首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Herbivorous zooplankton face considerable temporal and spatial variation in food quality, to which they respond by adapting their life histories. Zooplankton may even take up mineral nutrients directly, and use these to counter the effects of algal nutrient limitation (mineral compensation). This study examined the life history of the rotifer Brachionus calyciflorus fed phosphorus‐, and nitrogen‐limited Scenedesmus obliquus (Chlorophyta), and investigated whether B. calyciflorus was capable of mineral compensation. 2. Both phosphorus‐ and nitrogen‐limited algae gave similar life history responses: somatic growth and reproduction were reduced, whereas lifespan remained unaffected. 3. No evidence was found for mineral compensation in B. calyciflorus in relation to detrimental life history effects, so mineral compensation does not seem to be relevant for this species under field conditions. 4. The similarity in life history responses of B. calyciflorus and the low levels of ω‐3 PUFAs in both phosphorus‐ and nitrogen‐depleted algae suggest that ω‐3 PUFAs were limiting to B. calyciflorus, although other (bio)chemicals or mineral nutrients may also have been important. 5. No trade‐off was observed between life span and reproduction during algal nutrient limitation. Reduced population growth rates of B. calyciflorus were caused by shorter reproductive periods.  相似文献   

2.
Increased concentrations of important nutrients in edible parts of plants could result in biofortified foods. Soybean [Glycine max (L.) Merr.] is a major legume crop and an important source of certain nutrients, including protein and minerals, in human and animal diets. Understanding the underlying genetic basis of seed composition is crucial to improving seed nutrient composition. In this study we used three soybean recombinant inbred line mapping populations derived from the crosses Williams 82 × DSR-173, Williams 82 × NKS19-90 and Williams 82 × Vinton 81, and constructed a joint linkage map from these populations. Forty quantitative trait loci (QTLs) were detected for 18 traits: seed weight, seed magnesium, sulfur, calcium, manganese, potassium, iron, cobalt, nickel, copper, zinc, selenium, molybdenum, cadmium and arsenic concentrations, total nitrogen:total sulfur (N:S) ratio, cysteine and methionine concentrations. Using the joint linkage map, we detected nine QTLs that were not identified in the individual populations. We identified several candidate genes that might contribute to these traits, including transporters and genes involved in nitrogen and amino acid metabolism. Some strong QTLs had no obvious candidate genes, offering the possibility that subsequent confirmation of these QTLs may result in identification of new genes affecting seed nutrients in soybean. Seed weight and seed mineral concentrations were not highly correlated, suggesting the possibility of improving seed mineral concentrations without significant changes in seed weight. An inverse relationship between N:S ratio and most other minerals suggests the possibility of using N:S ratio as an indirect measure of seed mineral concentration in soybean breeding programs.  相似文献   

3.
Summary Growth responses and accumulation of N and P were studied in two pygmy south-west Australian species of Drosera following supplementary feeding of arthropods (collembolans, Hypogastrura vernalis and fruit flies, Drosophila melanogaster) and/or a balanced mineral nutrient supplement (N as nitrate) via the roots. One feeding experiment used glasshouse-raised germlings from vegetative propagules (gemmae) of the perennial Drosera closterostigma, the other three (two on D. closterostigma and one on the annual D. glanduligera) involved natural populations engaging in natural captures of indigenous prey. All experiments recorded highly significant increases in plant dry matter, N and P (all plant age groups) and in reproductive performance (adult plants only) from artificial feeding of arthropods, but no apparent benefits from minerals alone or additive effects of minerals above that due to insects. Unresponsiveness to mineral nutrients was suggested to relate to inability of the species to use nitrate, while up to three-fold growth and nutrient uptake response to insects indicated that growth of natural populations might be severely limited by inadequate catches of prey. It is concluded that the highly nutrient-poor conditions typical of the habitat of pygmy species of Drosera may have promoted marked specialization towards carnivory and an attendant decline in ability to utilize soil-derived sources of nutrients.  相似文献   

4.
Plant nutrients, with the exception of nitrogen, are ultimately derived from weathering of primary minerals. Traditional theories about the role of ectomycorrhizal fungi in plant nutrition have emphasized quantitative effects on uptake and transport of dissolved nutrients. Qualitative effects of the symbiosis on the ability of plants to access organic nitrogen and phosphorus sources have also become increasingly apparent. Recent research suggests that ectomycorrhizal fungi mobilize other essential plant nutrients directly from minerals through excretion of organic acids. This enables ectomycorrhizal plants to utilize essential nutrients from insoluble mineral sources and affects nutrient cycling in forest systems.  相似文献   

5.
Birch (Betula verrucosa Ehrh.) and grey alder (Alnus incana Moench) seedlings were grown with varied relative addition rates of all nutrients, up to optimum for vegetative growth. The root medium was basically distilled water to which the nutrients, contained in stock solutions in fixed proportions, were added every second hour and in exponentially increased amounts for consumption during the subsequent period. The nutrient weight proportions previously found to be required in birch (100 N:65 K:13 P) were used in all treatments. However, the nutrient proportions required in grey alder were found to be somewhat different (100 N:50 K:18 P). The use of the required proportions in the additions was important for maintenance of maximum growth, efficient nutrient utilization, and low concentrations in the root medium. Luxury consumption and inefficiency occurred at high concentrations. The results show that the nutrient requirements are sufficiently defined, for different relative growth rates, by the nutrient proportions and the relative addition rate. No clear relationships were found between conductivity or concentration in the root medium and the addition rate, net uptake rate, nutrient status, or relative growth rate. The results are in good agreement with data from low concentration and depletion experiments reported in the literature, showing that non-limited uptake rates occur down to very low concentrations. Thus, there is strong evidence that concentration has been incorrectly used when applied as the treatment variable for plant nutrition in plant science and cultivation practice. The dominant factors in sub-optimum and optimum nutrition are the amounts of nutrients available per unit of time, the growth rate, and the nutrient proportions. At low concentration levels, physical factors such as stirring and flow rate of nutrient solution and boundary layer effects are decisive for the rates with which the nutrients become available to the roots. Therefore, at low levels, concentration alone cannot be used as the factor determining nutrient uptake rate. At high levels, concentration is effective as a supra-optimum factor and increased internal percentage contents cause decreased uptake efficiency, thus counter-acting the concentration effect. Nitrogen effects dominated the stress indications when the internal nitrogen percentage content decreased from optimum to the level of the treatments in the beginning of the experiments. Leaf deficiency symptoms disappeared and the root/shoot ratio change ceased when nitrogen status stabilized. Strong linear regressions were found between any two of the variables: relative addition rate of nutrients, relative growth rate, and nutrient status.  相似文献   

6.
Gluconacetobacter diazotrophicus is a plant-growth-promoting bacterium, which is able to colonize sugarcane and other plant species of economic importance. The potentially beneficial effects promoted by this bacterium on plants are nitrogen-fixation, production of phythormones, action against pathogens and mineral nutrient solubilization. In this study, the molecular mechanisms associated with phosphorus and zinc solubilization were analyzed. A transposon mutant library was constructed and screened to select for mutants defective for phosphorous [Ca5(PO4)3OH] and zinc (ZnO) solubilization. A total of five mutants were identified in each screen. Both screenings, performed independently, allowed to select the same mutants. The interrupted gene in each mutant was identified by sequencing and the results demonstrate that the production of gluconic acid is a required pathway for solubilization of such nutrients in G. diazotrophicus. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. A. C. Intorne and M. V. V. de Oliveira contributed equally to this work.  相似文献   

7.
The effects of two levels each of nitrogen and sulphur nutrition and of infestation by Brevicoryne brassicae on the growth of Brussels sprout plants were studied in factorial experiments. All the plants receiving high nitrogen treatments grew more rapidly than those with low, but in infested plants the improvement in growth at the higher levels of nitrogen was offset by the increased size of aphid populations. Low sulphur nutrition increased the growth of plants receiving high nitrogen and of the aphids feeding on them. Leaf diffusive resistances and chlorophyll concentrations were greater with high nitrogen, but were significantly lowered by infestation in all nutrient treatments. Infestation decreased leaf total nitrogen concentration at the sites of feeding, but effects on soluble nitrogen were not significant. Removal of aphids 72 days after initial infestation did not cause marked plant recovery during the next 22 days. It is concluded that the benefits of increased yield resulting from high nitrogen levels must be balanced against the greater potential for damage by aphids.  相似文献   

8.
A Definition of Optimum Nutrient Requirements in Birch Seedlings. I.   总被引:7,自引:0,他引:7  
The aim of the investigation was to find a method of growing birch seedlings with a constant optimum nutrient status. The studies in this paper have indicated important factors in such a growth method which must be comprised in a definition of nutrient requirements. The optimum nutrient proportions in the seedlings and the optimum total concentration in the solution must be known. Special attention must be paid to the ratio between NH4+ and NO3?in the solution and in the uptake. The amounts of nutrients taken up at optimum nutrition can be followed by measurement of pH and conductivity. Thus, the nutrients consumed may be replaced by titrations which may be automated by standard equipment. The nutrient proportions to be added are determined by the optimum internal proportions. It is not necessary to change the nutrient solution even if the volume is relatively small in relation to plant mass. There was no evidence of effects of accumulation of root exudates or infections. By using the system described, it is possible to attain considerably greater fresh and dry matter production in birch seedlings than when an optimum conventional solution is used.  相似文献   

9.
The growth, accumulation and movement of mineral nutrients (nitrogen,phosphorus, potassium (calcium) and chlorophyll in needles ofyoung radiata pine trees (Pinus radiata D. Don) were examined,from bud break in spring through the following year. Retranslocationof nutrients from needles was measured and is discussed in relationto nutrient requirements for seasonal growth. During the first 4–5 months after bud break when mostneedle growth occurred, all nutrients and chlorophyll accumulatedprogressively, although the concentrations of nitrogen, phosphorusand potassium decreased. During summer, substantial amounts of phosphorus were withdrawnfrom needles less than 6 months old, regardless of positionon the tree and silvicultural practice. In young needles andunder certain environmental conditions, this led to a markedtemporary decline in concentrations, even in fertilized treeson a fertile site. However, the phosphorus content of needleswas quickly restored following autumn rains. Similar fluctuations,including nutrient withdrawal in summer, occurred for nitrogenand potassium, but these were smaller than those observed forphosphorus. Phosphorus was also withdrawn from relatively olderneedles during summer. It was estimated that on a tree basis 86, 48 and 39 per centof the phosphorus, nitrogen and potassium, respectively, insummer shoots could have come from the retranslocation of nutrientsfrom young needles formed during the preceding spring. These results highlight the importance of nutrients stored inneedles to meet the nutrient requirements for growth when environmentalfactors may not be conducive to nutrient uptake from the soil. Pinus radiata D. Don, mineral nutrition, retranslocation, phosphorus, nitrogen, seasonal effects, pine needle growth  相似文献   

10.
Summary Ramets from six Solidago altissima clones of known resistance to the stem gallmaker Eurosta solidaginis were grown with and without supplemental nutrients. In a greenhouse experiment, mated female Eurosta were allowed to oviposit in ramets that were subsequently grown through flowering and then harvested to determine biomass allocation. Supplemental nutrients increased plant biomass but did not affect resistance to this gallmaking herbivore. This result does not conform to the plant carbon/nutrient balance hypothesis which predicts that enhanced mineral nutrition will indirectly cause a reduction in carbon-based defensive chemistry. Our results indicate a strong genetic basis to ball gallmaker resistance since modification of host phenotype did not influence susceptibility. We suggest that evaluating the degree of genotypic or environmental control of plant resistance will be especially helpful in clarifying the patterns of defensive chemical responses.  相似文献   

11.
A Definition of Optimum Nutrient Requirements in Birch Seedlings. II   总被引:12,自引:0,他引:12  
The aim of the experiments described was to specify further the nutrient requirements of birch seedlings. A growth method is described in which the nutrients consumed at maximum growth of birch seedlings can be replaced, without change of the nutrient solution, by means of additions made as pH and conductivity titrations so that three conditions are satisfied: 1) All necessary mineral nutrients are present in the plant in optimum proportions. 2) The nitrogen sources NH4+ and NO3- are present in the nutrient solution in an optimum ratio. 3) Total concentration in the solution is optimum. The three conditions may be regarded as criteria in a definition of nutrient requirements. The possible use of criterion 1 as an expression of the optimum nutrient status is also discussed. A considerable increase in light intensity had no significant effect on the optimum nutrient proportions or the optimum total concentration. A tendency to lower ammonium uptake in relation to nitrate was induced when both nitrogen sources were present. Simple stock nutrient solution systems are listed and discussed.  相似文献   

12.
This study assessed the suitability of two deciduous woody perennials (Salix spp. and Populus spp.) and two summer green herbaceous perennials (Phragmites australis and Urtica dioica) for purification of nutrient enriched wastewater. The main hypothesis tested was that species with a particular trait combination of high relative growth rate (RGR), low nutrient productivity (A) and high mean residence time (MRT) of nutrients would be most effective in accumulating nutrients. The nitrogen and phosphorus use efficiency at the whole plant level was analysed. Four treatments comprising two possible phytoremediation substrates (municipal wastewater and landfill leachate) and two control plant nutrition situations (balanced nutrient solution and pure water) were applied in four replications to the four plant species. Generally, all four species studied showed a high RGR and a low P productivity in the balanced nutrient solution treatment, while the opposite (low RGR and high P productivity) was seen in the phytoremediation substrate and pure water treatments. The general conclusion is that if P is present in marginal proportions in the wastewater, a vegetation filter with Phragmites would have an advantage since biomass and nutrient accumulation in Phragmites does not decrease as much during phytoremediation as that in deciduous woody perennials.  相似文献   

13.
Hannu Raitio 《Plant and Soil》1991,131(2):251-259
This study deals with the effect of pine bark bugs (Aradus cinnamomeus Panzer) on the nutrition of young Scots pines (Pinus sylvestris L.). Soil and needle samples for analytical purposes were collected from a young pine stand growing on a dry barren mineral soil afflicted by pine bark bugs.The damage to vascular tissues caused by pine bark bugs disturbed the nutrition of the trees, especially in the top part of the crown. The foliar calcium, magnesium, manganese and sulphur concentrations were highly reduced. Scots pines suffered from a lack of calcium, magnesium, nitrogen and phosphorus. These deficiencies were secondary by nature, because no differences were observed between the nutrient concentrations of the underlying soil of the healthy and affected trees. The symptoms of trees damaged by pine bark bugs resembled most of all calcium deficiency symptoms.  相似文献   

14.
15.
Efficiently regulating growth to adapt to varying resource availability is crucial for organisms, including plants. In particular, the acquisition of essential nutrients is vital for plant development, as a shortage of just one nutrient can significantly decrease crop yield. However, plants constantly experience fluctuations in the presence of multiple essential mineral nutrients, leading to combined nutrient stress conditions. Unfortunately, our understanding of how plants perceive and respond to these multiple stresses remains limited. Unlocking this mystery could provide valuable insights and help enhance plant nutrition strategies. This review focuses specifically on the regulation of phosphorous homeostasis in plants, with a primary emphasis on recent studies that have shed light on the intricate interactions between phosphorous and other essential elements, such as nitrogen, iron, and zinc, as well as non-essential elements like aluminum and sodium. By summarizing and consolidating these findings, this review aims to contribute to a better understanding of how plants respond to and cope with combined nutrient stress.  相似文献   

16.
南极地区苔藓地衣植物的地球化学元素营养富集特征   总被引:6,自引:0,他引:6  
研究南极苔藓地衣中地球化学元素的营养富集特征,发现K,Ca为苔藓地衣中最活跃元素,主要以主动吸收的方式累积于苔藓地衣植物中,P极易富集在地衣的藻层,参与藻类的有机合成过程,苔藓容易富集环境中的S,Al,Si以被动吸收的方式累积于地衣中,同时Fe,Mg以被动吸收的方式累积于苔藓体内,根据元素的含量和营养作用,研究认为K,Ca苔地衣的大量无机营养元素,S,P为苔藓地衣的中等营养元素,Al,Si为苔藓地衣的环境累积元素。  相似文献   

17.
Investigations of how species compositional changes interact with other aspects of global change, such as nutrient mobilization, to affect ecosystem processes are currently lacking. Many studies have shown that mixed species plant litters exhibit non‐additive effects on ecosystem functions in terrestrial and aquatic systems. Using a full‐factorial design of three leaf litter species with distinct initial chemistries (carbon:nitrogen; C:N) and breakdown rates (Liriodendron tulipifera, Acer rubrum and Rhododendron maximum), we tested for additive and non‐additive effects of litter species mixing on breakdown in southeastern US streams with and without added nutrients (N and phosphorus). We found a non‐additive (antagonistic) effect of litter mixing on breakdown rates under reference conditions but not when nutrient levels were elevated. Differential responses among single‐species litters to nutrient enrichment contributed to this result. Antagonistic litter mixing effects on breakdown were consistent with trends in litter C:N, which were higher for mixtures than for single species, suggesting lower microbial colonization on mixtures. Nutrient enrichment lowered C:N and had the greatest effect on the lowest‐ (R. maximum) and the least effect on the highest‐quality litter species (L. tulipifera), resulting in lower interspecific variation in C:N. Detritivore abundance was correlated with litter C:N in the reference stream, potentially contributing to variation in breakdown rates. In the nutrient‐enriched stream, detritivore abundance was higher for all litter and was unrelated to C:N. Thus, non‐additive effects of litter mixing were suppressed by elevated streamwater nutrients, which increased nutrient content of all litter, reduced variation in C:N among litter species and increased detritivore abundance. Nutrients reduced interspecific variation among plant litters, the base of important food web pathways in aquatic ecosystems, affecting predicted mixed‐species breakdown rates. More generally, world‐wide mobilization of nutrients may similarly modify other effects of biodiversity on ecosystem processes.  相似文献   

18.
A great deal of information is available in the literature on the effects of nutrition on disease development in plants and crops. However, much of this information is contradictory and although it is widely recognised that nutrition can influence disease in crops, limited progress has been made in the manipulation of crop nutrition to enhance disease control. Achieving this aim requires a sound understanding of the effects of fertilisation on nutrient levels and availability in crop tissues, and in turn, how the nutrient status of such tissues influences pathogen infection, colonisation and sporulation. Some of these details are known for a number of crop plants under controlled conditions, but very little of this type of information is available for crops under field conditions. This review focuses on nitrogen, sulphur, phosphorus, potassium and silicon, examines the availability of these nutrients in plant tissues to support pathogen growth and development, and reviews the effects of the different nutrients on disease development. The review also examines the potential for manipulating crop nutrition to enhance disease control in conventional and organic cropping systems.  相似文献   

19.
The principal nutrient source for forest trees derives from the weathering of soil minerals which results from water circulation and from plant and microbial activity. The main objectives of this work were to quantify the respective effects of plant- and root-associated bacteria on mineral weathering and their consequences on tree seedling growth and nutrition. That is why we carried out two column experiments with a quartz-biotite substrate. The columns were planted with or without pine seedlings and inoculated or not with three ectomycorrhizosphere bacterial strains to quantify biotite weathering and pine growth and to determine how bacteria improve pine growth. We showed that the pine roots significantly increased biotite weathering by a factor of 1.3 for magnesium and 1.7 for potassium. We also demonstrated that the inoculation of Burkholderia glathei PML1(12) significantly increased biotite weathering by a factor of 1.4 for magnesium and 1.5 for potassium in comparison with the pine alone. In addition, we observed a significant positive effect of B. glathei PMB1(7) and PML1(12) on pine growth and on root morphology (number of lateral roots and root hairs). We demonstrated that PML1(12) improved pine growth when the seedlings were supplied with a nutrient solution which did not contain the nutrients present in the biotite. No improvement of pine growth was observed when the seedlings were supplied with all the nutrients necessary for pine growth. We therefore propose that the growth-promoting effect of B. glathei PML1(12) mainly resulted from the improved plant nutrition via increased mineral weathering.  相似文献   

20.
自然条件下生物结皮是藻、藓及地衣等结皮类型以不同比例组成的混合群落,显著影响土壤养分含量,目前混合生物结皮对土壤养分的影响与其群落结构的关系尚不清楚,限制了混合生物结皮土壤养分的评估。为此,研究通过测定单一组成的藻结皮、藓结皮以及80%藻+20%藓、60%藻+40%藓、40%藻+60%藓和20%藻+80%藓4个不同藻藓比例的混合生物结皮土壤有机碳、全氮、全磷、速效磷、铵态氮和硝态氮含量,研究了混合生物结皮土壤养分与其群落结构之间的关联。结果显示:(1)藓结皮层土壤有机碳、全氮、速效磷、铵态氮和硝态氮含量显著高于藻结皮,分别高出166.4%、77.2%、55.1%、56.2%和42.2%。(2)藻藓混合生物结皮土壤有机碳、全氮、速效磷和铵态氮含量与组成和盖度等结构特征有关,可以通过单一类型生物结皮土壤养分含量与盖度加权预测混合生物结皮土壤养分储量。(3)混合生物结皮土壤有机碳、全氮、速效磷和铵态氮储量实测值(x)与预测值(y)拟合的线性函数分别为y=0.97x、y=0.96x、y=1.18x和y=0.92x。(4)混合生物结皮对全磷和硝态氮含量的影响与群落结构无关。生物结皮对下层0—5 ...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号