首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Transient episodes of ischemic preconditioning (PC) render myocardium protected against subsequent lethal injury after ischemia and reperfusion. Recent studies indicate that application of short, repetitive ischemia only during the onset of reperfusion after the lethal ischemic event may obtain equivalent protection. We assessed whether such ischemic postconditioning (Postcon) is cardioprotective in pigs by limiting lethal injury. Pentobarbital sodium-anesthetized, open-chest pigs underwent 30 min of complete occlusion of the left anterior descending coronary artery and 3-h reflow. PC was elicited by two cycles of 5-min occlusion plus 10-min reperfusion before the 30-min occlusion period. Postcon was elicited by three cycles of 30-s reperfusion, followed by 30-s reocclusion, after the 30-min occlusion period and before the 3-h reflow. Infarct size (%area-at-risk using triphenyltetrazolium chloride macrochemistry; means +/- SE) after 30 min of ischemia was 26.5 +/- 5.2% (n = 7 hearts/treatment group). PC markedly limited myocardial infarct size (2.8 +/- 1.2%, n = 7 hearts/treatment group, P < 0.05 vs. controls). However, Postcon had no effect on infarct size (37.8 +/- 5.1%, n = 7 hearts/treatment group). Within the subendocardium, Postcon increased phosphorylation of Akt (74 +/- 12%) and ERK1/2 (56 +/- 10%) compared with control hearts subjected only to 30-min occlusion and 15-min reperfusion (P < or = 0.05), and these changes were not different from the response triggered by PC (n = 5 hearts/treatment group). Phosphorylation of downstream p70S6K was also equivalent in PC and Postcon groups. These data do not support the hypothesis that application of 30-s cycles of repetitive ischemia during reperfusion exerts a protective effect on pig hearts subjected to lethal ischemia, but this is not due to a failure to phosphorylate ERK and Akt during early reperfusion.  相似文献   

2.
AIM OF THE STUDY: To determine the effects of two-staged ischemic preconditioning on myocardial noradrenaline in prolonged ischemia and reperfusion. METHODS: Thirty-two male Wistar rats anesthetised with urethane randomly divided into 2 groups: group 1 (ischemic preconditioning group, n = 16), and group 2 (control, n = 16). Myocardial interstitial noradrenaline levels were measured using a microdialysis technique. Ischemic preconditioning was elicited by two episodes: 5 min of ischemia and 10 min of reperfusion. The intermittent occlusions were followed by prolonged occlusion (60 min) and reperfusion (60 min). RESULTS: An increase in interstitial noradrenaline was observed in 10 min of prolonged ischemia in group 2, and in 20 min in group 1. After 20 min of myocardial ischemia there was a significant difference between groups (p < 0.05) in interstitial noradrenaline levels. In control group, it was 60% higher. In reperfusion, noradrenaline levels decreased markedly in group 1. CONCLUSION: We suggest that ischemic preconditioning by two episodes: 5-min ischemia and 10-min reperfusion prevents excessive noradrenaline interstitial accumulation, perhaps, through protection of physiological uptake I carrier.  相似文献   

3.
Recently, we showed that L-propionylcarnitine did not affect recovery of regional contractile function of porcine myocardium subjected to 1 h of low-flow ischemia followed by 2 hr of reperfusion. In that study, ischemia may have been too severe and/or the duration of reperfusion too short to detect a beneficial effect of the compound. Therefore, in the present study we investigated the effects of saline (control group; n = 14) or pretreatment with L-propionylcarnitine (3 days of 50 mg/kg p.o. b.i.d. + 50 mg/kg i.v. prior to the experiment; n = 13) on recovery of regional contractile function of the myocardium in open-chest anesthetized pigs, subjected to two cycles of 10 min of left anterior descending coronary artery (LADCA) occlusion, each followed by 30 min of reperfusion. In the control animals, at the end of the second reperfusion period, systemic vascular resistance had increased by 18%, which, however, was not observed in the L-propionylcarnitine-treated pigs. In the control group, during the first occlusion, systolic segment length shortening (SSLS) of the LADCA-perfused area decreased from 18.5 ± 5.5% to - 3.7 = 3.2%. After 30 min of reperfusion, SSLS of the LADCA-perfused area had only partially recovered to 6.2 ±5.9%. During the second occlusion-reperfusion cycle similar values for SSLS were observed. In the treated animals., SSLS of the LADCA-perfused area was slightly improved after the second occlusion-reperfusion cycle (p = 0.056). This effect did not result in an overall improvement in cardiac pump function. We conclude that in a model of myocardial stunning, L-propionylcarnitine prevents systemic vasoconstriction in response to ischemia and reperfusion and, possibly as a result of this effect, slightly ameliorates post-ischemic hypofunction. (Mol Cell Biochem116: 147–153, 1992)  相似文献   

4.
We tested our hypothesis that postischemic conditioning (PostC) is effective in salvage of ischemic skeletal muscle from reperfusion injury and the mechanism involves inhibition of opening of the mitochondrial permeability transition pore (mPTP). In bilateral 8x13 cm pig latissimus dorsi muscle flaps subjected to 4 h ischemia, muscle infarction increased from 22+/-4 to 41+/-1% between 2 and 24 h reperfusion and remained unchanged at 48 (38+/-6%) and 72 (40+/-1%) h reperfusion (P<0.05; n=4 pigs). PostC induced by four cycles of 30-s reperfusion/reocclusion at the onset of reperfusion after 4 h ischemia reduced muscle infarction from 44+/-2 to 22+/-2% at 48 h reperfusion. This infarct protective effect of PostC was mimicked by intravenous injection of the mPTP opening inhibitor cyclosporin A or NIM-811 (10 mg/kg) at 5 min before the end of 4 h ischemia and was abolished by intravenous injection of the mPTP opener atractyloside (10 mg/kg) at 5 min before PostC (P<0.05; n=4-5 pigs). PostC or intravenous cyclosporin A injection at 5 min before reperfusion caused a decrease in muscle myeloperoxidase activity and mitochondrial free Ca2+ concentration and an increase in muscle ATP content after 4 h ischemia and 2 h reperfusion compared with the time-matched controls. These effects of PostC were abolished by intravenous injection of atractyloside at 5 min before PostC (P<0.05; n=6 pigs). These observations support our hypothesis that PostC is effective in salvage of ischemic skeletal muscle from reperfusion injury and the mechanism involves inhibition of opening of the mPTP.  相似文献   

5.
Clinical studies have reported that the incidence and severity of myocardial infarction is significantly greater in diabetics compared with nondiabetics after correction for all other risk factors. The majority of studies investigating the pathophysiology of myocardial ischemia-reperfusion injury have focused on otherwise healthy animals. At present, there is a paucity of experimental investigations on the pathophysiology of heart failure in diabetic animals. We hypothesized that the severity of myocardial reperfusion injury and the development of congestive heart failure would be markedly enhanced in the db/db diabetic mouse. Accordingly, we studied the effects of varying durations of in vivo myocardial ischemia and reperfusion on the incidence of heart failure in db/db diabetic mice. Nondiabetic and db/db diabetic mice (10 wk of age) were subjected to 30, 45, or 60 min of left coronary artery occlusion and 28 days of reperfusion. Survival at 24 h of reperfusion was 100% in nondiabetic mice subjected to 30 min of myocardial ischemia and 88% in nondiabetic mice subjected to 45 min of myocardial ischemia. In contrast, survival was 53% in db/db diabetic mice subjected to 30 min of myocardial ischemia and 44% in db/db mice after 45 min of myocardial ischemia. Prolonged survival in nondiabetic mice was not significantly attenuated when compared during the 28-day follow-up period with all groups experiencing >90% survival. Prolonged survival was significantly decreased in db/db mice after both 30 and 45 min of myocardial ischemia compared with sham controls. Furthermore, we observed a significant degree or left ventricular dilatation, cardiac hypertrophy, and cardiac contractile dysfunction in db/db mice subjected to 45 min of myocardial ischemia and 28 days reperfusion. In nondiabetic mice subjected to 45 min of myocardial ischemia, we failed to observe any changes in left ventricular dimensions or fractional shortening. These studies provide a feasible experimental model system for the investigation of heart failure secondary to acute myocardial infarction in the db/db diabetic mouse.  相似文献   

6.
Administration of nitric oxide (NO) donors during ischemia and reperfusion protects from myocardial injury. However, whether administration of an NO donor during a brief period prior to ischemia protects the myocardium and the endothelium against ischemia-reperfusion injury in vivo is unknown. To study this possibility anesthetized pigs were subjected to 45-min ligation of the left anterior descending coronary artery (LAD) followed by 4h of reperfusion. In initial dose-finding experiments, vehicle or three different doses of the NO donor S-nitroso-N-acetyl-D,L-penicillamin (SNAP; 0.1; 0.5; 2.5 micromol) were infused into the LAD for 3 min starting 13 min during ischemia. Only the 0.5 micromol dose of SNAP reduced infarct size (from 85+/-3% of the area at risk in the vehicle group to 63+/-3% in the SNAP-treated group; p<0.01). There were no significant differences in hemodynamics in the vehicle and SNAP groups during ischemia-reperfusion. Endothelium-dependent dilatation of coronary microvasculature induced by substance P was larger in the SNAP group than in the vehicle group. Myeloperoxidase activity was lower in the ischemic/reperfused myocardial area of pigs given SNAP (4.97+/-0.61 U/g) than in vehicle-treated pigs (8.45+/-0.25 U/g; p<0.05). It is concluded that intracoronary administration of the NO donor SNAP for a brief period before ischemia reduces infarct size, attenuates neutrophil accumulation, and improves endothelial function. These results suggest that NO exerts a classic preconditioning-like protection against ischemia-reperfusion injury in vivo in a narrow concentration range.  相似文献   

7.
HBOC-201 (Biopure; Cambridge, MA) is a glutaraldehyde-polymerized bovine hemoglobin (Hb) solution that is stroma free, has lower viscosity than blood, and promotes O(2) unloading. We investigated the effects of HBOC-201 in a canine model of myocardial ischemia-reperfusion injury. Dogs were anesthetized and subjected to 90 min of regional myocardial ischemia and 270 min of reperfusion. HBOC-201 or 0.9% saline vehicle equivalent to 10% total blood volume was infused 30 min before myocardial ischemia. Hemodynamic data and peripheral blood samples were taken at baseline, 1 h of myocardial ischemia, and 1, 2, and 4 h of reperfusion. At 270 min of reperfusion, the area at risk (AAR) per left ventricle and the area of infarction (Inf) per AAR were determined. The myocardial AARs in the two study groups were similar. In addition, myocardial blood flow (as measured by radioactive microspheres) in the ischemic zone was similar between the vehicle and HBOC-201 groups. HBOC-201-infused dogs demonstrated a significant (P < 0.01) 56% reduction in Inf/AAR. Analysis of blood samples taken at 4 h of reperfusion showed a significant (P < 0.05) reduction in creatine kinase MB isoform for the HBOC-201 group. Histological analysis of the myocardium demonstrated significant (P < 0.01) reductions in neutrophil infiltration in the HBOC-201 group. These data indicate that treatment with HBOC-201 before myocardial ischemia-reperfusion reduces the extent of myocardial inflammation and ischemia-reperfusion injury in the canine myocardium.  相似文献   

8.
Oxidative stress may play a causative role in myocardial ischemia-reperfusion injury. However, it is a relatively understudied aspect regarding an optimal timing of antioxidant intervention during ischemia-reperfusion. The present study investigates the effect of different treatment regimens of Salvia miltiorrhiza (SM) herb extracts containing phenolic compounds that possess potent antioxidant properties on postischemic myocardial functional recovery in the setting of global myocardial ischemia and reperfusion. Langendorff-perfused rat hearts were subjected to 40 min of global ischemia at 37 degrees C followed by 60 min of reperfusion, and were randomly assigned into the untreated control and 2 SM-treated groups (n = 7 per group). In treatment 1 (SM1), 3 mg/mL of water soluble extract of SM was given for 10 min before ischemia and continued during ischemia through the aorta at a reduced flow rate of 60 microL/min, but not during reperfusion. In treatment 2 (SM2), SM (3 mg/mL) was given during the first 15 min of reperfusion. During ischemia, hearts in the control and SM2 groups were given physiological saline at 60 microL/min. The SM1 treatment reduced the production of 15-F2t-isoprostane, a specific index of oxidative stress-induced lipid peroxidation, during ischemia (94 +/- 20, 43 +/- 6, and 95 +/- 15 pg/mL in the coronary effluent in control, SM1, and SM2 groups, respectively; p < 0.05, SM1 vs. control or SM2) and postponed the onset of ischemic contracture. However, SM2, but not the SM1 regimen, significantly reduced 15-F2t-isoprostane production during early reperfusion and led to optimal postischemic myocardial functional recovery (left ventricular developed pressure 51 +/- 4, 46 +/- 4, and 60 +/- 6 mmHg in the control, SM1, and SM2 groups, respectively, at 60 min of reperfusion; p < 0.05, SM2 vs. control or SM1) and reduced myocardial infarct size as measured by triphenyltetrazolium chloride staining (26% +/- 2%, 22% +/- 2%, and 20% +/- 2% of the total area in the control, SM1, and SM2 groups, respectively, p < 0.05, SM2 vs. control). It is concluded that S. miltiorrhiza could be beneficial in the treatment of myocardial ischemic injury and the timing of administration seems important.  相似文献   

9.
This study was designed to assess the effect of a peptidoleukotriene receptor antagonist, SK&F 104353, for limiting myocardial damage and neutrophil accumulation in rats subjected to myocardial reperfusion injury (MI/R). In conscious rats, SK&F 10,4353 (25 mg/kg, i.v.) antagonized LTD4-induced vasopressor responses by 90% and 60% at 1 and 4 hr, respectively, indicating effective blockade of peptido-leukotriene responses. In another group of animals subjected to 30 min of coronary artery occlusion with reperfusion for 24 hr, myocardial injury and neutrophil infiltration were determined by measuring creatine phosphokinase (CPK) specific activity and myeloperoxidase (MPO) activity, respectively, in the left ventricular free wall (LVFW). Myocardial CPK levels were 8.1 +/- 0.2 U/mg protein in Sham-MI/R vehicle-treated animals, and were significantly decreased to 6.4 +/- 0.6 U/mg protein in MI/R-vehicle animals. Myocardial MPO values were 1.5 +/- 0.5 U/g LVFW in Sham-MI/R vehicle-treated animals, and significantly increased to 4.3 +/- 0.6 U/g LVFW in MI/R-vehicle animals. Administration of SK&F 10,4353 (25 mg/kg, i.v.) 1 min prior to coronary occlusion and 3.5 hr post reperfusion had no effect on the loss of myocardial CPK specific activity or the increase in MPO levels (p greater than 0.05, compared to the MI/R-vehicle group). Thus, at a dose that antagonized LTD4-induced vasopressor responses, SK&F 104353 did not attenuate either the extent of myocardial injury or inflammatory cell accumulation associated with myocardial ischemia/reperfusion. These results suggest that peptidoleukotrienes do not contribute to the progression of myocardial ischemic/reperfusion injury.  相似文献   

10.
The effects of myocardial stunning and ischemic preconditioning on left-ventricular developed pressure and end-diastolic pressure (diastolic stiffness) as well as on coronary-perfusion pressure were examined in isolated isovolumic rabbit hearts. The isovolumic relaxation was evaluated, and the time constant of pressure decay during the isovolumic period was calculated. Our experimental protocol comprised: 1) myocardial stunning-global ischemia (15 min) followed by reperfusion (30 min); 2) myocardial stunning-global ischemia (20 min) followed by reperfusion (30 min); and 3) ischemic preconditioning — a single cycle of brief global ischemia and reperfusion (5 min each), before a second ischemic period, of 20-min duration. There was no effect upon systolic and diastolic parameters when 15 and 20 minutes of ischemia were evaluated. In both stunned groups the left ventricular developed pressure first recovered to near control values, but then stabilized at only 60% of the control values. Whereas the isovolumic relaxation time constant was increased after 5 min of reperfusion, and return to control values at late reperfusion, the end diastolic pressure remained elevated during the entire period. Values of dP/dV calculated at common pressure levels, were used as a second index of diastolic stiffness. They were increased after stunning, as also was the coronary perfusion pressure. When the heart was preconditioned with a single episode of ischemia, the systolic and diastolic alterations were completely abolished. We thus concluded that diastolic abnormalities incurred by myocardial stunning consist in both an increase in diastolic stiffness and an early impairment of isovolumic relaxation. The increase in stiffness cannot result from incomplete relaxation since these two parameters become temporally dissociated during the reperfusion period.  相似文献   

11.
Protein kinase A (PKA) activation has been implicated in early-phase ischemic preconditioning. We recently found that during ischemia PKA activation causes inactivation of cytochrome-c oxidase (CcO) and contributes to myocardial damage due to ischemia-reperfusion. It may be that beta-adrenergic stimulation during ischemia via endogenous catecholamine release activates PKA. Thus beta-adrenergic stimulation may mediate both myocardial protection and damage during ischemia. The present studies were designed to determine the role of the beta(1)-adrenergic receptor (beta(1)-AR) in myocardial ischemic damage and ischemic preconditioning. Langendorff-perfused rabbit hearts underwent 30-min ischemia by anterior coronary artery ligation followed by 2-h reperfusion. Occlusion-reperfusion damage was evaluated by delineating the nonperfused volume of myocardium at risk and volume of myocardial necrosis after 2-h reperfusion. In some hearts ischemic preconditioning was accomplished by two 5-min episodes of global low-flow ischemia separated by 10 min before coronary occlusion-reperfusion. Orthogonal electrocardiograms were recorded, and coronary flow was monitored by a drip count. Three hearts from each experimental group were used to determine mitochondrial CcO and aconitase activities. Two-hour reperfusion after occlusion caused an additional decrease in CcO activity vs. that after 30-min occlusion alone. Blocking the beta(1)-AR during occlusion-reperfusion reversed CcO activity depression and preserved myocardium at risk for necrosis. Similarly, mitochondrial aconitase activity exhibited a parallel response after occlusion-reperfusion as well as for the other interventions. Furthermore, classic ischemic preconditioning had no effect on CcO depression. However, blocking the beta(1)-AR during preconditioning eliminated the cardioprotection. If the beta(1)-AR was blocked after preconditioning, the myocardium was preserved. Interestingly, in both of the latter cases the depression in CcO activity was reversed. Thus the beta(1)-AR plays a dual role in myocardial ischemic damage. Our findings may lead to therapeutic strategies for preserving myocardium at risk for infarction, especially in coronary reperfusion intervention.  相似文献   

12.
Soluble epoxide hydrolase (sEH) metabolizes epoxyeicosatrienoic acids (EETs) to dihydroxyeicosatrienoic acids. EETs are formed from arachidonic acid during myocardial ischemia and play a protective role against ischemic cell death. Deletion of sEH has been shown to be protective against myocardial ischemia in the isolated heart preparation. We tested the hypothesis that sEH inactivation by targeted gene deletion or pharmacological inhibition reduces infarct size (I) after regional myocardial ischemia-reperfusion injury in vivo. Male C57BL\6J wild-type or sEH knockout mice were subjected to 40 min of left coronary artery (LCA) occlusion and 2 h of reperfusion. Wild-type mice were injected intraperitoneally with 12-(3-adamantan-1-yl-ureido)-dodecanoic acid butyl ester (AUDA-BE), a sEH inhibitor, 30 min before LCA occlusion or during ischemia 10 min before reperfusion. 14,15-EET, the main substrate for sEH, was administered intravenously 15 min before LCA occlusion or during ischemia 5 min before reperfusion. The EET antagonist 14,15-epoxyeicosa-5(Z)-enoic acid (EEZE) was given intravenously 15 min before reperfusion. Area at risk (AAR) and I were assessed using fluorescent microspheres and triphenyltetrazolium chloride, and I was expressed as I/AAR. I was significantly reduced in animals treated with AUDA-BE or 14,15-EET, independent of the time of administration. The cardioprotective effect of AUDA-BE was abolished by the EET antagonist 14,15-EEZE. Immunohistochemistry revealed abundant sEH protein expression in left ventricular tissue. Strategies to increase 14,15-EET, including sEH inactivation, may represent a novel therapeutic approach for cardioprotection against myocardial ischemia-reperfusion injury.  相似文献   

13.
This study was designed to assess the effect of a peptidol eukotriene receptor antagonist. SK&F 104353, for limiting myocardial damage and neutrophil accumulation in rats subjected to myocardial reperfusion injury (MI/R). In conscious rats, SK&F 104353 (25 mg/kg, i.v.) antagonized LTD4-induced vasopressor responses by 90% and 60% at 1 and 4 hr, respectively, indicating effective blockade of peptidol eukotriene responses. In another group of animals subjected to 30 min of coronary artery occlusion with reperfusion for 24 hr, myocardial injury and neutrophil infiltration were determined by measuring creatine phosphokinase (CPK) specific activity and myeloperoxidase (MPO) activity, respectively, in the left ventricular free wall (LVFW). Myocardial CPK levels were 8.1 ± 0.2 U/mg protein in Sham-MI/R vehicle-treated animals, and were significantly decreased to 6.4 ± 0.6 U/mg protein in MI/R-vehicle animals. Myocardial MPO values were 1.5 ± 0.5 U/g LVFW in Sham-MI/R vehicle-treated animals, and significantly increased to 4.3 ± 0.6 U/g LVFW in MI/R-vehicle animals. Administration of SK&F 105353 (25 mg/kg, i.v.) 1 min prior to coronary occlusion and 3.5 hr post reperfusion and no effect on the loss of myocardial CPK specific activity or the increase in MPO levels (p > 0.05, compared to the MI/R-vehicle group). Thus, at a dose that antagonized LTD4-induced vasopressor responses, SK&F 104353 did not attenuate either the extent of myocardial injury or inflammatory cell accumulation associated with myocardial ischemia/ reperfusion. These results suggest that peptidoleukotrienes do not contribute to the progression of myocardial ischemic/reperfusion injury.  相似文献   

14.
This report demonstrates that mice deficient in Flt-1 failed to establish ischemic preconditioning (PC)-mediated cardioprotection in isolated working buffer-perfused ischemic/reperfused (I/R) hearts compared to wild type (WT) subjected to the same PC protocol. WT and Flt-1+/- mice were divided into four groups: (1) WT I/R, (2) WT + PC, (3) Flt-1+/- I/R, and (4) Flt-1+/- + PC. Group 1 and 3 mice were subjected to 30 min of ischemia followed by 2 h of reperfusion and group 2 and 4 mice were subjected to four episodes of 4-min global ischemia followed by 6 min of reperfusion before ischemia/reperfusion. For both wild-type and Flt-1+/- mice, the postischemic functional recovery for the hearts was lower than the baseline, but the recovery for the knockout mice was less compared to the WT mice even in preconditioning. The myocardial infarction and apoptosis were higher in Flt-1+/- compared to wild-type I/R. Flt-1+/- KO mice demonstrated pronounced inhibition of the expression of iNOS, p-AKT & p-eNOS. Significant inhibition of STAT3 & CREB were also observed along with the inhibition of HO-1 mRNA. Results demonstrate that Flt-1+/- mouse hearts are more susceptible to ischemia/reperfusion injury and also document that preconditioning is not as effective as found in WT and therefore suggest the importance of VEGF/Flt-1 signaling in ischemic/reperfused myocardium.  相似文献   

15.
To investigate the mechanism underlying postischemic contractile dysfunction (myocardial stunning) we examined myocardial sulfhydryl group content, myofibrillar Ca2+-dependent Mg2+-ATPase activity and protein profile after global ischemia and reperfusion. The Langerdorff-perfused rabbit hearts were subjected to 15 min normothermic ischemia followed by 10 min reperfusion and myofibrils were isolated from homogenates of left ventricular tissues. Depressed contractile function during reperfusion was accompanied by a decrease in total sulfhydryl group content. However, myofibrillar protein profile was unchanged and Western immunoblotting analysis showed no significant differences in troponin I immunoreactive bands between control and stunned hearts. Likewise, myofibrillar Mg2+-ATPase activity was unaltered after ischemia and reperfusion. We conclude that myocardial stunning is not caused by altered myofibrillar function and protein degradation but may be partly due to the oxidative modification of as yet undefined proteins.  相似文献   

16.
The increase of cellular fatty acids appears to be one of the causes of the myocardial injury during ischemia and reperfusion. This study was designed to examine whether a hypolipidemic drug such as clofibrate can reduce the myocardial injury during ischemia and reperfusion. Clofibrate was fed to experimental pigs for 9 days. Isolated in situ hearts from both experimental and control pigs were subjected to 60 min of regional ischemia induced by occluding the left anterior descending coronary artery, followed by 60 min of global ischemia by hypothermic cardioplegic arrest and 60 min of reperfusion. The clofibrate feeding resulted in the better cardiac performance as judged by increased coronary blood flow, improved left ventricular function, and reduced myocardial injury as judged by creatine kinase release. Although the clofibrate-fed animals contained higher levels of thiobarbituric reactive materials, the free fatty acid levels of plasma and myocardium were much lower compared with control animals. The clofibrate feeding was also associated with increased peroxisomal catalase and beta-oxidation of fatty acids. These results suggest that decreased levels of free fatty acids in the plasma and the myocardium and increased catalase activity induced by antilipolytic therapy appear to provide beneficial effects to the myocardium during ischemia and reperfusion.  相似文献   

17.
Protein kinase C (PKC), p38 MAP kinase, and mitogen-activated protein kinase-activated kinases 2 and 3 (MAPKAPK2 and MAPKAPK3) have been implicated in ischemic preconditioning (PC) of the heart to reduce damage following a myocardial infarct. This study examined whether extracellular signal-regulated kinase (Erk) 1, p70 ribosomal S6 kinase (p70 S6K), casein kinase 2 (CK2), and other hsp27 kinases are also activated by PC, and if they are required for protection in rabbit hearts. CK2 and hsp27 kinase activities declined during global ischemia in control hearts, whereas PC with 5 min ischemia and 10 min reperfusion increased their activities during global ischemia. Resource Q chromatography resolved two distinct peaks of hsp27 phosphotransferase activities; the first peak (at 0.36 M NaCl) appeared to correspond to the 55-kDa MAPKAPK2. Erk1 activity was elevated in both control and PC hearts after post-ischemic reperfusion, but no change was observed in p70 S6K activity. Infarct size (measured by triphenyltetrazolium staining) in isolated rabbit hearts subjected to 30 min regional ischemia and 2 h reperfusion was 31.0+/-2.6% of the risk zone in controls and was 10.3+/-2.2% in PC hearts (p<0.001). Neither the CK2 inhibitor 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) nor the Mek1/2 inhibitor PD98059 infused during ischemia blocked protection by PC. The activation of CK2 and Erk1 in ischemic preconditioned hearts appear to be epiphenomena and not required for the reduction of infarction from myocardial ischemia.  相似文献   

18.
Postconditioning (PoC) with brief intermittent ischemia after myocardial reperfusion has been shown to lessen some elements of postischemic injury including arrhythmias and, in some studies, the size of myocardial infarction. We hypothesized that PoC could improve reflow to the risk zone after reperfusion. Anesthetized, open-chest rabbits were subjected to 30 min of coronary artery occlusion followed by 3 h of reperfusion. In protocol 1, rabbits were randomly assigned to the control group (n = 10, no further intervention after reperfusion) or to the PoC group, which consisted of four cycles of 30-s reocclusions with 30 s of reperfusion in between starting at 30 s after the initial reperfusion (4 x 30/30, n = 10). In protocol 2, rabbits were assigned to the control group (n = 7) or the PoC group, which received PoC consisting of four cycles of 60-s intervals of ischemia and reperfusion starting at 30 s after the initial reperfusion (4 x 60/60, n = 7). No reflow was determined by injecting thioflavine S (a fluorescent marker of capillary perfusion), risk zone by blue dye, and infarct size by triphenyltetrazolium chloride. In protocol 1, there were no statistical differences in hemodynamics, ischemic risk zone, or infarct size (35 +/- 6% of the risk zone in the PoC group vs. 29 +/- 4% in the control group, P = 0.38) between the groups. Similarly, in protocol 2, PoC failed to reduce infarct size compared with the control group (45 +/- 4% of the risk zone in the PoC group vs. 42 +/- 6% in the control group, P = 0.75). There was a strong correlation in both protocols between the size of the necrotic zone and the portion of the necrotic zone that contained an area of no reflow. However, PoC did not affect this relationship. PoC did not reduce infarct size in this model, nor did it reduce the extent of the anatomic zone of no reflow, suggesting that this intervention may not impact postreperfusion microvascular damage due to ischemia.  相似文献   

19.
We investigated mechanical function and exogenous fatty acid oxidation in neonatal pig hearts subjected to ischemia, followed by reperfusion. Isolated, isovolumically-beating hearts, from pigs 12 h to 2 days of age, were perfused with an erythrocyte-enriched (hematocrit approximately 15%) solution (37 degrees C). All hearts were studied for 30 min. with a perfusion pressure of 60 mmHg (pre-ischemia). One group of hearts (low-flow ischemia, N = 12) was then perfused for 30 min. with a perfusion pressure of approximately 12 mmHg. In the other group (no-flow ischemic arrest, N = 9), the perfusion pressure was zero for 30 min. Following ischemia in both groups, the perfusion pressure was restored to 60 mmHg for 40 min. (reperfusion). Pre-ischemia parameters for all hearts averaged: left ventricular peak systolic pressure, 99.0 +/- 2.0 mmHg; end diastolic pressure, 1.9 +/- 0.2 mmHg; coronary flow, 3.4 +/- 0.1 ml/min per g; myocardial oxygen consumption, 56.6 +/- 1.6 microliter/min per g and fatty acid oxidation, 33.4 +/- 1.4 nmol/min per g. During low-flow ischemia, hearts released lactate, and the corresponding parameters decreased to: 30.7 +/- 0.9 mmHg; 1.2 +/- 0.3 mmHg; 0.8 +/- 0.1 ml/min per g; 26.6 +/- 2.3 microliters/min per g and 12.9 +/- 1.1 nmol/min per g, respectively. Early in reperfusion in both groups, all parameters, except for fatty acid oxidation, exceeded pre-ischemia values, before recovering to near pre-ischemia values. Late in reperfusion, however, rates of fatty acid oxidation exceeded pre-ischemia rates by approximately 60%. Thus, the neonatal pig heart demonstrated similar recovery following 30 min of low-flow ischemia or no-flow ischemic arrest.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Free oxyradicals are involved in the signal transduction of ischemic preconditioning in rats and rabbits. Data from larger mammals in which the infarct development is closer to that in humans are lacking. We have therefore investigated the impact of the radical scavenger ascorbic acid on ischemic preconditioning in pigs. In 33 anesthetized pigs, the left anterior descending coronary artery was perfused from an extracorporeal circuit. Infarct size (measured as percent area at risk) was determined by triphenyltetrazolium chloride staining. In placebo-treated animals undergoing 90 min of severe ischemia and 120 min of reperfusion, infarct size averaged 26.9 +/- 3.9% (mean +/- SE; n = 9). Ischemic preconditioning by 10 min of ischemia and 15 min of reperfusion reduced infarct size to 6.4 +/- 2.4% (P < 0.05 vs. placebo; n = 9). Intravenous infusion of ascorbic acid (30 min before ischemic preconditioning or ischemia; 2-g bolus followed by 25 mg/min until the end of ischemia) had no effect on infarct size per se (22.6 +/- 6.5%; n = 6), but largely abolished the infarct size reduction by ischemic preconditioning (19.1 +/- 5.4%; n = 9). Scavenging of free oxyradicals with ascorbic acid largely attenuates the beneficial effect of ischemic preconditioning in pigs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号