacts gene flow and population genetics via habitat fragmentation. Based on 72 C. atrox sampled from three specific sampling sites (“subpopulations”) on both the west and east corridors of I-10, we used 30 nuclear microsatellite DNA loci and three mitochondrial DNA genes (2615 bp) to assess genetic diversity and structure, estimate effective population size (N e ), and describe patterns of gene flow. We found no evidence for loss of genetic diversity or a decrease in N e between the three subpopulations. Our microsatellite analysis showed that two subpopulations in close proximity (4 km), but separated by I-10, showed greater levels of genetic differentiation than two subpopulations that were separated by a greater distance (7 km) and not by I-10 or any other obvious barriers. Mitochondrial DNA analyses showed no significant genetic differentiation nor any indication of historically impeded gene flow. Tajima’s D and mismatch distribution tests revealed that demographic expansion is occurring in the overall population (all three subpopulations). Bayesian clustering and spatial genetic autocorrelation analyses of microsatellite data showed resistance to gene flow at the approximate location of I-10. Simulations that investigated gene flow between the subpopulations (with and without a highway barrier present) were consistent with our molecular results. We conclude that I-10 has reduced gene flow in a population of an important reptilian predator of the Sonoran Desert in southern Arizona and make conservation recommendations for reversing this trend.  相似文献   

17.
Isoetes sinensis (Isoetaceae), an aquatic quillwort which occurs only in two fragmented sites of China as an allotetraploid, is critically endangered. Genetic variation among eight subpopulations of I. sinensis was examined in the Xin’an River (119°14′–15′E, 29°28′N) by using allozyme polymorphism. Eighteen loci of 10 enzyme systems were examined and used for the analysis of population genetic parameters. As expected for allotetraploids, fixed heterozygosity was found at four loci. A high level of genetic diversity was observed in the population, with mean number of alleles per loci of 1.8, and mean percentage of polymorphic loci of 55.6%, which were much higher than the average values in fern species. The genetic variation within each subpopulation was not positively correlated with its size, which may be explained by high gene flow (Nm = 2.57), clonal reproduction and fixed heterozygosity of allopolyploid. The I. sinensis population contained high clonal diversity (PD = 0.39, D = 0.95), indicating the successful seedling recruitment of the population. Significant positive relationship was detected between clonal diversity and the size of subpopulation. Partitioning the genetic diversity indicated that 91.1% of the genetic variation was within subpopulations and only 8.9% existed among subpopulations. The migration pattern of I. sinensis along the Xin’an River is best explained by a source–sink model, but with unidirectional gene flow among subpopulations underlined by hydrochoric force. The results were then discussed in relation to both in situ and ex situ conservation efforts of the population.  相似文献   

18.
Environmental heterogeneity can promote the emergence of locally adapted phenotypes among subpopulations of a species, whereas gene flow can result in phenotypic and genotypic homogenization. For organisms like amphidromous fishes that change habitats during their life history, the balance between selection and migration can shift through ontogeny, making the likelihood of local adaptation difficult to predict. In Hawaiian waterfall‐climbing gobies, it has been hypothesized that larval mixing during oceanic dispersal counters local adaptation to contrasting topographic features of streams, like slope gradient, that can select for predator avoidance or climbing ability in juvenile recruits. To test this hypothesis, we used morphological traits and neutral genetic markers to compare phenotypic and genotypic distributions in recruiting juveniles and adult subpopulations of the waterfall‐climbing amphidromous goby, Sicyopterus stimpsoni, from the islands of Hawai'i and Kaua'i. We found that body shape is significantly different between adult subpopulations from streams with contrasting slopes and that trait divergence in recruiting juveniles tracked stream topography more so than morphological measures of adult subpopulation differentiation. Although no evidence of population genetic differentiation was observed among adult subpopulations, we observed low but significant levels of spatially and temporally variable genetic differentiation among juvenile cohorts, which correlated with morphological divergence. Such a pattern of genetic differentiation is consistent with chaotic genetic patchiness arising from variable sources of recruits to different streams. Thus, at least in S. stimpsoni, the combination of variation in settlement cohorts in space and time coupled with strong postsettlement selection on juveniles as they migrate upstream to adult habitats provides the opportunity for morphological adaptation to local stream environments despite high gene flow.  相似文献   

19.
In southern Kantoh, Japanese sika deer (Cervus nippon) are distributed discontinuously due to large urban areas and developed road networks. To assess the impact of habitat fragmentation on sika deer subpopulations, we examined mitochondrial D-loop sequences from 435 individuals throughout southern Kantoh. About 13 haplotypes were detected, and their distributions revealed spatial genetic structure. Significant genetic differentiation was observed among seven of eight subpopulations. We found no significant correlation between pairwise F ST and geographical distance among subpopulations. Genetic diversity indices suggested that seven of eight subpopulations had probably experienced population bottlenecks in the recent past. Therefore, and in the light of the results of a nested clade analysis of these haplotypes, we conclude that recent fluctuations in population size and the interruption of gene flow due to past and present habitat fragmentation have played major roles influencing the spatial genetic structure of the sika deer population. This is the first evidence of spatial genetic population structure in the highly fragmented sika deer population in Honshu, Japan.  相似文献   

20.
Salix hukaoana is an endangered riparian pioneer tree that is distributed within a restricted area of Japan. Microsatellite genetic variations and genetic structures were investigated in 80 subpopulations patchily distributed within five river basins with varying degrees of habitat fragmentation. The correlation between geographic distance and genetic distance based on the Bayesian assignment test was significant across relatively intact riparian habitats, with steeper slopes of regression for more densely grouped subpopulations, suggesting restricted gene flow. However, the correlation became less apparent with increasing spacing of the habitat patches. These contradictory results are attributed to the increased chance of long-distance dispersal of sexual propagules among more isolated habitat patches. The observed accumulation of genetic diversity with increasing distance downstream along a few, but not all, of the rivers and the results of assignment tests suggested a downstream directionality of gene flow. The results of this study illustrate the patterns of genetic diversity and contemporary dispersal of S. hukaoana, and provide important insights into understanding the gene dispersal of riparian trees and into the conservation of genetic resources for this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号