首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary This paper presents a study of the mechanisms of Cl transport through the brush border membranes of the posterior part of the intestine in the freshwater trout, Oncorhynchus mykiss. The mechanisms for Cl transport in the posterior intestine are distinct from those in the middle intestine; an inwardly directed pH gradient stimulates Cl uptake by bursh border membrane vesicles, indicating a Cl/OH exchange. A pH-regulated Cl conductance is present, which is not activated at normal intracellular pH. Cl uptake is stimulated by an outwardly directed HCO 3 gradient revealing the presence of a Cl/HCO 3 exchange but, conversely, Cl is not exchanged against SO 4 2- . In addition, carbonic anhydrase activities have been detected in both the intracellular and extracellular leaflets of the bursh border membranes which favour the establishment of a bicarbonate gradient. A model of Cl transport mechanisms through the brush-border membranes of the posterior intestine of the freshwater trout is proposed.Abbreviations BBM brush border membrane - CA carbonic anhydrase - EGTA ethylene-bis(oxyethylenenitrilo)tetra-acetic acid - FW fresh water - Hepes N-2-hydroxy-ethyl-piperazine-N'-2-ethanesulphonic acid - Mes 2-(N-morpholino)ethane sulphonic acid - SITS 4-acetamido-4-isothiocyanostilbene-2,2-disulphonic acid - TEA triethanolamine - TMA tetramethylammonium - TRIS tris(hydroxymethyl)aminomethane  相似文献   

2.
Summary Changes in extracellular pH (pH o ) in human red cell suspensions were monitored in a stopped-flow rapid reaction apparatus. A 20% suspension of washed human RBC in saline at pH 7 containing NaHCO3 and extracellular carbonic anhydrase was mixed with an equal volume of buffered saline solution at pH 6.7. Sodium salicylate, when present, was added to both the erythrocyte suspension and the buffer solution. The effects of salicylate in the therapeutic to toxic concentration range on HCO 3 /Cl exchange were studied at 37°C. HCO 3 /Cl exchange flux was estimated using the extracellular buffer capacity and the difference betweendpH o /dt using a control RBC suspension and that using a suspension of RBC whose anion exchange pathway was markedly inhibited. The results show that salicylate competitively decreases the rate of HCO 3 /Cl exchange, with inhibition increasing as salicylate concentration increases.K I is 2.4mm. At a salicylate concentration of 10mm, HCO 3 /Cl exchange under the conditions of our experiments was inhibited by more than 70%. These findings are consistent with the possibility that CO2 transfer in capillary bedsin vivo may be diminished in the presence of salicylate due to slowing of red cell HCO 3 /Cl exchange.  相似文献   

3.
pH i recovery in acid-loaded Ehrlich ascites tumor cells and pH i maintenance at steady-state were studied using the fluorescent probe BCECF.Both in nominally HCO 3 -free media and at 25 mm HCO 3 , the measured pH i (7.26 and 7.82, respectively) was significantly more alkaline than the pH i . value calculated assuming the transmembrane HCO 3 gradient to be equal to the Cl gradient. Thus, pH i in these cells is not determined by the Cl gradient and by Cl/HCO 3 exchange.pH i recovery following acid loading by propionate exposure, NH 4 + withdrawal, or CO2 exposure is mediated by amiloride-sensitive Na+/H+ exchange in HCO3 free media, and in the presence of HCO 3 (25 mm) by DIDS-sensitive, Na+-dependent Cl/HCO 3 exchange. A significant residual pH i recovery in the presence of both amiloride and DIDS suggests an additional role for a primary active H+ pump in pH i regulation. pH i maintenance at steady-state involves both Na+/H+ exchange and Na+-dependent Cl/HCO 3 exchange.Acute removal of external Cl induces a DIDS-sensitive, Na+-dependent alkalinization, taken to represent HCO 3 influx in exchange for cellular Cl. Measurements of 36Cl efflux into Cl-free gluconate media with and without Na+ and/or HCO 3 (10 mm) directly demonstrate a DIDS-sensitive, Na+ dependent Cl/HCO 3 exchange operating at slightly acidic pH i (pHo 6.8), and a DIDS-sensitive, Na+-independent Cl/HCO 3 exchange operating at alkaline pH i (pH o 8.2).The excellent technical assistance of Marianne Schiødt and Birgit B. Jørgensen is gratefully acknowledged. The work was supported by the Carlsberg Foundation (B.K.) and by a grant from the Danish Natural Science Foundation (E.K.H. and L.O.S.).  相似文献   

4.
J. Munoz  M. J. Merrett 《Planta》1989,178(4):450-455
Inorganic-carbon transport was investigated in the eukaryotic marine microalgaeStichococcus minor, Nannochloropsis oculata and aMonallantus sp. Photosynthetic O2 evolution at constant inorganic-carbon concentration but varying pH showed thatS. minor had a greater capacity for CO2 rather than HCO 3 utilization but forN. oculata andMonallantus HCO 3 was the preferred source of inorganic carbon. All three microalgae had a low affinity for CO2 as shown by the measurement of inorganic-carbon-dependent photosynthetic O2 evolution at pH 5.0. At pH 8.3, where HCO 3 is the predominant form of inorganic carbon, the concentration of inorganic carbon required for half-maximal rate of photosynthetic O2 evolution [K 0.5 (CO2)] was 53 M forMonallantus sp. and 125 M forN. oculata, values compatible with HCO 3 transport. Neither extra- nor intracellular carbonic anhydrase was detected in these three microalgal species. It is concluded that these microalgae lack a specific transport system for CO2 but that HCO 3 transport occurs inN. oculata andMonallantus, and in the absence of intracellular carbonic anhydrase the conversion of HCO 3 to CO2 may be facilitated by the internal pH of the cell.  相似文献   

5.
Net O2 evolution, gross CO2 uptake and net HCO inf3 su– uptake during steady-state photosynthesis were investigated by a recently developed mass-spectrometric technique for disequilibrium flux analysis with cells of the marine cyanobacterium Synechococcus PCC7002 grown at different CO2 concentrations. Regardless of the CO2 concentration during growth, all cells had the capacity to transport both CO2 and HCO inf3 su– ; however, the activity of HCO inf3 su– transport was more than twofold higher than CO2 transport even in cyanobacteria grown at high concentration of inorganic carbon (Ci = CO2 + HCO inf3 su– ). In low-Ci cells, the affinities of CO2 and HCO inf3 su– transport for their substrates were about 5 (CO2 uptake) and 10 (HCO inf3 su– uptake) times higher than in high-Ci cells, while air-grown cells formed an intermediate state. For the same cells, the intracellular accumulated Ci pool reached 18, 32 and 55 mM in high-Ci, air-grown and low-Ci cells, respectively, when measured at 1 mM external Ci. Photosynthetic O2 evolution, maximal CO2 and HCO inf3 su– transport activities, and consequently their relative contribution to photosynthesis, were largely unaffected by the CO2 provided during growth. When the cells were adapted to freshwater medium, results similar to those for artificial seawater were obtained for all CO2 concentrations. Transport studies with high-Ci cells revealed that CO2 and HCO inf3 su– uptake were equally inhibited when CO2 fixation was reduced by the addition of glycolaldehyde. In contrast, in low-Ci cells steady-state CO2 transport was preferably reduced by the same inhibitor. The inhibitor of carbonic anhydrase ethoxyzolamide inhibited both CO2 and HCO inf3 su– uptake as well as O2 evolution in both cell types. In high-Ci cells, the degree of inhibition was similar for HCO inf3 su– transport and O2 evolution with 50% inhibition occurring at around 1 mM ethoxyzolamide. However, the uptake of CO2 was much more sensitive to the inhibitor than HCO inf3 su– transport, with an apparent I50 value of around 250 M ethoxyzolamide for CO2 uptake. The implications of our results are discussed with respect to Ci utilisation in the marine Synechococcus strain.Abbreviations Chl chlorophyll - Ci inorganic carbon (CO2 + HCO inf3 su– ) - CA carbonic anhydrase - CCM CO2-concentrating mechanism - EZA ethoxyzolamide - GA glycolaldehyde - K1/2 concentration required for half-maximal response - Rubisco ribulose-1,5,-bisphosphate carboxylase-oxygenase D.S. is a recipient of a research fellowship from the Deutsche Forschungsgemeinschaft (D.F.G.). In addition, we are grateful to Donald A. Bryant, Department of Molecular and Cell Biology and Center of Biomolecular Structure Function, Pennsylvania State University, USA, for sending us the wild-type strain of Synechococcus PCC7002.  相似文献   

6.
Summary Anion exchange transport in the mouse lacrimal gland acinar cell membrane was studied by measuring the intracellular H+ (pHi) and Cl (aCli) activities with double-barreled ion-selective microelectrodes. In a HCO 3 -free solution of pH 7.4 (HEPES/Tris buffered), pHi was 7.25 andaCli was 33mm. By an exposure to a HCO 3 (25mm HCO 3 /5% CO2, pH 7.4) solution for 15 min,aCli was decreased to 25mm and pHi was transiently decreased to about 7.05 within 1 min, then slowly relaxed to 7.18 in 15 min. Intracellular HCO 3 concentration [HCO 3 ]i, calculated by the Henderson-Hasselbalch's equation, was 11mm at 1 min after the exposure and then slowly increased to 15mm. Readmission of the HCO 3 -free solution reversed the changes inaCli and pHi. The intracellular buffering power was about 40mm/pH. An addition of DIDS (0.2mm) significantly inhibited the rates of change inaCli, pHi, and [HCO 3 ]i caused by admission/withdrawal of the HCO 3 , solution and decreased the buffer value. Replacement of all Cl with gluconate in the HCO 3 solution increased pHi, and readmission of Cl decreased pHi. The rates of these changes in pHi were reduced by DIDS by 32–45% but not by amiloride (0.3mm). In the HCO 3 solution, a stimulation of intracellular HCO 3 production by exposing the tissue to 25mm NH 4 + increasedaCli significantly. While in the HCO 3 -free solution or in the HCO 3 , solution containing DIDS, exposure to NH 4 + had little effect onaCli. All of these findings were consistent with the presence of a reversible, disulfonic stilbene-sensitive Cl/HCO 3 exchanger in the basolateral membrane of the acinar cells. The possibility of anion antiport different from one-for-one Cl/HCO 3 exchange is discussed.  相似文献   

7.
Secretion of bicarbonate has been described for distal nephron epithelium and attributed to apical Cl/HCO 3 exchange in beta-intercalated cells. We investigated the presence of this mechanism in cortical distal tubules by perfusing these segments with acid (pH 6) 10 mm phosphate Ringer. The kinetics of luminal alkalinization was studied in stationary microperfusion experiments by double-barreled pH (ion-exchange resin)/1 m KCl reference microelectrodes. Luminal alkalinization may be due to influx (into the lumen) of HCO 3 or OH, or efflux of H+. The magnitude of the Cl/ HCO 3 exchange component was measured by perfusing the lumen with solutions with or without chloride, which was substituted by gluconate. This component was not different from zero in control and alkalotic (chronic plus acute) Wistar rats. Homozygous Brattleboro rats (BRB), genetically devoid of antidiuretic hormone, were used since this hormone has been shown to stimulate H+ secretion, which could mask bicarbonate secretion. In these rats, no evidence for Cl/HCO 3 exchange was found in control BRB and in early distal segments of alkalotic animals, but in late distal tubule a significant component of 0.14±0.033 nmol/cm2 · sec was observed, which, however, is small when compared to the reabsorptive flow found in control Wistar rats, of 0.95±0.10 nmol/cm2 · sec. In addition, 5×10–4 m SITS had no effect on distal bicarbonate reabsorption in controls as well as on secretion in alkalotic Wistar and Brattleboro rats, which is compatible with the absence of effect of this drug on the apical Cl/HCO 3 exchange in other tissues. It is concluded that most distal alkalinization is not Cl dependent, and that Cl/HCO 3 exchange may be found in cortical distal tubule, but its magnitude is, even in alkalosis, markedly smaller than the reabsorptive flux, which predominates in the rats studied in this paper, keeping luminal pH lower than that of blood.  相似文献   

8.
The Madin-Darby canine kidney (MDCK) cell line has been proposed as a model for studying intercalated (IC) cells of the renal cortical collecting duct. The IC cells are characterized by peanut lectin (PNA) binding capacity, carbonic anhydrase (CA) activity and Cl-–HCO 3 - exchange mediated by a band 3-related protein. It has been suggested that these properties are also expressed in MDCK cells. So far however, the nature of the specific protein involved in Cl-–HCO 3 - exchange, the type of CA isozyme and the relationship between these two characteristics and PNA binding, have not been investigated in MDCK cells by immunocytochemical methods. Using two antibodies raised against human erythrocyte band 3 protein and two against human erythrocyte CA I and II isozymes, our study provides evidence that a protein related to band 3 is expressed in about 5% of cultured MDCK cells; these band 3-positive cells do not bind PNA and are not reactive for CAI or CAII. About 30% of the MDCK cells bind PNA, two-thirds of which are also CAII-positive. A majority (about 65%) of MDCK cells is not reactive for the three markers used; their density is increased after incubation with aldosterone. These data indicate (i) that the Cl-–HCO 3 - exchanger of the MDCK cells could be related to human erythrocyte band 3, (ii) that the CA activity of the MDCK cell line bears antigenic identity with the erythrocyte CA II isozyme and (iii) that the latter is always co-localized with PNA binding. These results provide immunocytochemical evidence for the heterogeneity of the MDCK cell line, which might reflect the cellular heterogeneity encountered in the renal cortical collecting duct. Our data also indicate that clonal selection will be required for future functional studies of the MDCK cells.  相似文献   

9.
Summary The apical membrane of the rabbit corneal endothelium contains a potassium-selective ionic channel. In patch-clamp recordings, the probability of finding the channel in the open state (P o) depends on the presence of either HCO 3 or Cl in the bathing medium. In a methane sulfonate-containing bath,P o is <0.05 at all physiologically relevant transmembrane voltages. With 0mm [HCO 3 ] o at +60 mV,P o was 0.085 and increased to 0.40 when [HCO 3 ] o was 15mm. With 4mm [Cl] o at +60 mV,P o was 0.083 and with 150mm Cl,P o increased to 0.36. LowP o's are also found when propionate, sulphate, bromide, and nitrate are the primary bath anions. The mechanism of action of the anion-stimulated K+ channel gating is not yet known, but a direct action of pH seems unlikely. The alkalinization of cytoplasm associated with the addition of 10mm (NH4)2SO4 to the bath and the acidification accompanying its removal do not result in channel activation nor does the use of Nigericin to equilibrate intracellular pH with that of the bath over the pH range of 6.8 to 7.8. Channel gating also is not affected by bathing the internal surface of the patch with cAMP, cGMP, GTP--s, Mg2+ or ATP. Blockers of Na/H+ exchange, Na+–HCO 3 cotransport, Na+–K+ ATPase and carbonic anhydrase do not block the HCO 3 stimulation ofP o. Several of the properties of the channel could explain some of the previously reported voltage changes that occur in corneal endothelial cells stimulated by extracellular anions.  相似文献   

10.
Physiological and immuno-blotting experiments were used to determine whether the red blood cell membrane of a primitive vertebrate, the sea lamprey Petromyzon marinus, contained a counterpart similar to the vertebrate anion exchange protein known as AE1 or band 3. Results of the physiological experiments which measured CO2 production after adding H14CO 3 - to the extracellular saline, indicated significant transmembrane bicarbonate movement in lamprey blood which unlike that in most vertebrates, was insensitive to inhibition by 4,4 diisothiocyanatostilbene-2,2 disulfonic acid. The present study also showed that lamprey red blood cells possess acetazolamide-sensitive carbonic anhydrase which is an important component of CO2 production by vertebrate red blood cells. Polyclonal immunoglobulins against a 12 amino acid domain in the C-terminus of the mouse AE1 recognized a trout red blood cell membrane protein with a relative molecular mass of 97 kDa, but failed to immunoreact with any membrane proteins from the red blood cells of lamprey. Antibodies against trout AE1 immunoreacted with trout red blood cell membrane proteins of approximately 97 kDa, 200 kDa and >200 kDa. Interestingly, only a 200-kDa membrane protein from the red blood cells of the primitive lamprey immunoreacted with the trout anti-AE1 immunoglobulin proteins. Therefore, lamprey red blood cells appear to possess an AE1-like protein that may be physiologically different than that in most other vertebrates.  相似文献   

11.
Summary In a previous study we presented evidence that chloride transport across the basolateral membrane inNecturus proximal tubule cells occurs predominantly via exchange for both Na+ and HCO 3 . In this study the regulation of intracellular chloride was further examined in the doubly-perfused kidney preparation using conventional and chloride-sensitive microelectrodes. Application of hypertonic basolateral solutions containing 80mm raffinose stimulated an efflux of chloride such that chloride activity remained unchanged at control levels. Membrane potential did not change in these experiments. Inhibition of Cl exit across the basolateral cell membrane by removal of either HCO 3 or Na+ from the perfusion solution resulted in a significant increase in intracellular chloride activity,a Cl i , when basolateral osmolarity was raised. Hypertonic basolateral solutions also produced a significant rise ina Cl i in the presence of SITS.This study provides further evidence that chloride is transported across the basolateral cell membrane in exchange for both Na+ and HCO 3 . Since this exchange mechanism is activated in response to hypertonic solutions, these studies suggest a functional role for this exchanger in the regulation ofa Cl i in theNecturus proximal tubule cell during volume changes.  相似文献   

12.
A burst of net CO2 uptake was observed during the first 3–4 min after the onset of illumination in both wild-type Chlamydomonas reinhardii in which carbonic anhydrase was chemically inhibited with ethoxyzolamide and in a mutant of C. reinhardii (ca-1-12-1C) deficient in carbonic anhydrase activity. The burst was followed by a rapid decrease in the CO2 uptake rate so that net evolution often occurred. After a 2–3 min period of CO2 evolution, net CO2 uptake again increased and ultimately reached a steady-state, positive rate. From [14CO2]-tracer studies it was determined that CO2 fixation proceeded at a nearly linear rate throughout the period of illumination. Thus, prior to reaching a steady state, there was a rapid accumulation of inorganic carbon inside the cells which apparently reached a supercritical concentration and the excess was excreted, causing a subsequent efflux of CO2. A post illumination burst of net CO2 efflux was also observed in ethoxyzolamide-inhibited wild type and ca-1 mutant cells, but not in the unihibited wild type. [14CO2]-tracer experiments revealed that this burst was the result of a collapse of a large internal inorganic carbon pool at the onset of darkness rather than a photorespiratory post-illumination burst. These results indicate that upon illumination, chemical or genetic inhibition of carbonic anhydrase initially causes an accumulation of excess inroganic carbon in C. reinhardii cells, and that unknown regulatory mechanisms correct for this imbalance by first excreting the excess inorganic carbon and then, after several dampened oscillations, achieving an equilibrium between bicarbonate uptake, bicarbonate dehydration, and CO2 fixation.  相似文献   

13.
It has been proposed that many marine macroalgae are able to utilize HCO 3 for photosynthesis and growth, and that energy-dependent ion pumping is involved in this process. We have therefore studied the light-dependent alkalization of the surrounding medium by two species of marine macroscopic brown algae,Fucus serratus L. andLaminaria saccharina (L.) Lamour. with the aim of investigating the role of extracellular carbonic anhydrase (EC 4.2.1.1.) in the assimilation of inorganic carbon from the seawater medium. In particular, the influence of membrane-impermeable or slowly permeable carbonic-anhydrase inhibitors on the rate of alkalization of the seawater has been investigated. Inhibition of the alkalization rate occurred in both species at an alkaline pH (pH 8.0) but no inhibition was observed at an acidic pH (pH 6.0). The alkalization was found to be light-dependent and inhibited by 3-(3,4-dichlorophenyl)-1, 1-dimethylurea and, thus, correlated with photosynthesis. Alkalization by macroalgae has previously been shown to be proportional to inorganiccarbon uptake. We suggest that alkalization of the medium at alkaline pH in both of the species examined is mainly the consequence of an extracellular reaction. The reaction is catalyzed by extracellular carbonic anhydrase which converts HCO 3 to OH and CO2; CO2 is then taken up through the plasmalemma. However, we do not exclude the involvement of other mechanisms of inorganic-carbon uptake.Abbreviations AZ acetazolamide - CA carbonic anhydrase - CAext extracellular carbonic anhydrase - Ci inorganic carbon - DBS dextran-bound sulfonamide - DCMU 3-(3,4-dichloro-phenyl)-1,1-dimethylurea - PPFD photosynthetic photon flux density This study was carried out with financial support by SAREC (Swedish Agency for Research Cooperation with Developing Countries), Carl Trygger's Fund for Scientific Research (Sweden), SJFR (Swedish Council for Forestry and Agricultural Research) and CICYT (Spain). Z. Ramazanov is an invited professor of Ministerio de Educación y Ciencia, Spain.  相似文献   

14.
Vascular smooth muscle intracellular pH is maintained by the Na+/H+ and Cl/HCO 3 antiporters. The Na+/H+ exchanger is a major route of H+ extrusion in most eukaryotic cells and is present in vascular smooth muscle cells in a similar capacity. It extrudes H into the extracellular space in exchange for Na+. The Cl/HCO 3 exchanger plays an analogous role to lower the pH of vascular smooth muscle cells when increases in intracellular pH occur. Its activity has also been demonstrated in A7r5 and A10 vascular smooth muscle cells. The Na+/H+ exchanger is regulated by a number of agents which act through inositol trisphosphate/diacylglycerol, to stimulate the antiporter. Calcium-calmodulin dependent protein kinase may also activate the antiporter in vivo. Phosphorylation of the Cl/HCO 3 exchanger has also been observed but its physiological role is not known. Both these antiporters exist in the plasma membrane as integral proteins with free acidic cytoplasmic termini. These regions may be important in sensing changes in intracellular pH, to which these antiporters respond.Abbreviations CaM Calmodulin - DCCD Dicylohexyl-Carbodiimide - DG Diacylglycerol - DIDS-4 4-Diisthiocyanostilbene-2,2-Disulfonic Acid - IP3 Inositol Trisphosphate - PKC protein Kinase C - SITS-4 4-Acetamido-4-Isothiocyanstilbene-2,2-Disulfonate - VSMC Vascular Smooth Muscle Cell  相似文献   

15.
Carbonic anhydrase activity of intactCommelina communis L. leaves was measured using mass spectrometry, by following the18O-exchange kinetics between18O-enriched carbon dioxide and water. A gas-diffusion model (Gerster, 1971, Planta97, 155–172) was used to interpret the18O-exchange kinetics and to determine two constants, one (k) related to the hydration of CO2 and the other (ke), related to the diffusion of CO2. Both constants were determined inCommelina communis L. leaves after stripping the lower epidermis to remove any stomatal influence. The hydration constant (k) was 17200 +2200 ·min–1 (mean±SD, 12 experiments), i.e., about 8 600 times the uncatalyzed hydration of CO2 in pure water, and was specifically inhibited by ethoxyzolamide, a powerful inhibitor of carbonic anhydrases, half-inhibition occurring around 10–5 Methoxyzolamide. The diffusion constant (ke) was 1.18±0.28·min–1 (mean±SD, 12 experiments) and was only slightly inhibited (about 20%) by ethoxyzolamide. Carbonic anhydrase activity of stripped leaves was not affected by the leaf water status (up to 50% relative water deficits), was strongly inhibited by monovalent anions such as Cl or NO 3 , and decreased by about 50% when the photon flux density during growth was increased from 100 to 500 mol photons·m–2·s–1. By studying the effect of ethoxyzolamide (10–4 M) on photosynthetic O2 exchange, measured using18O2 and mass spectrometry, we found that inhibition of carbonic anhydrase activity by 92–95% had little effect on the response curves of net O2 evolution to increased CO2 concentrations. Ethoxyzolamide had no effect on the photosynthetic electron-transport rate, measured as gross O2 photosynthesis at high CO2 concentration (>350 l·–1), but was found to increase both gross O2 photosynthesis and O2 uptake at lower CO2 levels. The chloroplastic CO2 concentration calculated from O2-exchange data was not significantly modified by ethoxyzolamide. We conclude from these results that, under normal conditions of photosynthesis, most of the carbonic anhydrase activity is not involved in CO2 assimilation. Measurement of carbonic anhydrase activity using18O-isotope exchange therefore provides a suitable model to study the in-vivo regulation of this chloroplastic enzyme in plants submitted to various environmental conditions.Abbreviations CA carbonic anhydrase - Ccc chloroplastic CO2 concentration - Ce external CO2 concentration - EZA ethoxyzolamide - k CO2 hydration rate constant - ke CO2 diffusion rate constan - PPFD photosynthetic photon flux density - Rubisco ribulose-1,5 bisphosphate carboxylase oxygenase - RWD relative water deficit The authors wish to thank P. Carrier for technical assistance with mass-spectrometric experiments and Dr. P. Thibault for helpful suggestions and comments. Dr. A. Vavasseur is gratefully acknowledged for supplyingCommelima communis. cultures. P.C., P.T. and A.V. are all from the CEA, Département de Physiologie Végétale et Ecosystèmes, Cadarache, France.  相似文献   

16.
Summary Unidirectional 22Na+ and 36Cl fluxes were determined in short-circuited, stripped rumen mucosa from sheep by using the Ussing chamber technique. In both CO2/HCO 3 -containing and CO2/HCO 3 -free solutions, replacement of gluconate by short-chain fatty acids (SCFA, 39 mM) significantly enhanced mucosal-toserosal Na+ absorption without affecting the Cl transport in the same direction. Short-chain fatty acid stimulation of Na+ transport was at least partly independent of Cl and could almost completely be abolished by 1 mM mucosal amiloride, while stimulation of Na+ transport was enhanced by lowering the mucosal pH from 7.3 to 6.5. Similar to the SCFA action, raising the PCO2 in the mucosal bathing solution led to an increase in the amiloride-sensitive mucosal-to-serosal Na+ flux. Along with its effect on sodium transport, raising the PCO2 also stimulated chloride transport. The results are best explained by a model in which undissociated SCFA and/or CO2 permeate the cell membrane and produce a raise in intracellular H+ concentration. This stimulates an apical Na+/H+ exchange, leading to increased Na+ transport. The stimulatory effect of CO2 on Cl transport is probably mediated by a Cl/HCO 3 exchange mechanism in the apical membrane. Binding of SCFA anions to that exchange as described for the rat distal colon (Binder and Mehta 1989) probably does not play a major role in the rumen.Abbreviations DIDS 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid - G t transepithelial conductance (mS·cm-2) - HSCFA undissociated short-chain fatty acids - J ms mucosal-to-serosal flux (Eq · cm-2 · h-1) - J net net flux (Eq · cm-2 · h-1) - J sm serosal-to-mucosal flux (Eq · cm-2 · h-1) - PD transepithelial potential difference (mV) - SCFA dissociated short-chain fatty acids - SCFA short-chain fatty acids  相似文献   

17.
The purpose of this study was to investigate the characteristics of carbonic anhydrase (CA) and the Cl/HCO3 exchanger (Band 3; AE1) in the erythrocytes of bowfin (Amia calva), a primitive air-breathing fish, in order to further understand the strategies of blood CO2 transport in lower vertebrates and gain insights into the evolution of the vertebrate erythrocyte proteins, CA and Band 3. A significant amount of CA activity was measured in the erythrocytes of bowfin (70 mmol CO2 min−1 ml−1), although it appeared to be lower than that in the erythrocytes of teleost fish. The turnover number (Kcat) of bowfin erythrocyte CA was intermediate between that of the slow type I CA isozyme in agnathans and elasmobranchs and the fast type II CA in the erythrocytes of the more recent teleost fishes, but the inhibition properties of bowfin erythrocyte CA were similar to the fast mammalian CA isozyme, CA II. In contrast to previous findings, a plasma CA inhibitor was found to be present in the blood of bowfin. Bowfin erythrocytes were also found to possess a high rate of Cl/HCO3 exchange (6 nmol HCO3 s−1 cm−2) that was sensitive to DIDS. Visualization of erythrocyte membrane proteins by SDS-PAGE revealed a major band in the 100 kDa range for the trout, which would be consistent with the anion exchanger. In contrast, the closest major band for the membranes of bowfin erythrocytes was around the 140 kDa range. Taken together, these results suggest that the strategy for blood CO2 transport in bowfin is probably similar to that in most other vertebrates despite several unique characteristics of erythrocyte CA and Band 3 in these primitive fish.  相似文献   

18.
Summary The requirement for Na+ and Cl in the bathing media to obtain a maximal HCO 3 secretory flux ( ) across isolated short-circuitedAmphiuma duodenum was investigated using titration techniques and ion substitution. Upon substitution of media Na+ with choline, HCO 3 secretion was markedly reduced. Replacement of media Cl produced a smaller reduction of . The presence of Cl enhanced HCO 3 secretion only if Na+ was also in the media. Elevation of media Na+ or Cl in the presence of the other ion produced a saturable increase of . In the presence of Na+, Cl stimulated when added to the mucosal but not the serosal medium. In the presence of Cl, Na+ elevated when added to the serosal but not the mucosal medium. The ability of mucosal Cl to stimulate was not apparently dependent on mucosal Na+. Simultaneous addition of 10mm Cl to the Na+-free mucosal medium and 10mm Na+ to the Cl-free serosal medium stimulated above levels produced by serosal Na+ alone. In conclusion, intestinal HCO 3 secretion required mucosal Cl and serosal Na+ and did not involve mucosal NaCl cotransport. The results are consistent with a mucosal Cl absorptive mechanism in series with parallel basolateral Na+–H+ and Cl–HCO 3 exchange mechanisms.  相似文献   

19.
Summary The activity of the main base-extruding mechanism in Vero cells, the Na+-independent Cl/HCO 3 antiport, increases 5- to 10-fold when the cytosolic pH (pH i ) is increased over a narrow range close to neutrality. We have studied the effect on this regulation of stimulation and inhibition of protein kinase C by short-term and long-term treatment with the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA). After short-term treatment with TPA to stimulate the kinase, the threshold value for activation of the antiport is shifted to a more acidic pH. After prolonged treatment with TPA to downregulate protein kinase C the sensitivity of the antiport to variation in proton concentration was lowered, possibly by reducing the number of essential protonbinding sites. Concomitantly, the steady state pH i of the cells was increased. The data indicate that protein kinase C is involved in the regulation of the Na+-independent Cl/HCO 3 antiport.  相似文献   

20.
The marine macroalgaUlva sp. can take up HCO 3 - via a process which chemically resembles that of anion exchange in red blood cells (Drechsler et al. 1993, Planta191, 34–40). In this work we explore the possibility that high-pK amino-acid residues could be functionally involved in the binding/transport of HCO 3 - . It was found that the specific arginyl-reacting agents phenylglyoxal and 2,3-butanedione inhibited photosynthesis ofUlva competitively with inorganic carbon at pH 8.2–8.4 (which is close to the pH of normal seawater), where HCO 3 - was the predominant inorganic carbon form taken up. The inhibition by phenylglyoxal was irreversible at 32°C and high pH values, while that of butanedione became irreversible in the presence of borate. These interactions, as well as the protection of the irreversible phenylglyoxal-inhibition by inorganic carbon and by the membrane-impermeant agents 4,4-diisothiocyanostilbene 2,2-disulfonate and 4,4-dinitrostilbene-2,2-disulfonate indicate that arginine (and possibly also lysine) are involved in the HCO 3 - uptake process, probably at the plasmalemma level. The photosynthetic affinity ofUlva to external inorganic carbon gradually decreased with increasing pH from 8.2 to 10.5, and this decrease parallels the decline in protonation of amino acids with a pK of around 10. Based on this information, as well as the inhibition studies, it is suggested that arginine and lysine residues are essential proteinaceous constituents involved in anionic inorganic carbon (HCO 3 - and possibly also CO 3 2- ) uptake into theUlva cells.Abbreviations AE1 anion exchanger 1 (of red blood cells) - BD 2,3-butanedione - CA carbonic anhydrase - CI inorganic carbon - DIDS 4,4-diisothiocyanostilbene-2,2-disulfonate - DNDS 4,4-dinitrostilbene-2,2-disulfonate - PG phenylglyoxal This paper is in partial fulfillment of a Ph.D. study by R. Sharkia. Supported by the Israel Academy of Sciences, grant 441/93 (to S.B.), and by the Fund for Encouragement of Research, Histadrut, Israel (to R.S.).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号