首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The PmrA/PmrB regulatory system of Salmonella enterica controls the modification of lipid A with aminoarabinose and phosphoethanolamine. The aminoarabinose modification is required for resistance to the antibiotic polymyxin B, as mutations of the PmrA-activated pbg operon or ugd gene result in strains that lack aminoarabinose in their lipid A molecules and are more susceptible to polymyxin B. Additional PmrA-regulated genes appear to participate in polymyxin B resistance, as pbgP and ugd mutants are not as sensitive to polymyxin B as a pmrA mutant. Moreover, the role that the phosphoethanolamine modification of lipid A plays in the resistance to polymyxin B has remained unknown. Here we address both of these questions by establishing that the PmrA-activated pmrC gene encodes an inner membrane protein that is required for the incorporation of phosphoethanolamine into lipid A and for polymyxin B resistance. The PmrC protein consists of an N-terminal region with five transmembrane domains followed by a large periplasmic region harboring the putative enzymatic domain. A pbgP pmrC double mutant resembled a pmrA mutant both in its lipid A profile and in its susceptibility to polymyxin B, indicating that the PmrA-dependent modification of lipid A with aminoarabinose and phosphoethanolamine is responsible for PmrA-regulated polymyxin B resistance.  相似文献   

5.
6.
7.
8.
Salmonella enterica polymyxin B (PM) resistance is modulated mainly by substitutions of the acyl chains and the phosphate groups on the lipid A moiety of lipopolysaccharide. These modifications are mediated by genes under the control of the PmrA/PmrB and PhoP/PhoQ two-component regulatory systems. In this study, a deletion in the gene encoding the alternative σ54 factor, rpoN , was shown to increase PM resistance without affecting protamine sensitivity. The results presented here showed that the increased polymyxin resistance observed in the Δ rpoN mutant occurs through a PmrA/PhoP-independent pathway. Downregulation of one or more genes belonging to the RpoN regulon may provide an additional mechanism of defence against membrane-permeabilizing antimicrobial peptides that helps the pathogen to survive in different environments.  相似文献   

9.
10.
We isolated spontaneous mutations (pmrA) in the smooth strain Salmonella typhimurium LT2 that show increased resistance to the cationic antibacterial proteins of human neutrophils and to the drug polymyxin B. The mutation in one strain, JKS5, maps to 93 min on the S. typhimurium chromosome, near the proP gene and the melAB operon. The mutation, designated pmrA505, confers a 1,000-fold increase in resistance to polymyxin B and a 2- to 4-fold increase in resistance to neutrophil proteins. We cloned both the pmrA505 and pmrA+ alleles and found that the pmrA+ gene is partially dominant over pmrA505. DNA sequence analysis of the pmrA505 clone revealed three open reading frames (ORFs). The deduced amino acid sequences indicated that ORF1 encodes a 548-amino-acid (aa) protein with a putative membrane-spanning domain and no significant homology to any known protein. ORF2 and ORF3, which encode 222- and 356-aa proteins, respectively, show strong homology with the OmpR-EnvZ family of two-component regulatory systems. ORF2 showed homology with a number of response regulators, including OmpR and PhoP, while ORF3 showed homology to histidine kinase-sensor proteins EnvZ and PhoR. Genetic analysis of the cloned genes suggested that ORF2 contained the pmrA505 mutation. Comparison of the pmrA505 and pmrA+ ORF2 DNA sequences revealed a single G-A transition, which would result in a His-to-Arg substitution at position 81 in the ORF2 mutant protein. We therefore designate ORF2 PmrA and ORF3 PmrB. The function of ORF1 is unknown.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
The two-component regulatory system PhoP-PhoQ of Pseudomonas aeruginosa regulates resistance to cationic antimicrobial peptides, polymyxin B and aminoglycosides in response to low Mg2+ conditions. We have identified a second two-component regulatory system, PmrA-PmrB, that regulates resistance to polymyxin B and cationic antimicrobial peptides. This system responds to limiting Mg2+, and is affected by a phoQ, but not a phoP mutation. Inactivation of the pmrB sensor kinase and pmrA response regulator greatly decreased the expression of the operon encoding pmrA-pmrB while expression of the response regulator pmrA in trans resulted in increased activation suggesting that the pmrA-pmrB operon is autoregulated. Interposon mutants in pmrB, pmrA, or in an intergenic region upstream of pmrA-pmrB exhibited two to 16-fold increased susceptibility to polymyxin B and cationic antimicrobial peptides. The pmrA-pmrB operon was also found to be activated by a number of cationic peptides including polymyxins B and E, cattle indolicidin and synthetic variants as well as LL-37, a component of human innate immunity, whereas peptides with the lowest minimum inhibitory concentrations tended to be the weakest inducers. Additionally, we showed that the putative LPS modification operon, PA3552-PA3559, was also induced by cationic peptides, but its expression was only partially dependent on the PmrA-PmrB system. The discovery that the PmrA-PmrB two-component system regulates resistance to cationic peptides and that both it and the putative LPS modification system are induced by cationic antimicrobial peptides has major implications for the development of these antibiotics as a therapy for P. aeruginosa infections.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号