首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 140 毫秒
1.
木姜子油细胞的发育解剖学研究   总被引:2,自引:1,他引:1  
利用薄切片法对木姜子茎叶油细胞的发育以及油细胞分布的研究结果表明:油细胞最早发生于第一叶原基以及茎端皮层和髓的基本分生组织中,在未出现油细胞以痛,上述器官的基本分生组织和原分生组织,难以区分油细胞的原始细胞与周围细胞。当油细胞原始细胞呈现出体积较大,液泡化程度较低,细胞核大而明显的特征才明显可辩,以后经过液泡融合,油细胞成熟和油细胞细胞质解体阶段而成为一贮油的囊,油细胞中未出现杯形构造。叶和茎中,  相似文献   

2.
鹅掌楸油细胞的发育解剖学研究   总被引:1,自引:1,他引:0  
鹅掌楸油细胞比相邻组织细胞分化,因而在叶肉细胞未完全分化的叶原基、幼叶以及未完全分化的幼茎中,都可看到已分化的油细胞。通常,在第二叶原基中可发现油细胞原始细胞,由于其染色深、细胞核大而易与周围组织的细胞相区别。以后,油细胞逐步液泡化,直至形成一个大的液泡,此时,细胞核呈扁平状,并与细胞质一起成为一薄层围绕着大液泡。当油细胞发育成熟后,细胞质及核开始解体,整个油细胞的腔由大液泡充满,成为油囊,在部分  相似文献   

3.
木姜子油细胞发育的超微结构研究   总被引:1,自引:0,他引:1  
利用超薄切片法和透射电镜研究了木姜子(Litsea pungens Hemsl.)油细胞的发育过程。油细胞3层细胞壁的发育可分为4个阶段,阶段1:油细胞仅有初生纤维素壁层,又可分为原始细胞和细胞 泡化两个时期。此阶段质体具透明小泡和黑色嗜锇物质,并与液泡融合。阶段2:木栓质化壁层的形成,片层状木栓质不断叠加在初生纤维素壁内侧,其细胞结构与前期相似,阶段3:内纤维素壁层的形成,较厚而松散的内纤维素壁层叠加在木栓质化壁层的内侧,在内纤维素壁层中可见黑色嗜锇物质,胞间连丝成为被阻塞的特化结构,此时大液泡被嗜锇油脂充满,成为油囊。阶段4:油细胞成熟及细胞质解体,杯形构造由内纤维素壁层向细胞腔内突起形成,油囊由液泡膜包被连接到杯形构造上,油呈浅灰色嗜锇状态,其细胞质和细胞器解体,变得电子不透明或呈杂乱状态。  相似文献   

4.
采用石蜡切片法对落葵薯(Anredera cordifolia(Tenore)Steenis)粘液细胞的分布及发育进行了研究。结果表明,粘液细胞普遍存在于落葵薯的茎、叶、叶柄中,粘液细胞单个散生分布于茎的髓及皮层组织中;叶的栅栏组织和海绵组织中都可见粘液细胞,且海绵组织中的数量明显多于栅栏组织中的;叶柄中的粘液细胞不多,主要分布在维管束四周的皮层组织中。粘液细胞的发育分为4个阶段:原始细胞阶段、液泡化阶段、成熟阶段和细胞质解体阶段。粘液细胞最早出现于第六叶原基,且其发育与茎、叶器官的组织分化不同步。  相似文献   

5.
锦橙汁囊的超微结构   总被引:1,自引:0,他引:1  
用常规电镜方法观察了锦橙[Citrussinensis (L.) Osb.]汁囊从原始细胞到发育为一个具柄的成熟汁囊的过程中,汁囊构成细胞超微结构的变化。锦橙汁囊原始细胞及发育为球状体时的构成细胞以及柱状结构顶端的细胞都是一种典型的分生组织细胞。在细胞质中有包括线粒体、质体、内质网、核糖体等丰富的细胞器,但没有观察到高尔基体。这些分生细胞分裂一段时期后就停止活动,逐渐分化为适应贮藏功能的液泡化薄壁细胞。分生细胞开始分化时,在细胞中出现许多小液泡和高尔基体。这些小液泡逐渐地融合,同时细胞质变少,最后形成一个有中央大液泡的薄壁细胞,在紧贴细胞膜的薄薄的一层细胞质中有线粒体、质体、高尔基体以及含有许多脂滴的杂色体。但成熟果实中汁囊的薄壁细胞中几乎没有任何细胞器。  相似文献   

6.
落葵粘液细胞分布及发育的解剖学研究   总被引:1,自引:0,他引:1  
采用石蜡切片法对落葵粘液细胞的分布及发育构造进行观察研究.结果表明:(1)除花药、子房及种子外,粘液细胞普遍存在于落葵植株的地上部分内.茎中的粘液细胞多单个散生分布于皮层、髓及髓射线;叶内的粘液细胞主要分布于海绵组织,栅栏组织中则很少见;叶柄中的粘液细胞主要沿叶柄"U"型皮层的两边分布;发育后期作为果实的花萼片中粘液细胞则散生分布很多.(2)根据发育过程的不同形态,可将粘液细胞的发育分为4个阶段:原始细胞阶段、液泡化阶段、成熟阶段和细胞质解体阶段;粘液细胞最早可见于第三叶原基,并且粘液细胞的发育与植株器官的发育不同步.  相似文献   

7.
鹅掌楸[Liriodendron chinense(Hemsl.)Sargent.]油细胞的发育过程可依据细胞壁的结构变化依次划分为3个阶段,即仅具初生纤维素壁层阶段、木栓质化壁层形成阶段和内纤维素壁层形成阶段。在发育早期,仅具初生纤维素壁层时,油细胞因其体积大,核仁显著,含极少淀粉粒和质体几乎无类囊体而与周围的组织细胞不同。对其3个发育阶段中内部结构变化分析表明,挥发油合成于细胞质和质体中。细胞质中,挥发油就以小滴形式产生,然后逐渐与油囊融合直接贮入油囊,与此同时,在各种细胞器中,质体的变化最为明显,质体中合成的锇物质,随质体解体进入细胞质中,再经转化通过杯形构造积累入油囊。油囊中积累的油经OsO4染色后呈灰色,且分为2层,外层较内层深,推测与油的2种来源有关。  相似文献   

8.
应用透射电镜对花椒(Xanthoxylum bungeanum Maxim)珠心胚原始细胞,多细胞原胚和此时期的珠心细胞及其ATP酶的分布进行了详细的观察,珠心胚原努细胞具厚的细胞壁,明显分为电子致密的外层和电子透明的内层,无胞间连丝,大的核中未见核仁,细胞质富含细胞器,多细胞原胚的壁比原始细胞的薄,电子透明,均质,具胞间连丝,核体积增大,核仁1至2个,细胞质中细胞数的数量明显增加,珠孔端的珠心细胞比胚性细胞体积大,细胞液泡化程度高,细胞质稀薄而呈现衰退趋势,ATP酶分布于液泡膜及液泡液中,与胚性细胞相接触的最内层珠心细胞胞质降解,核严重变形,最终细胞解体,此时无ATP酶活性反应。  相似文献   

9.
胡萝卜温敏突变细胞系ts-59的愈伤组织团块中包含胚性细胞和液泡化薄壁细胞两个细胞类型。前者具典型分生组织细胞特征,分裂活动旺盛;后者具中央大液泡,细胞质周缘分布,其细胞质与细胞壁的解体使愈伤组织团块由大变小。室温下在无2,4-D的B5培养基上培养的愈伤组织能分化出各个时期的胚状体,形成小植株。在较高温度(32℃)下培养,胚状体发育停止在球形期,它的组成细胞液泡化程度高,继续在此温度下培养,液泡膜  相似文献   

10.
猪苓菌核的含晶细胞发生于菌丝中间或顶端,该细胞具有体积大、细胞质丰富等特点;结晶是由细胞质中的微小颗粒沉积于液泡中逐渐发育而成,液泡周围常有数量较多的线粒体分布,结晶发育至一定大小时细胞壁破裂释放出结晶,单个结晶在菌核中可聚集成大的棱状晶体。厚壁细胞产生于菌丝中间,与两端细胞以横隔膜相隔,细胞质收缩的同时胞壁加厚,厚壁细胞发育至仅留很小胞腔或完全被加厚物质充满时,可与相邻菌丝细胞分离;猪苓菌核厚壁细胞与有些真菌无性厚壁孢子的形成类同,但其大小不等在5~30μm之间。  相似文献   

11.
Mastroberti AA  Mariath JE 《Protoplasma》2008,232(3-4):233-245
The roles of mucilage cells were investigated through morphological and cytological analysis during leaf development in young Araucaria angustifolia plants. Differentiation began in leaf primordia in the shoot apex, when the young cells underwent a greater increase in volume in comparison with other mesophyll cells. The mucilage polysaccharides were synthesized by dictyosomes, from where they were taken by large vesicles and released into a cavity formed by detachment of the tonoplast, which was separated from the cytoplasm. At the end of differentiation, the cell was completely filled with mucilage, a gel consisting of a denser reticular structure surrounding less dense regions. The nucleus and cytoplasm were degenerated in mature cells. The A. angustifolia mucilage cells presented some cytological resemblances to the mucilage cells of members of some dicotyledonous families; however, differences in the dictyosomes and the secretion route were observed. Translocation and water storage of solutes was suggested by the use of the hydroxy pyrenetrisulfonic acid tri-sodium salt apoplastic tracer. The tonoplast detachment, dechromatinization, nuclear condensation, and general degeneration of the membrane systems observed during maturity indicated a programmed cell death process, one not yet described for angiosperm mucilage cells.  相似文献   

12.
Leaf structure in Doxantha unguis-cati is polymorphic. The usual mature compound leaf is composed of two lanceolate leaflets and a terminal tripartite spine-tendril. Leaf primordia are initiated simultaneously in pairs on opposite flanks of the shoot apical meristem by periclinal cell divisions in the third subsurface layer of the peripheral flank meristem. Two leaflet primordia are the first lateral appendages of the compound leaf. Initiation of these leaflet primordia occurs on the adaxial side of a compound leaf primordium 63–70 μm long. Lamina formation is initiated at the base of a leaflet primordium 70–90 μm long and continues acropetally. Mesophyll differentiation occurs in later stages of development of leaflets. The second pair of lateral appendages of the leaf primordium differentiate as prongs of the tendril. Initiation of the second pair of lateral appendages occurs on the adaxial side of a primordium approximately 168 μm long. Acropetal procambialization and vacuolation of cells extend to the apex of tendrils about 112 μm long, restricting the tendril meristem to the adaxial side of the primordium and resulting in curvature of the tendril. The tendril meristem is gradually limited to a more basipetal position as elongation of apical cells continues. Initiatory divisions and early ontogenetic stages of leaflets and tendrils are similar. Their ontogeny differs when the lateral primordia are approximately 70 μm long. Marginal and submarginal initials differentiate within leaflets but not in tendrils. Apical growth of tendrils ceases very early in ontogeny as compared with leaflets.  相似文献   

13.
The shoot apex of Dennstaedtia cicutaria consists of three zones—a zone of surface initials, a zone of subsurface initials, and a cup-shaped zone that is subdivided into a peripheral region and central region. A diffuse primary thickening meristem, which is continuous with the peripheral region of the cup-shaped zone, gives rise to a broad cortex. The roots occurring on the rhizomes are initiated very near the shoot apex in the outer derivatives of the primary thickening meristem. The roots that occur on the leaf bases also differentiate from cortical cells. Eventually, those cortical cells situated between the newly formed root apical cell and the rhizome procambium (or leaf trace) differentiate into the procambium of the root trace, thus establishing procambial continuity with that of the rhizome or leaf trace. Parenchymatous root gaps are formed in the rhizome stele and leaf traces when a few of their procambial cells located directly above the juncture of the root trace procambium differentiate into parenchyma. As the rhizome procambium or leaf trace continues to elongate, the parenchyma cells of the gap randomly divide and enlarge, thus extending the gap.  相似文献   

14.
This paper describes the development of colleters of Bathysa cuspidata, Rubiaceae, considering anatomical, histochemical and ultrastructural aspects and going from first differentiation stages until senescence. Further, the chemical composition of the secretion is investigated. The samples were prepared according to the usual techniques for light microscopy and scanning and transmission electron microscopy. Electrophoresis and thin layer chromatography (TLC) were used to confirm the results obtained in the histochemical tests. The colleters occur at the ventral surface of the stipules which protect the leaf primordia as well as the shoot meristem. The origin of the colleters is mixed, involving protoderm and ground meristem. The Bathysa colleters are of the standard type or are bifurcated; this latter type is documented here for the first time for Rubiaceae. Colleter secretion is a mucilage rich in protein, as determined by histochemical tests and confirmed by chemical analysis. Phenolic compounds and terpenes were detected only in the colleters themselves, but not in the secretion. The epithelial cells present conspicuous nuclei and nucleoli and the cytoplasm is rich in dictyosomes, endoplasmic reticulum, mitochondria, vesicles and small vacuoles with a fibrillar content. The accumulation of phenolic compounds and terpenes, the formation of a large central vacuole, the increase of the intercellular and subcuticular spaces occupied by the secretion and, finally, the darkening and the wilting of the colleters characterize the senescence of these structures. The secretion process of the colleters of B. cuspidata suggests a process of programmed cell death.  相似文献   

15.
The report described the ultrastructural changes that occurred in the major veins and their associated bundle sheaths (BS) of the maize ( Zea mays L. ) leaf blade in the process of their differentiation from three adjacent cells in the middle layer of the ground meristem, the minimal number of cells involved with the initiation of a procambial strand and the associated BS. The inner cell underwent two successive unequal periclinal divisions: a smaller cell that later differentiated into the adaxial BS cell precursor, and a larger one that divided once again periclinally yielding an abaxial BS cell precursor and a centrally located procambial initial cell. One of the two lateral cells immediately adjacent to either side of the inner cell also divided periclinally; these derivatives, along with another lateral cell of the original three-celled unit formed the precursor cells of the lateral BS. Prior to the initiation of protophlcem differentiation, all of the procambial cells showed ultrastructural characteristics basically similar to the procambial initial. They possessed a prominent nucleus with electron-dense aggregates of heterochromatin, a dense cytoplasm rich in ribosomes, proplastids and mitochondria; also a thin wall containing numerous plasmodesmata. In many cases, only short pieces of rough endoplasmic reticulum cistemae and a few small sized vacuoles were present. In adclifton, evidence of cytoplasmic disintegration leading to new vacuole formation was noted in the process of proeambium development. It was observed that certain endoplasmic reticulum was engaged in the sequestration and lysis of cytoplasm. No apparent uhrastmctuml difference was found between the BS cell precursors and the procambial initials, that was, the distinction between the procambium and the surrounding BS cells occurred gradually after vein initiation, The major ultrastmctural changes which occurred during the differentiation of the meristematic BS cells into the vacuolated cells were (1) a proplastid to chloroplast transformation going through a prolamellar body stage, and (2) the appearance of the multi-concentric membrane complex which might play a role in the degradation of some ribosomes and other cytoplasmic components during the differentiation of BS cells.  相似文献   

16.
The developmental process of oil cells in the shoot of Litsea pungens Hemsl. has been studied with transmission electron microscopy. According to the development of the three layers of cell wall, the developmental process could be divided into 4 stages. In stage 1, the cell wall consisted only of a primary (the outmost) cellulose layer, which might further be divided into two substages, the oil cell initial, and the vacuolizing oil cell. During this stage, there were some small electron translucent vesicles and dark osmiophilic droplets of variant sizes in the different-shaped plastids. It was observed that some dark and gray osmiophilic materials coalesced to vacuoles in the cytoplasm. In stage 2, a lamellated suberin layer accumulated inside the primary cellulose layer. In stage 3, a thicker and looser inner cellulose wall layer was formed gradually inside the suberin layer. Some dark osmiophilic droplets have been observed in this loose inner cellulose wall layer. The plasmodesmata were blocked up and became a special structure. Then, the big vacuole, which is the oil sac, was full of osmiophilic oil. In stage 4, the oil cell became matured and the cytoplasm disintegrated. The oil sac enveloped from plasmalemma was attached to the cupule, which was formed by the protuberance of the inner cellulose wall layer into the lumen. After the maturity of oil cell, the ground cytoplasm began to disintegrate and became electron opaque or exhibited in a disordered state, and the osmiophilic oil appeared light gray.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号