首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Water deficit severely decreases maize (Zea mays L.) kernel growth; the effect is most pronounced in apical regions of ears. The capacity for accumulation of storage material in endosperms is thought to he partially determined by the extent of cell division and endoreduplication (post-mitotic nuclear DNA synthesis). To gain a better understanding of the regulatory mechanisms involved, we have examined the effect of water deficit on cellular development during the post-fertilization period. Greenhouse-grown maize was subjected to water-limited treatments during rapid cell division [from 1 to 10days after pollination (DAP)] or rapid endoreduplication (9 to 15 DAP). The number of nuclei and the nuclear DNA content were determined with flow cytometry. Water deficit from 1 to 10 DAP substantially decreased the rate of endosperm cell division in apical-region kernels, but had little effect on middle-region endosperms. Rewatcring did not allow cell division to recover in apical-region endosperms. Water deficit from 9 to 15 DAP also decreased cell division in apical-region endosperms. Endoreduplication was not affected by the late treatment in either region of the car, but was inhibited by the early treatment in the apical region. In particular, the proportion of nuclei entering higher DN A-content size classes was reduced. We conclude that cell division is highly responsive to water deficit, whereas endoreduplication is less so. We also conclude that the reduced proportion of nuclei entering higher DNA-content size classes during endoreduplication is indicative of multiple control points in the mitotic and endoreduplication cycles.  相似文献   

2.
Genetic control of cell wall invertases in developing endosperm of maize   总被引:1,自引:0,他引:1  
Chourey PS  Jain M  Li QB  Carlson SJ 《Planta》2006,223(2):159-167
  相似文献   

3.
4.
DNA endoreduplication in Zea mays L. (cv. A619 × W64A) endosperm peaks between 16 and 18 d after pollination (DAP). The physiological function of DNA endoreduplication is not known but it is believed to be important in maize kernel development. In the present study, we investigated how 2, 4 or 6 d of high temperature (35 °C) affected DNA endoreduplication and maize kernel development in comparison with control kernels grown at 25 °C. Data were collected on fresh weight (FW), nuclei number, mitotic index, and DNA endoreduplication. Maize endosperm FW and nuclei number were reduced by exposure to 4 or 6 d of high temperature. At 18 DAP, the 2 d high temperature treatment (HTT) caused a reduction in FW and nuclei number, but had no effect on DNA endoreduplication and average DNA content per endosperm. However, when the exposure to high temperature was increased to 4 or 6 d, FW, nuclei number and the magnitude of DNA endoreduplication were progressively reduced, and the peak mitotic index was delayed compared with the control endosperm. At 18 DAP, the 4 d treatment showed 54·7% of the cells were 3 or 6 C, whereas only 41·2% were 12 C or higher. Six days of high temperature also resulted in a reduction in endosperm FW, nuclei number and a delay in the peak of mitotic index. DNA endoreduplication occurred in the kernels exposed to this treatment, although the magnitude was severely reduced compared with the control kernels. Nuclear DNA content was highly correlated (r = 0·93) with kernel FW, suggesting an important role of DNA endoreduplication in determining endosperm FW. The data suggest that high temperature during endosperm cell division exerted negative effects on DNA endoreduplication by dramatically reducing the nuclei number, leaving fewer nuclei available for DNA endoreduplication. However, the data also suggest that prolonged exposure to high temperature restricts entry of mitotic cells into the endoreduplication phase of the cell cycle.  相似文献   

5.
6.
Endoplasmic reticulum (ER) type I signal peptidases (ER SPases I) are vital proteases that cleave signal peptides from secreted proteins. However, the specific function of ER SPase I in plants has not been genetically characterized, and the substrate is largely unknown. Here, we report the identification of a maize (Zea mays) miniature seed6 (mn6) mutant. The loss-of-function mn6 mutant exhibited severely reduced endosperm size. Map-based cloning and molecular characterization indicated that Mn6 is an S26-family ER SPase I, with Gly102 (box E) in Mn6 critical for protein function during processing. Mass spectrometric and immunoprecipitation analyses revealed that Mn6 is predominantly involved in processing carbohydrate synthesis-related proteins, including the cell wall invertase miniature seed1 (Mn1), which is specifically expressed in the basal endosperm transfer layer. RNA and protein expression levels of Mn1 were both significantly downregulated in the mn6 mutant. Due to the significant reduction in cell wall invertase activity in the transfer cell layer, mutation of Mn6 caused dramatic defects in endosperm development. These results suggest that proper maturation of Mn1 by Mn6 may be a crucial step for proper seed filling and maize development.

Miniature seed6 (Mn6), involved in maize (Zea mays) seed development, is necessary for processing the cell wall invertase Mn1, which is specifically expressed in the basal endosperm transfer layer.  相似文献   

7.
The Zea mays (maize) miniature1 (Mn1) locus encodes the cell wall invertase INCW2, which is localized predominantly in the basal endosperm transfer layer (BETL) of developing kernels and catalyzes conversion of sucrose into glucose and fructose. Mutations in Mn1 result in numerous changes that include a small kernel phenotype resulting from both decreased cell size and number. To explore the pleiotropic effects of this mutation, we investigated the levels of indole-3-acetic acid (IAA), abscisic acid (ABA), salicylic acid (SA), and jasmonic acid (JA) in basal regions, upper regions, and embryos of developing kernels in the inbred line W22. We measured phytohormones from 6 to 28 days after pollination (DAP) in wild type (WT) and two alleles of mn1, mn1-1 and mn1-89. IAA was the predominant hormone in kernels, with WT levels of free IAA accumulating over time to more than 2microg/g of fresh weight. Kernels of mn1-1 accumulated up to 10-fold less IAA than WT, and levels of IAA sugar conjugates were similarly reduced. Although less abundant, differences were also observed in levels of ABA, JA, and SA between WT and the mn1 alleles. SA levels were increased by as much as 10-fold in mn1-1, and mn1-89 displayed intermediate SA levels at most timepoints. These findings indicate that invertase-mediated sucrose cleavage directly or indirectly regulates the levels of key plant hormones during seed development.  相似文献   

8.
Genetic evidence is presented to show that the developmental stability of maternal cells in the pedicel at the base of maize seeds is determined by the genotype of the developing endosperm. An early degeneration and withdrawal of maternal cells from the endosperm of homozygous miniature (mn mn) seed mutants were arrested if mn plants were pollinated by the wild-type Mn pollen. Similarly, the stability of the wild-type, Mn mn, maternal cells was also dependent on whether or not these cells were associated with the normal (Mn) or the mutant (mn) endosperm on the same ear. Biochemical and cellular analyses indicated that developing mn kernels have extremely low (<0.5% of the wild type) to undetectable levels of both soluble and wall-bound invertase activities. Extracts from endosperm with a single copy of the Mn gene showed a significant increase in both forms of invertases, and we suggest it is the causal basis of the wild-type seed phenotype. Collectively, these data provide evidence that invertase-mediated maintenance of a physiological gradient of photosynthate between pedicel and endosperm constitutes the rate-limiting step in structural stability of maternal cells as well as normal development of endosperm and seed.  相似文献   

9.
10.
 Cell wall-bound invertase (CWI) is spatially and temporally the first enzyme which metabolizes the incoming sucrose in developing seed of maize (Zea mays). Our previous studies have shown that the cell wall-bound invertase-2 (INCW2) isozyme encoded by the wild-type gene of the Miniature1 (Mn1) seed locus plays a critical role in seed development. Null mutations of the gene, such as the mn1 seed mutant which lacks invertase activity, are associated with a loss of ∼70–80% of the normal seed weight. We show here that under in vitro kernel culture conditions the hexose-based medium was similar to the sucrose-based medium in promoting the normal development of kernels of the Mn1, but not of the mutant mn1, genotype. Anatomical, biochemical, and immunohistological data showed that the mn1 kernels retain their mutant phenotype regardless of the presence of sucrose or hexoses in the culture media. The most drastic changes in the mn1 seed mutant were associated with a significant reduction in the size of the endosperm, but not in the pattern or the level of starch localization. Because Mn1 expression was temporally coincident with the endosperm cell divisions, INCW2 must play a critical role in providing hexose sugars for mitotic division, and only a minor role in generating carbon skeletal substrates for starch biosynthesis in the early stages of endosperm development. Furthermore, a lack of the wild-type seed phenotype of the mn1 mutant in hexose media suggests that a metabolic release of hexoses catalyzed by INCW2, rather than an exogenous source, is critical for both generating appropriate sugar-sensing signals for gene expression and for normal endosperm development. Received: 8 April 1998 / Accepted: 14 August 1998  相似文献   

11.

Background and Aims

Cytokinins are a major group of plant hormones and are associated with various developmental processes. Developing caryopses of maize have high levels of cytokinins, but little is known about their spatial and temporal distribution. The localization and quantification of cytokinins was investigated in maize (Zea mays) caryopsis from 0 to 28 d after pollination together with the expression and localization of isopentenyltransferase ZmIPT1 involved in cytokinin biosynthesis and ZmCNGT, the gene putatively involved in N9-glucosylation.

Methods

Biochemical, cellular and molecular approaches resolved the overall cytokinin profiles, and several gene expression assays were used for two critical genes to assess cytokinin cell-specific biosynthesis and conversion to the biologically inactive form. Cytokinins were immunolocalized for the first time in maize caryopses.

Key Results

During the period 0–28 d after pollination (DAP): (1) large quantities of cytokinins were detected in the maternal pedicel region relative to the filial tissues during the early stages after fertilization; (2) unpollinated ovules did not accumulate cytokinins; (3) the maternal nucellar region showed little or no cytokinin signal; (4) the highest cytokinin concentrations in filial endosperm and embryo were detected at 12 DAP, predominantly zeatin riboside and zeatin-9-glucoside, respectively; and (5) a strong cytokinin immuno-signal was detected in specific cell types in the pedicel, endosperm and embryo.

Conclusions

The cytokinins of developing maize caryopsis may originate from both local syntheses as well as by transport. High levels of fertilization-dependent cytokinins in the pedicel suggest filial control on metabolism in the maternal tissue; they may also trigger developmental programmed cell death in the pedicel.  相似文献   

12.
A large proportion of the nuclei in developing endosperm of Zea mays L. undergoes endoreduplication. Nuclear preparations of the entire endosperm from maize kernels of inbred lines, their reciprocal hybrids, and in some cases, F2 and F3 endosperm tissue were evaluated using flow cytometry. Data relative to DNA endoreduplication patterns, percentage of nuclei undergoing endoreduplication, and mean DNA content per nucleus were obtained. The patterns of endoreduplication and extent of DNA amplification differ among some inbreds. In all experiments, the endoreduplication patterns show that the F1 endosperm is more similar to the maternal parent than to the paternal parent. F2 endosperms reveal little difference in endoreduplication patterns among individuals within an F2 family and no more variation than the F1 endosperms. In contrast, F3 endosperms showed greater variation among their endoreduplication patterns. These results indicate a maternal effect on endoreduplication; that is, the genotype of the maternal parent's nuclear genome exerts control over the endoreduplication activities of endosperm tissue.  相似文献   

13.
We present cellular- and ultracellular-level studies here to show developmental programmed cell death (PCD) of placento-chalazal (P-C) cell layers in maternal pedicel tissue in developing caryopses of normal seed (Mn1) and in the invertase-deficient miniature (mn1) seed mutant in maize (Zea mays). PCD was evidenced by loss of nuclei and all subcellular membranous organizations in many P-C layers. The terminal deoxynucleotidyl transferase-mediated X-dUTP nick-end labeling (TUNEL) stain that is diagnostic of apoptotic-like PCD identified spatially and temporally two distinctive subdomains, which coincided with nucellar and integumental P-C layers based on their developmental origins. The early phase of PCD in the nucellar P-C was TUNEL negative and was specific to only the fertilized caryopses, indicating that the signaling for PCD in these maternal cells originated in the zygotic tissues. In fact, the initiation of PCD coincided with endosperm cellularization and was rapidly and coordinately completed prior to the beginning of the major storage phase in endosperm. Cell shape in these cell layers was also influenced by the genotype of filial endosperm. The later phase of PCD was restricted to the integumental P-C layers underneath the nucellar cells and was TUNEL positive in both genotypes. The two subdomains of the P-C layers were also distinguishable by unique cell wall-associated phenolic compounds. Based on collective evidence, we infer that the nucellar PCD may have osmolytic etiology and may lead to activation of the post-phloem transport function of the P-C layer, whereas the integumental PCD was senescent related, in particular, protecting the maturing seed against microbes that may be transported from the maternal tissue.  相似文献   

14.
Two maize (Zea mays) cyclin-dependent kinase (CDK) inhibitors, Zeama;KRP;1 and Zeama;KRP;2, were characterized and shown to be expressed in developing endosperm. Similar to the CDK inhibitors in Arabidopsis (Arabidopsis thaliana) and tobacco (Nicotiana tabacum), the maize proteins contain a carboxy-terminal region related to the inhibitory domain of the mammalian Cip/Kip inhibitors. Zeama;KRP;1 is present in the endosperm between 7 and 21 d after pollination, a period that encompasses the onset of endoreduplication, while the Zeama;KRP;2 protein declines during this time. Nevertheless, Zeama;KRP;1 accounts for only part of the CDK inhibitory activity that peaks coincident with the endoreduplication phase of endosperm development. In vitro assays showed that Zeama;KRP;1 and Zeama;KRP;2 are able to inhibit endosperm Cdc2-related CKD activity that associates with p13(Suc1). They were also shown to specifically inhibit cyclin A1;3- and cyclin D5;1-associated CDK activities, but not cyclin B1;3/CDK. Overexpression of Zeama;KRP;1 in maize embryonic calli that ectopically expressed the wheat dwarf virus RepA protein, which counteracts retinoblastoma-related protein function, led to an additional round of DNA replication without nuclear division.  相似文献   

15.
16.
Summary The recessive embryo-lethal mutantdek-1 of maize, showing arrest of embryo development at the proembryo stage, lack of carotenoids and anthocyanins and absence in the endosperm of the aleurone layer, was characterized at a cytological level. Cytofluorimetric analysis excluded endoreduplication or polyploidization events in mutant embryonic cells, in spite of an evident increase in nucleolus and nucleus diameters.The data seem to point to an involvement ofDek-1 in the progression of the embryo toward specific developmental steps and in the differentiation of the aleurone layer in the endosperm. Cellular proliferation is not affected by the mutation, as is shown by DNA replication even after the arrest in development and by the possibility of inducing callus from mutant embryos.Abbreviation DAP days after pollination  相似文献   

17.
Abscisic acid (ABA) is thought to play a role in inhibiting or aborting kernel growth during water deficit. To test the responsiveness of early endosperm development to ABA concentrations, cylinders containing (±)ABA in a buffered agar medium were applied to the apical pericarp surface of kernels on intact, well‐watered maize ( Zea mays L. cv. Pioneer Brand 3925) plants from 5 to 11 days after pollination (DAP). Endosperm nuclei were analyzed by flow cytometry to assess effects on cell division and endoreduplication. ABA treatments of ≥ 100 µM substantially decreased endosperm cell numbers and fresh weight accumulation, but did not affect average cell size. ABA at ≥ 300 µM decreased the proportion of nuclei in the size classes ≥ 12C, indicating that the rate of transition to endoreduplication status was inhibited, and decreased the progressive advance from 12C to 24C to 48C, indicating that the rate of S‐phase cycling of endoreduplicating cells was inhibited. We conclude that cell division was more responsive to ABA concentrations than were endoreduplication or cell expansion growth.  相似文献   

18.
Summary Chromosome endoreduplication is a very common process in higher plants but its function and genetic control are still to be clarified. In our experiments we analyzed, by Feulgen cytophotometry, chromosome endoreduplication in endosperm cells of two maize genotypes, IHP and ILP, having high and low protein content in their seed, respectively. Chromosome endoreduplication occurs in both lines within 24 days after pollination, attaining a maximum ploidy level of 384C (7 DNA replication rounds) in IHP and of 192C (6 replication rounds) in ILP. In the mature seed, endosperms of the two lines show different mean ploidy level. In reciprocal crosses between IHP and ILP the f1 endosperms have mean ploidy levels analogous to that of the maternal parent, showing that the difference in ploidy level between the two genotypes is maintained. After selfing of the f1 plants, the difference in ploidy level between the two F2 populations is reduced. In F2 the mean ploidy level is as variable as in f1, indicating the absence of genetic segregation. From our data, it is apparent that both the genetic constitution (cytoplasmic and nuclear) of the maternal parent and the genotype of the individual endosperms influence the ploidy level. An analysis of the protein content in endosperms carried out on the same seed sample as analyzed cytophotometrically showed that the protein content increases, during seed development, parallel to chromosome endoreduplication and varies, in the two lines, in reciprocal crosses and their progeny, according to the same trend as mean ploidy level, suggesting a correlation between the two parameters.  相似文献   

19.
The aim of the present work was to reveal the histological alterations triggered in developing wheat kernels by soil drought stress during early seed development resulting in yield losses at harvest. For this purpose, observations were made on the effect of drought stress, applied in a controlled environment from the 5th to the 9th day after pollination, on the kernel morphology, starch content and grain yield of the drought-sensitive Cappelle Desprez and drought-tolerant Plainsman V winter wheat (Triticum aestivum L.) varieties. As a consequence of water withdrawal, there was a decrease in the size of the embryos and the number of A-type starch granules deposited in the endosperm, while the development of aleurone cells and the degradation of the cell layers surrounding the ovule were significantly accelerated in both genotypes. In addition, the number of B-type starch granules per cell was significantly reduced. Drought stress affected the rate of grain filling shortened the grain-filling and ripening period and severely reduced the yield. With respect to the recovery of vegetative tissues, seed set and yield, the drought-tolerant Plainsman V responded significantly better to drought stress than Cappelle Desprez. The reduction in the size of the mature embryos was significantly greater in the sensitive genotype. Compared to Plainsman V, the endosperm cells of Cappelle Desprez accumulated significantly fewer B-type starch granules. In stressed kernels of the tolerant genotype, the accumulation of protein bodies occurred significantly earlier than in the sensitive variety.  相似文献   

20.
以银杏(Ginkgo biloba L.)核用品种‘七星果’、‘马铃’和‘龙眼’不同发育天数的胚乳为材料,采用透射电镜和扫描电镜技术,对其胚乳细胞内淀粉体的积累规律和发生特性进行研究。结果显示:3种银杏胚乳形态差异显著,‘七星果’呈梭形、‘马铃’呈椭圆形、‘龙眼’呈卵圆形;3种银杏胚乳早期均为嫩绿色,后期为黄色;授粉后65~125 d是胚乳体积快速增长时期。淀粉体的积累规律为:在胚乳组织内,淀粉体由糊粉层-外胚乳-内胚乳逐渐积累;在单个胚乳细胞内,淀粉体由细胞壁边缘向内部逐渐充实。银杏淀粉质体起源于类叶绿体质体,淀粉粒最初在类叶绿体质体的内膜上发生。淀粉体通过出芽、缢缩以及出芽和缢缩同时进行的增殖方式产生新淀粉体,成熟淀粉体形态有圆形、椭圆形和不规则形,属于单粒淀粉。研究结果表明银杏淀粉体在胚乳组织内具有由外向内的空间积累规律,淀粉质体起源于类叶绿体质体并通过出芽、缢缩、出芽和缢缩同时存在的方式增殖。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号