首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 714 毫秒
1.
Besides mainstream TCRalphabeta T cells harboring a very diverse repertoire, two subsets display an evolutionarily conserved invariant repertoire. This striking conservation indicates important and unique functions. CD1d-restricted NK-T cells expressing an invariant Valpha14 TCRalpha chain have been implicated in microbial and tumor responses as well as in auto-immunity. In this review, we describe the other subset, which bears the canonical hValpha7.2/mValpha19-Jalpha33 TCRalpha chain paired with a restricted set of Vbeta segments. These invariant T cells are present in mice, humans and cattle. They are preferentially located in the gut lamina propria (LP) of humans and mice and are therefore called mucosal-associated invariant T (MAIT) cells. Selection/expansion of this population requires B lymphocytes expressing MR1, a monomorphic major histocompatibility complex class I-related molecule that is also strikingly conserved in diverse mammalian species. MAIT cells are not present in germ-free mice, indicating that commensal flora is required for their expansion in the gut LP. The nature of the ligand and the putative functions of these MAIT cells are discussed.  相似文献   

2.
Immunity to the murine cytomegalovirus (MCMV) is critically dependent on the innate response for initial containment of viral replication, resolution of active infection, and proper induction of the adaptive phase of the anti-viral response. In contrast to NK cells, the Valpha14 invariant natural killer T cell response to MCMV has not been examined. We found that Valpha14i NK T cells become activated and produce significant levels of IFN-gamma, but do not proliferate or produce IL-4 following MCMV infection. In vivo treatment with an anti-CD1d mAb and adoptive transfer of Valpha14i NK T cells into MCMV-infected CD1d(-/-) mice demonstrate that CD1d is dispensable for Valpha14i NK T cell activation. In contrast, both IFN-alpha/beta and IL-12 are required for optimal activation. Valpha14i NK T cell-derived IFN-gamma is partially dependent on IFN-alpha/beta but highly dependent on IL-12. Valpha14i NK T cells contribute to the immune response to MCMV and amplify NK cell-derived IFN-gamma. Importantly, mortality is increased in CD1d(-/-) mice in response to high dose MCMV infection when compared to heterozygote littermate controls. Collectively, these findings illustrate the plasticity of Valpha14i NK T cells that act as effector T cells during bacterial infection, but have NK cell-like behavior during the innate immune response to MCMV infection.  相似文献   

3.
A novel invariant Valpha19-Jalpha33 T cell receptor alpha chain, first found in mammalian blood cells, was primarily expressed by natural killer T cell repertoire (Valpha19 NKT cell). Attempts have been made to find specific antigens for Valpha19 NKT cells. A series of alpha- and beta-glycosyl ceramides were synthesized and tested whether they had potential to stimulate the cells isolated from invariant Valpha19-Jalpha33 TCR transgenic mice (where the development of Valpha19 NKT cells is facilitated). Comprehensive examinations revealed substantial antigenic activity in alpha-ManCer that was presented by MR1, one of the MHC class Ib molecules. Next, naturally occurring and synthetic alpha-mannosyl glycolipids were further analyzed to determine structural requirements for natural ligands for Valpha19 NKT cells. As a result, alpha-mannosyl phosphatidyl inositols (PI) such as (alpha-Man)(2)-PI and alpha-Man-alpha-GlcNH(2)-PI (a partial structure of mycobacterial lipoarabinomannan and GPI-anchors) as well as alpha-ManCer derivatives were found to activate Valpha19 NKT cells in vivo and in vitro. Thus, Valpha19 NKT cells are possibly responsive to certain alpha-mannosyl glycolipids and may have roles in the innate and adaptative immune systems to protect against various antigens expressing alpha-mannosyl glycolipids and to regulate the adaptive immune system responding to the intracellular ligands.  相似文献   

4.
We have previously demonstrated that alpha-mannosyl ceramide and its derivatives promote immune responses of NK1.1(+) invariant Valpha19-Jalpha33 T cell receptor (TCR) alpha(+) T cells (Valpha19 NKT cells). In this study, attempts were made to determine the structural requirements for natural ligands for Valpha19 NKT cells. Naturally occurring and synthetic glycolipids were analyzed for their ability to stimulate the cells prepared from invariant Valpha19-Jalpha33 TCR transgenic mice, in which development of Valpha19 NKT cells is facilitated. As a result, alpha-mannosyl phosphatidylinositols such as 2,6-di-alpha-mannosyl phosphatidylinositol and alpha-mannosyl-4alpha-glucosaminyl-6-phosphatidylinositol (alpha-Man-GlcNH(2)-PtdIns) as well as alpha-mannosyl ceramide derivatives were found to activate the cells from the transgenic mouse liver, gut lamina propria and spleen in vivo and in vitro. Thus, glycolipids with nonreducing end alpha-mannosyl residues are suggested to be potent antigens for Valpha19 NKT cells. Next, a series of invariant Valpha19-Jalpha33 TCR(+) hybridomas, each with variations in the sequence of the Valpha-Jalpha junction and the TCR beta chain, were tested for responsiveness toward the alpha-mannosyl glycolipids. A loose correlation between the primary structure of the TCR and the reactive glycolipids was observed. For instance, hybridomas expressing TCRs consisting of an alpha chain with a variation in the Valpha19-Jalpha33 junction and a Vbeta6(+)beta chain showed affinity towards alpha-mannosyl ceramide and alpha-Man-GlcNH(2)-PtdIns, whereas those expressing TCRs with an invariant Valpha19-Jalpha33 alpha chain and a Vbeta8(+)beta chain responded to 2,6-di-alpha-mannosyl phosphatidylinositol. Thus, it is suggested that Valpha19 NKT cells with microheterogeneity in the TCR structure have been generated for defense against various antigens expressing alpha-mannosyl glycolipids.  相似文献   

5.
A major group of murine NK T (NKT) cells express an invariant Valpha14Jalpha18 TCR alpha-chain specific for glycolipid Ags presented by CD1d. Murine Valpha14Jalpha18(+) account for 30-50% of hepatic T cells and have potent antitumor activities. We have enumerated and characterized their human counterparts, Valpha24Vbeta11(+) NKT cells, freshly isolated from histologically normal and tumor-bearing livers. In contrast to mice, human NKT cells are found in small numbers in healthy liver (0.5% of CD3(+) cells) and blood (0.02%). In contrast to those in blood, most hepatic Valpha24(+) NKT cells express the Vbeta11 chain. They include CD4(+), CD8(+), and CD4(-)CD8(-) cells, and many express the NK cell markers CD56, CD161, and/or CD69. Importantly, human hepatic Valpha24(+) T cells are potent producers of IFN-gamma and TNF-alpha, but not IL-2 or IL-4, when stimulated pharmacologically or with the NKT cell ligand, alpha-galactosylceramide. Valpha24(+)Vbeta11(+) cell numbers are reduced in tumor-bearing compared with healthy liver (0.1 vs 0.5%; p < 0.04). However, hepatic cells from cancer patients and healthy donors release similar amounts of IFN-gamma in response to alpha-galactosylceramide. These data indicate that hepatic NKT cell repertoires are phenotypically and functionally distinct in humans and mice. Depletions of hepatic NKT cell subpopulations may underlie the susceptibility to metastatic liver disease.  相似文献   

6.
Lymphocytes that combine features of T cells and natural killer (NK) cells are named natural killer T (NKT) cells. The majority of NKT cells in mice bear highly conserved invariant Valpha chains, and to date two populations of such canonical NKT cells are known in mice: those that express Valpha14 and those that express Valpha7.2. Both populations are selected by nonpolymorphic major histocompatibility complex class I-like antigen-presenting molecules expressed by hematopoietic cells in the thymus: CD1d for Valpha14-expressing NKT cells and MR1 for those cells expressing Valpha7.2. The more intensely studied Valpha14 NKT cells have been implicated in diverse immune reactions, including immune regulation and inflammation in the intestine; the Valpha7.2 expressing cells are most frequently found in the lamina propria. In humans, populations of canonical NKT cells are found to be highly similar in terms of the expression of homologous, invariant T cell antigen-receptor alpha-chains, specificity, and function, although their frequency differs from those in the mouse. In this review, we will focus on the role of both of these canonical NKT cell populations in the mucosal tissues of the intestine.  相似文献   

7.
The invariant (i) natural killer (NK)T cells consistently express the Valpha14 chain of the T cell receptor (TCR) and recognize alpha-galactosylceramide (alpha-GalCer) presented by the nonpolymorphic presentation molecule CD1d. Despite their name, the iNKT cells represent a heterogeneous population, which can be divided on the basis of NK1.1 surface expression. Here we show that NK1.1 surface expression on liver iNKT cells in mice fluctuates during Listeria monocytogenes infection. At early stages of listeriosis, iNKT cells expressing NK1.1 were numerically reduced and those lacking NK1.1 were increased. At later time points, the NK1.1(-) iNKT cell population contracted, whereas NK1.1(+) iNKT cells reemerged. Alterations in NK1.1 surface expression on iNKT cells were paralleled by numerical changes of interleukin (IL)-12 producers in the liver and were completely prevented by endogenous IL-12 neutralization, whereas NK1.1 surface alterations on iNKT cells following alpha-GalCer stimulation were not prevented. Adoptive cell transfer experiments revealed that the liver NK1.1(-) iNKT cells from NK1.1(+) cell-depleted L. monocytogenes-infected mice accumulated in the liver of recipient recombination-activating gene-1-deficient mice where they acquired NK1.1 surface expression. Thus, we present first evidence that NK1.1 surface expression on liver iNKT cells is reversible during L. monocytogenes infection, and that different mechanisms underlie stimulation by TCR and IL-12.  相似文献   

8.
The majority of T lymphocytes carrying the NK cell marker NK1.1 (NKT cells) depend on the CD1d molecule for their development and are distinguished by their potent capacity to rapidly secrete cytokines upon activation. A substantial fraction of NKT cells express a restricted TCR repertiore using an invariant TCR Valpha14-Jalpha281 rearrangement and a limited set of TCR Vbeta segments, implying recognition of a limited set of CD1d-associated ligands. A second group of CD1d-reactive T cells use diverse TCR potentially recognizing a larger diversity of ligands presented on CD1d. In TCR-transgenic mice carrying rearranged TCR genes from a CD1d-reactive T cell with the diverse type receptor (using Valpha3. 2/Vbeta9 rearrangements), the majority of T cells expressing the transgenic TCR had the typical phenotype of NKT cells. They expressed NK1.1, CD122, intermediate TCR levels, and markers indicating previous activation and were CD4/CD8 double negative or CD4+. Upon activation in vitro, the cells secreted large amounts of IL-4 and IFN-gamma, a characteristic of NKT cells. In mice lacking CD1d, TCR-transgenic cells with the NKT phenotype were absent. This demonstrates that a CD1d-reactive TCR of the "non-Valpha 14" diverse type can, in a ligand-dependent way, direct development of NK1.1+ T cells expressing expected functional and cell-surface phenotype characteristics.  相似文献   

9.
Loss of IFN-gamma production by invariant NK T cells in advanced cancer   总被引:10,自引:0,他引:10  
Invariant NK T cells express certain NK cell receptors and an invariant TCRalpha chain specific for the MHC class I-like CD1d protein. These invariant NK T cells can regulate diverse immune responses in mice, including antitumor responses, through mechanisms including rapid production of IL-4 and IFN-gamma, but their physiological functions remain uncertain. Invariant NK T cells were markedly decreased in peripheral blood from advanced prostate cancer patients, and their ex vivo expansion with a CD1d-presented lipid Ag (alpha-galactosylceramide) was diminished compared with healthy donors. Invariant NK T cells from healthy donors produced high levels of both IFN-gamma and IL-4. In contrast, whereas invariant NK T cells from prostate cancer patients also produced IL-4, they had diminished IFN-gamma production and a striking decrease in their IFN-gamma:IL-4 ratio. The IFN-gamma deficit was specific to the invariant NK T cells, as bulk T cells from prostate cancer patients produced normal levels of IFN-gamma and IL-4. These findings support an immunoregulatory function for invariant NK T cells in humans mediated by differential production of Th1 vs Th2 cytokines. They further indicate that antitumor responses may be suppressed by the marked Th2 bias of invariant NK T cells in advanced cancer patients.  相似文献   

10.
The novel class Ib molecule MR1 is highly conserved in mammals, particularly in its alpha1/alpha2 domains. Recent studies demonstrated that MR1 expression is required for development and expansion of a small population of T cells expressing an invariant T cell receptor (TCR) alpha chain called mucosal-associated invariant T (MAIT) cells. Despite these intriguing properties it has been difficult to determine whether MR1 expression and MAIT cell recognition is ligand-dependent. To address these outstanding questions, monoclonal antibodies were produced in MR1 knock-out mice immunized with recombinant MR1 protein, and a series of MR1 mutations were generated at sites previously shown to disrupt the ability of class Ia molecules to bind peptide or TCR. Here we show that 1) MR1 molecules are detected by monoclonal antibodies in either an open or folded conformation that correlates precisely with peptide-induced conformational changes in class Ia molecules, 2) only the folded MR1 conformer activated 2/2 MAIT hybridoma cells tested, 3) the pattern of MAIT cell activation by the MR1 mutants implies the MR1/TCR orientation is strikingly similar to published major histocompatibility complex/alphabetaTCR engagements, 4) all the MR1 mutations tested and found to severely reduce surface expression of folded molecules were located in the putative ligand binding groove, and 5) certain groove mutants of MR1 that are highly expressed on the cell surface disrupt MAIT cell activation. These combined data strongly support the conclusion that MR1 has an antigen presentation function.  相似文献   

11.
A Y chromosome-linked factor impairs NK T development   总被引:1,自引:0,他引:1  
Valpha14 invariant (Valpha14i) NK T cell development is unique from mainstream T cell selection, and the polygenic factors that influence NK T cell ontogeny are still unclear. In this study, we report the absence of Valpha14i NK T cells in B6.IFN-alphabetaR1-/- male mice, whereas both the conventional T and NK cell populations are relatively unaffected. The lack of Valpha14i NK T cells in the B6.IFN-alphabetaR1-/- males is not due to an insufficient level of CD1d1 or a defect in CD1d1-Ag presentation, but it is intrinsic to the male Valpha14i NK T cells. This surprising defect displays >or=99% penetrance in the male population, whereas female mice remain unaffected, indicating the deficiency is not X linked. Analysis of the Valpha14i NK T cell compartment in B6.Tyk2-/-, B6.STAT1-/-, 129.IFN-alphabetaR1-/-, and B6.IFN-alphabetaR1-/+ mice demonstrate that the deficiency is linked to the Y chromosome, but independent of IFN-alphabeta. This is the first study demonstrating that Y-linked genes can exclusively impact Valpha14i NK T development and further highlight the unique ontogeny of these innate T cells.  相似文献   

12.
NKT cells express both NK cell-associated markers and TCR. Classically, these NK1.1+TCRalphabeta+ cells have been described as being either CD4+CD8- or CD4-CD8-. Most NKT cells interact with the nonclassical MHC class I molecule CD1 through a largely invariant Valpha14-Jalpha281 TCR chain in conjunction with either a Vbeta2, -7, or -8 TCR chain. In the present study, we describe the presence of significant numbers of NK1.1+TCRalphabeta+ cells within lymphokine-activated killer cell cultures from wild-type C57BL/6, CD1d1-/-, and Jalpha281-/- mice that lack classical NKT cells. Unlike classical NKT cells, 50-60% of these NK1.1+TCRalphabeta+ cells express CD8 and have a diverse TCR Vbeta repertoire. Purified NK1.1-CD8alpha+ T cells from the spleens of B6 mice, upon stimulation with IL-2, IL-4, or IL-15 in vitro, rapidly acquire surface expression of NK1.1. Many NK1.1+CD8+ T cells had also acquired expression of Ly-49 receptors and other NK cell-associated molecules. The acquisition of NK1.1 expression on CD8+ T cells was a particular property of the IL-2Rbeta+ subpopulation of the CD8+ T cells. Efficient NK1.1 expression on CD8+ T cells required Lck but not Fyn. The induction of NK1.1 on CD8+ T cells was not just an in vitro phenomenon as we observed a 5-fold increase of NK1.1+CD8+ T cells in the lungs of influenza virus-infected mice. These data suggest that CD8+ T cells can acquire NK1.1 and other NK cell-associated molecules upon appropriate stimulation in vitro and in vivo.  相似文献   

13.
14.
Human CD1d molecules present an unknown ligand, mimicked by the synthetic glycosphingolipid alpha-galactosylceramide (alphaGC), to a highly conserved NKT cell subset expressing an invariant TCR Valpha24-JalphaQ paired with Vbeta11 chain (Valpha24(+)Vbeta11(+) invariant NK T cell (NKT(inv))). The developmental pathway of Valpha24(+)Vbeta11(+)NKT(inv) is still unclear, but recent studies in mice were consistent with a TCR instructive, rather than a stochastic, model of differentiation. Using CD1d-alphaGC-tetramers, we demonstrate that in humans, TCR variable domains other than Valpha24 and Vbeta11 can mediate specific recognition of CD1d-alphaGC. In contrast to Valpha24(+)Vbeta11(+)NKT(inv) cells, Valpha24(-)/CD1d-alphaGC-specific T cells express either CD8alphabeta or CD4 molecules, but they are never CD4 CD8 double negative. We show that CD8alphabeta(+)Valpha24(-)/CD1d-alphaGC-specific T cells exhibit CD8-dependent specific cytotoxicity and have lower affinity TCRs than Valpha24(+)/CD1d-alphaGC-specific T cells. In conclusion, our results demonstrate that, contrary to the currently held view, recognition of CD1d-alphaGC complex in humans is not uniformly restricted to the Valpha24-JalphaQ/Vbeta11 NKT cell subset, but can be mediated by a diverse range of Valpha and Vbeta domains. The existence of a diverse repertoire of CD1d-alphaGC-specific T cells in humans strongly supports their Ag-driven selection.  相似文献   

15.
16.
Human Valpha24(+) NKT cells constitute a counterpart of mouse Valpha14(+) NKT cells, both of which use an invariant TCR-alpha chain. The human Valpha24(+) NKT cells as well as mouse Valpha14(+) NKT cells are activated by glycolipids in a CD1d-restricted manner and produce many immunomodulatory cytokines, possibly affecting the immune balance. In mice, it has been considered from extensive investigations that Valpha14(+)CD8(+) NKT cells that express invariant TCR do not exist. Here we introduce human Valpha24(+)CD8(+) NKT cells. These cells share important features of Valpha24(+) NKT cells in common, but in contrast to CD4(-)CD8(-) (double-negative) or CD4(+) Valpha24(+) NKT cells, they do not produce IL-4. Our discovery may extend and deepen the research field of Valpha24(+) NKT cells as well as help to understand the mechanism of the immune balance-related diseases.  相似文献   

17.
IL-2 and IL-15 are lymphocyte growth factors produced by different cell types with overlapping functions in immune responses. Both cytokines costimulate lymphocyte proliferation and activation, while IL-15 additionally promotes the development and survival of NK cells, NKT cells, and intraepithelial lymphocytes. We have investigated the effects of IL-2 and IL-15 on proliferation, cytotoxicity, and cytokine secretion by human PBMC subpopulations in vitro. Both cytokines selectively induced the proliferation of NK cells and CD56(+) T cells, but not CD56(-) lymphocytes. All NK and CD56(+) T cell subpopulations tested (CD4(+), CD8(+), CD4(-)CD8(-), alphabetaTCR(+), gammadeltaTCR(+), CD16(+), CD161(+), CD158a(+), CD158b(+), KIR3DL1(+), and CD94(+)) expanded in response to both cytokines, whereas all CD56(-) cell subpopulations did not. Therefore, previously reported IL-15-induced gammadelta and CD8(+) T cell expansions reflect proliferations of NK and CD56(+) T cells that most frequently express these phenotypes. IL-15 also expanded CD8alpha(+)beta(-) and Valpha24Vbeta11 TCR(+) T cells. Both cytokines stimulated cytotoxicity by NK and CD56(+) T cells against K562 targets, but not the production of IFN-gamma, TNF-alpha, IL-2, or IL-4. However, they augmented cytokine production in response to phorbol ester stimulation or CD3 cross-linking by inducing the proliferation of NK cells and CD56(+) T cells that produce these cytokines at greater frequencies than other T cells. These results indicate that IL-2 and IL-15 act at different stages of the immune response by expanding and partially activating NK receptor-positive lymphocytes, but, on their own, do not influence the Th1/Th2 balance of adaptive immune responses.  相似文献   

18.
The development of lymphoid organs requires membrane-bound lymphotoxin (LT), a heterotrimer containing LTalpha and LTbeta, but the effects of LT on T cell function have not been characterized extensively. Upon TCR cross-linking in vitro, splenocytes from both LTalpha-/- and LTbeta-/- mice failed to produce IL-4 and IL-10 due to a reduction in NK T cells. Concordantly, LTalpha-/- and LTbeta-/- mice did not respond to the lipoglycan alpha-galactosylceramide, which is presented by mouse CD1 to Valpha14+ NK T cells. Interestingly, both populations of NK T cells, including those that are mouse CD1 dependent and alpha-galactosylceramide reactive and those that are not, were affected by disruption of the LTalpha and LTbeta genes. NK T cells were not affected, however, in transgenic mice in which LT signaling is blocked, beginning on day 3 after birth, by expression of a soluble decoy LTbeta receptor. This suggests that membrane-bound LT is critical for NK T cells early in ontogeny, but not for the homeostasis of mature cells.  相似文献   

19.
We have demonstrated that Valpha24(+)Vbeta11(+) invariant (Valpha24(+)i) NKT cells from patients with allergic asthma express CCR9 at high frequency. CCR9 ligand CCL25 induces chemotaxis of asthmatic Valpha24(+)i NKT cells but not the normal cells. A large number of CCR9-positive Valpha24(+)i NKT cells are found in asthmatic bronchi mucosa, where high levels of Th2 cytokines are detected. Asthmatic Valpha24(+)i NKT cells, themselves Th1 biased, induce CD3(+) T cells into an expression of Th2 cytokines (IL-4 and IL-13) in cell-cell contact manner in vitro. CD226 are overexpressed on asthmatic Valpha24(+)i NKT cells. CCL25/CCR9 ligation causes directly phosphorylation of CD226, indicating that CCL25/CCR9 signals can cross-talk with CD226 signals to activate Valpha24(+)i NKT cells. Prestimulation with immobilized CD226 mAb does not change ability of asthmatic Valpha24(+)i NKT cells to induce Th2-cytokine production, whereas soluble CD226 mAb or short hairpin RNA of CD226 inhibits Valpha24(+)i NKT cells to induce Th2-cytokine production by CD3(+) T cells, indicating that CD226 engagement is necessary for Valpha24(+)i NKT cells to induce Th2 bias of CD3(+) T cells. Our results are providing with direct evidence that aberration of CCR9 expression on asthmatic Valpha24(+)i NKT cells. CCL25 is first time shown promoting the recruitment of CCR9-expressing Valpha24(+)i NKT cells into the lung to promote other T cells to produce Th2 cytokines to establish and develop allergic asthma. Our findings provide evidence that abnormal asthmatic Valpha24(+)i NKT cells induce systemically and locally a Th2 bias in T cells that is at least partially critical for the pathogenesis of allergic asthma.  相似文献   

20.
Murine bone marrow (BM) NK T cells can suppress graft-vs-host disease, transplant rejection, and MLRs. Human BM contains T cells with similar potential. Human BM was enriched for NK T cells, approximately 50% of which recognized the nonpolymorphic CD1d molecule. In contrast to the well-characterized blood-derived CD1d-reactive invariant NK T cells, the majority of human BM CD1d-reactive T cells used diverse TCR. Healthy donor invariant NK T cells rapidly produce large amounts of IL-4 and IFN-gamma and can influence Th1/Th2 decision-making. Healthy donor BM CD1d-reactive T cells were Th2-biased and suppressed MLR and, unlike the former, responded preferentially to CD1d(+) lymphoid cells. These results identify a novel population of human T cells which may contribute to B cell development and/or maintain Th2 bias against autoimmune T cell responses against new B cell Ag receptors. Distinct CD1d-reactive T cell populations have the potential to suppress graft-vs-host disease and stimulate antitumor responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号