首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
We have used homologous recombination to disrupt the nuclear gene NIT8 in Chlamydomonas reinhardtii. This is the first report of targeted gene disruption of an endogenous locus in C. reinhardtii and only the second for a photosynthetic eukaryote. NIT8 encodes a protein necessary for nitrate and nitrite assimilation by C. reinhardtii. A disruption vector was constructed by placing the CRY1-1 selectable marker gene, which confers emetine resistance, within the NIT8 coding region. nit8 mutants are unable to grow on nitrate as their sole nitrogen source (Nit-) and are resistant to killing by chlorate. One of 2,000 transformants obtained after selection on emetine-chlorate medium contained a homologous insertion of five copies of the disruption plasmid into the NIT8 gene, producing an emetine-resistant, chlorate-resistant Nit- phenotype. The mutant phenotype was rescued by the wild-type NIT8 gene upon transformation. Seven other mutations at the nit8 locus, presumably resulting from homologous recombination with the disruption plasmid, were identified but were shown to be accompanied by deletions of the surrounding genomic region.  相似文献   

3.
The Saccharomyces cerevisiae CRY1 gene encodes the 40S ribosomal subunit protein rp59 and confers sensitivity to the protein synthesis inhibitor cryptopleurine. A yeast strain containing the cry1-δ1::URA3 null allele is viable, cryptopleurine sensitive (Cry(S)), and expresses rp59 mRNA, suggesting that there is a second functional CRY gene. The CRY2 gene has been isolated from a yeast genomic library cloned in bacteriophage λ, using a CRY1 DNA probe. The DNA sequence of the CRY2 gene contains an open reading frame encoding ribosomal protein 59 that differs at five residues from rp59 encoded by the CRY1 gene. The CRY2 gene was mapped to the left arm of chromosome X, centromere-proximal to cdc6 and immediately adjacent to ribosomal protein genes RPS24A and RPL46. Ribosomal protein 59 is an essential protein; upon sporulation of a diploid doubly heterozygous for cry1-δ2::TRP1 cry2-δ1::LEU2 null alleles, no spore clones containing both null alleles were recovered. Several results indicate that CRY2 is expressed, but at lower levels than CRY1: (1) Introduction of CRY2 on high copy plasmids into Cry(R) yeast of genotype cry1 CRY2 confers a Cry(S) phenotype. Transformation of these Cry(R) yeast with CRY2 on a low copy CEN plasmid does not confer a Cry(S) phenotype. (2) Haploids containing the cry1-δ2::TRP1 null allele have a deficit of 40S ribosomal subunits, but cry2-δ1::LEU2 strains have wild-type amounts of 40S ribosomal subunits. (3) CRY2 mRNA is present at lower levels than CRY1 mRNA. (4) Higher levels of β-galactosidase are expressed from a CRY1-lacZ gene fusion than from a CRY2-lacZ gene fusion. Mutations that alter or eliminate the last amino acid of rp59 encoded by either CRY1 or CRY2 result in resistance to cryptopleurine. Because CRY2 (and cry2) is expressed at lower levels than CRY1 (and cry1), the Cry(R) phenotype of cry2 mutants is only expressed in strains containing a cry1-δ null allele.  相似文献   

4.
Summary Protein synthesis by ribosomes from several cryptopleurine-resistant yeast mutants is also resistant to emetine and tubulosine. These mutants can be classified into two different types: Class I mutants which display high levels of resistance to emetine and tubulosine and Class II mutants that are only weakly resistant to tubulosine and are slightly more sensitive to emetine than those of Class I. Apparently all mutants have similar levels of resistance to cryptopleurine. The distinct phenotypes of Class I and Class II strains are expressed through their 40S ribosomal subunit. Genetic analysis has shown that the mutations to cryptopleurine resistance are allelic and that in a particular case (strain CRY6) the pleiotropic phenotype is a result of the expression of the cryl locus. It is suggested that Class I and Class II mutants arise from two independent mutational events within the cryl allele. in heterozygous (+/cryl) diploids both the sensitive and the resistant genes are expressed as shown by studies of the action of cryptopleurine on polyphenylalanine-synthesizing system derived from each parental sensitive and resistant haploid strain and heterozygous diploid strains. The apparent dominance of sensitivity over resistance which may be observed in vivo in heterozygous (+/cryl) diploids has been explained in terms of the mode of action of the inhibitors.  相似文献   

5.
Using cloned DNA from the vicinity of the yeast mating type locus (MAT) as a probe, the wild type allele of the cryptopleurine resistance gene CRY1 has been isolated by the technique of chromosome walking and has been shown to be identical to the gene for ribosomal protein 59. A recessive cryR1 allele has also been cloned, using the integration excision method. The genetic distance from MAT to CRY1 is 2.2 cM, while the physical distance is 21 kb, giving a ratio of about 10 kb/cM for this interval. The phenotypic expression of both plasmid borne alleles of the gene can be detected in vivo. The use of this gene as a hybridization probe to examine RNA processing defects in the rna 2, rna 3, rna 4, rna 8, and rna 11 mutants is also discussed.  相似文献   

6.
Genetic and biochemical experiments have enabled us to more clearly distinguish three genetic loci, emtA, emtB, and emtC, all of which can be altered to give rise to resistance to the protein synthesis inhibitor, emetine, in cultured Chinese hamster cells. Genetic experiments have demonstrated that, unlike the emtB locus, neither the emtA locus nor the emtC locus is linked to chromosome 2 in Chinese hamster cells, clearly distinguishing the latter two genes from emtB. emtA mutants can also be distinguished, biochemically, from emtB and emtC mutants based upon different degrees of cross-resistance to another inhibitor of protein synthesis, cryptopleurine. Two-dimensional gel electrophoretic analysis of ribosomal proteins failed to detect any electrophoretic alterations in ribosomal proteins from emtA or emtC mutants that could be correlated with emetine resistance. However, a distinct electrophoretic alteration in ribosomal protein S14 was observed in an emtB mutant. In addition, the parental Chinese hamster peritoneal cell line of an emtC mutant, and the emtC mutant itself, are apparently heterozygous for an electrophoretic alteration in ribosomal protein L9.  相似文献   

7.
An examination of gene expression in diploids may not always be sufficient for determination of the dominant or recessive character of an allele. In Saccharomyces cerevisiae resistance to cryptopleurine has been attributed to a single recessive nuclear gene, cryl, located on chromosome III. We found, contrary to expectations, that resistance to cryptopleurine is not expressed in diploids that are monosomic for chromosome III. Examination of strains of different ploidy on gradient plates shows that the presence of the sensitive allele in a cell does not affect the level of resistance, but rather the level of resistance is directly related to the ratio of resistant alleles to the number of chromosome sets.  相似文献   

8.
R S Gupta  L Siminovitch 《Biochemistry》1977,16(14):3209-3214
Stable mutants resistant to the protein synthesis inhibitors cryptopleurine and tylocrebine can be isolated in Chinese hamster ovary (CHO) cells, in a single step. The frequency of occurrence of cryptopleurine (CryR) and tylocrebrine (TylR) resistant mutants in normal and mutagenized cell populations is similar to that observed for emetine resistant (EmtR) mutants. The CryR, TylR, and EmtR mutants exhibit strikingly similar cross-resistance to the three drugs used for selection, to tubulosine and also to two emetine derivatives cephaeline and dehydroemetine, based on assays of in vivo cytotoxicity and on assays of protein synthesis in cell-free extracts. The identity of cross-resistance patterns of the CryR, TylR, and EmtR mutants indicates that the resistance to all these compounds results from the same primary lesion, which in the case of EmtR cells has been shown to affect the 40S ribosomal subunit. This conclusion is strongly supported by the failure of EmtR, TylR, and CryR mutants to complement each other in somatic cell hybrids. Based on these results it is suggested that the above group of compounds possesses common structural determinants which are responsible for their activity. The above mutants, however, do not show any cross-resistance to other inhibitors of protein synthesis such as cycloheximide, trichodermin, anisomycin, pactamycin, and sparsomycin, either in vivo or in vitro, indicating that the site of action of these inhibitors is different from that of the emetine-like compounds.  相似文献   

9.
10.
11.
X. Chen  C. L. Simpson  K. L. Kindle    D. B. Stern 《Genetics》1997,145(4):935-943
A suppressor of a translation initiation defect caused by an AUG to AUU mutation in the Chlamydomonas reinhardtii chloroplast petD gene was isolated, defining a nuclear locus that we have named SIM30. A dominant mutant allele at this locus, sim30-1d, was found to increase the translation initiation rate of the mutant petD mRNA. sim30-1d was also able to suppress the translational defect caused by an AUG to AUC mutation in the petD gene, and an AUG to AUU mutation in the chloroplast petA gene. We therefore suggest that the SIM30 gene may encode a general chloroplast translation factor. The ability of sim30-1d to suppress the petD AUG to AUU mutation is diminished in the presence of one or more antibiotic resistance markers located within the 16S and 23S rRNAs, suggesting that the activity of the sim30-1d gene product in translation initiation may involve interaction with ribosomal subunits.  相似文献   

12.
13.
14.
Four two-dimensional polyacrylamide gel electrophoresis systems were used to identify 78 Chinese hamster cell ribosomal proteins by the uniform nomenclature based on rat liver ribosomal proteins. The 40S ribosomal subunit protein affected by Chinese hamster ovary (CHO) cell one-step emetine resistance mutations is designated S14 in the standard nomenclature. To seek unambiguous genetic evidence for a cause and effect relationship between CHO cell emetine resistance and mutations in the S14 gene, we mutagenized a one-step CHO cell mutant and isolated second-step mutant clones resistant to 10-fold-higher concentrations of emetine. All of the highly resistant, two-step CHO cell mutants obtained displayed additional alterations in ribosomal protein S14. Hybridization complementation tests revealed that the two-step CHO cell emetine resistance mutants were members of the same complementation group defined by one-step CHO cell mutants, EmtB. Two-step mutants obtained from a Chinese hamster lung cell emetine-resistant clone belong to the EmtA complementation group. The two-step and EmtB mutants elaborated 40S ribosomal subunits, which dissociated to 32S and 40S core particles in buffers containing 0.5 M KCl at 4 degrees C. In contrast, 40S ribosomal subunits purified from all EmtA, one-step EmtB EmtC mutants, and wild-type CHO and lung cells were stable at this temperature in buffers containing substantially higher concentrations of salt. Thus, two-step emtB mutations affect the structure of S14 protein directly and the stability of the 40S ribosomal subunit indirectly.  相似文献   

15.
Although most eukaryotic cells are sensitive to the 80S ribosome inhibitor cycloheximide (CYH), naturally occurring CYH resistance is widespread amongst yeast species. The primary determinant of resistance appears to be a single residue within ribosomal protein L41; resistance is acquired by the substitution of a conserved proline (P56) by a glutamate residue. We have isolated the L41 gene (RPL41) from the green alga Chlamydomonas reinhardtii, and investigated the molecular basis of CYH resistance in various mutant strains. In both the wild-type strain and the mutant act-1, a proline is found at the key position in L41. However, analysis of six independently isolated act-2 mutants reveals that all have point mutations that replace the proline with either leucine or serine. Of the two changes, the leucine mutation confers significantly higher levels of CYH resistance. This work identifies the ACT-2 locus as RPL41 and provides a possible dominant marker for nuclear transformation of C. reinhardtii.  相似文献   

16.
17.
The inhibitory effects on poly(U)-directed polyphenylalanine synthesis of cryptopleurine and a number of structurally related analogs have been compared in a yeast cell-free system. Results suggest that the quinolidine structure by itself does not promote biological activity, and for an inhibitory effect it must be condensed with a phenanthrene or another related compound such as naphthalene. The results are presented and possible relationships between structure and activity for the compounds emetine, tubolosine, tylophora alkaloids, and various cryptopleurine analogs are considered.  相似文献   

18.
19.
Hu Z  Fan Z  Zhao Z  Chen J  Li J 《PloS one》2012,7(4):e35542
The mitochondrial expression of exogenous antibiotic resistance genes has not been demonstrated successfully to date, which has limited the development of antibiotic resistance genes as selectable markers for mitochondrial site-directed transformation in Chlamydomonas reinhardtii. In this work, the plasmid pBSLPNCB was constructed by inserting the gene ble of Streptoalloteichus hindustanus (Sh ble), encoding a small (14-kilodalton) protective protein into the site between TERMINVREP-Left repeats and the cob gene in a fragment of mitochondrial DNA (mtDNA) of C. reinhardtii. The fusion DNA-construct, which contained TERMINVREP-Left, Sh ble, cob, and partial nd4 sequence, were introduced into the mitochondria of the respiratory deficient dum-1 mutant CC-2654 of C. reinhardtii by biolistic particle delivery system. A large number of transformants were obtained after eight weeks in the dark. Subsequent subculture of the transformants on the selection TAP media containing 3 ìg/mL Zeomycin for 12 months resulted in genetically modified transgenic algae MT-Bs. Sequencing and Southern analyses on the mitochondrial genome of the different MT-B lines revealed that Sh ble gene had been integrated into the mitochondrial genome of C. reinhardtii. Both Western blot, using the anti-BLE monoclonal antibody, and Zeomycin tolerance analysis confirmed the presence of BLE protein in the transgenic algal cells. It indicates that the Sh ble gene can be stably expressed in the mitochondria of C. reinhardtii.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号