首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Sequential activation of cytosolic phospholipase A2 (cPLA2) and 5-lipoxygenase (5-LO), critically regulated by extracellular signal-regulated kinase 1 and 2 (ERK1/2)-dependent phosphorylation, mediates U937 cell survival to peroxynitrite. In contrast, a limiting factor is represented by the parallel mitochondrial formation of H2O2 leading to suppression of the survival signaling. We now report that the inhibitory effects of H2O2 are at the level of ERK1/2 phosphorylation and involve activation of orthovanadate-sensitive phosphotyrosine protein phosphatase(s). Under these conditions, the otherwise stimulatory effects of peroxynitrite on ERK1/2 phosphorylation are concealed by phosphatase-dependent dephosphorylation and the activities of cPLA2 and 5-LO are significantly reduced or suppressed, respectively. The ensuing inhibition of downstream events preventing mitochondrial permeability transition rapidly leads these cells to death. Thus, endogenous H2O2 limits U937 cell survival to peroxynitrite via activation of phosphotyrosine protein phosphatase(s) promoting upstream inhibition of the survival signaling critically regulated by the extent of ERK1/2 phosphorylation.  相似文献   

2.
A short-term growth of U937 cells in serum-free medium causes a prompt, mitochondrial permeability transition (MPT)-dependent necrotic response after exposure to an otherwise non-toxic concentration of peroxynitrite. This event is mediated by inhibition of extracellular signal-regulated kinase 1 and 2 (ERK1/2) phosphorylation, essential for the cytosolic phospholipase A(2)-dependent arachidonic acid (AA) release evoked by peroxynitrite. Reduced availability of the lipid messenger would therefore limit the efficiency of the AA-dependent survival signalling and cause an MPT-based necrosis. Since peroxynitrite further reduces the extent of ERK1/2 phosphorylation, regardless of whether cells had been grown in serum-free or -containing medium, it appears that basal ERK1/2 phosphorylation is a critical determinant for the survival response of U937 cells to a non-toxic, but nevertheless MPT-committing, concentration of peroxynitrite.  相似文献   

3.
4.
Regulating ERK activity is essential for normal cell proliferation to occur. In mammals and most vertebrates ERK activity is provided by ERK1 and ERK2 that are highly similar, ubiquitously expressed and share activators and substrates. By combining single and double silencings of ERK1 and ERK2 we recently demonstrated that the apparent dominant role of ERK2 to regulate cell proliferation was due to its markedly higher expression level than ERK1. The contribution of ERK1 was revealed when ERK2 activation was clamped to avoid compensating over-activation of ERK2. We found no evidences in the literature for insulated isoform-specific modules in the Ras/Raf/MEK signaling cascade that could activate specifically ERK1 or ERK2. Obviously in frogs all signal integration and fine modulation provided by three Ras and three Raf isoforms is conducted by only one MEK and one ERK isoform. In mammals, ERK1 and ERK2 display similar specific activities and are activated respectively to their expression levels. After integrating signals from Ras, Raf and MEK isoforms, ERK1 and ERK2 regulate positively cell proliferation according to their expression levels.  相似文献   

5.
Resident cell populations of the skin contribute to the inflammatory response by producing an array of chemokines, which attract leukocytes from the circulation. TNF-alpha is a major inducer of proinflammatory mediators in keratinocytes. We have recently observed that epidermal growth factor receptor (EGFR) signaling affects TNF-alpha-driven chemokine expression in epidermal keratinocytes, and its functional impairment increases the levels of crucial chemoattractants such as CCL2/MCP-1, CCL5/RANTES, and CXCL10/IFN-gamma-inducible protein-10. In this study, we report evidence that EGFR-dependent ERK1/2 activity is implicated in this mechanism. Abrogation of ERK1/2 activity with specific inhibitors increased chemokine expression in keratinocytes by enhancing mRNA stabilization. In mouse models, inflammatory response to irritants and T cell-mediated contact hypersensitivity were both aggravated when elicited in a skin area previously treated with an EGFR or a MAPK kinase 1/2 inhibitor. In contrast, impairment of p38alpha beta MAPK phosphorylation markedly attenuated these responses. Our data indicate that EGFR-dependent ERK1/2 activity in keratinocytes takes part to a homeostatic mechanism regulating inflammatory responses, and emphasize the distinct role of MAPKs as potential targets for manipulating inflammation in the skin.  相似文献   

6.
Lu Z  Xu S 《IUBMB life》2006,58(11):621-631
ERK1/2 is an important subfamily of mitogen-activated protein kinases that control a broad range of cellular activities and physiological processes. ERK1/2 can be activated transiently or persistently by MEK1/2 and upstream MAP3Ks in conjunction with regulation and involvement of scaffolding proteins and phosphatases. Activation of ERK1/2 generally promotes cell survival; but under certain conditions, ERK1/2 can have pro-apoptotic functions.  相似文献   

7.
8.
The expression of major histocompatibility class II genes is necessary for proper antigen presentation and induction of an immune response. This expression is initiated by the class II transactivator, CIITA. The establishment of the active form of CIITA is controlled by a series of post-translational events, including GTP binding, ubiquitination, and dimerization. However, the role of phosphorylation is less clearly defined as are the consequences of phosphorylation on CIITA activity and the identity of the kinases involved. In this study we show that the extracellular signal-regulated kinases 1 and 2 (ERK1/2) interact directly with CIITA, targeting serine residues in the amino terminus of the protein, including serine 288. Inhibition of this phosphorylation by dominant-negative forms of ERK or by treatment of cells with the ERK inhibitor PD98059 resulted in the increase in CIITA-mediated gene expression from a class II promoter, enhanced the nuclear concentration of CIITA, and impaired its ability to bind to the nuclear export factor, CRM1. In contrast, inhibition of ERK1/2 activity had little effect on serine-to-alanine mutant forms of CIITA. These data suggest a model whereby ERK1/2-mediated phosphorylation of CIITA down-regulates CIITA activity by priming it for nuclear export, thus providing a means for cells to tightly regulate the extent of antigen presentation.  相似文献   

9.
The conditional kinase DeltaMEKK3:ER allows activation of JNK, p38 and ERK1/2 without overt cellular stress or damage and has proved useful in understanding how these pathways regulate apoptosis and cell cycle progression. We have previously shown that activation of DeltaMEKK3:ER causes a sustained G(1) cell cycle arrest which requires p21(CIP1), with ERK1/2 and p38 cooperating to promote p21(CIP1) expression. In cells lacking p21(CIP1), DeltaMEKK3:ER causes only a transient delay in cell cycle re-entry. We now show that this delay in cell cycle re-entry is due to a reduction in cyclin D1 levels. Activation of DeltaMEKK3:ER promotes the proteasome-dependent turnover of cyclin D1; this requires phosphorylation of threonine 286 (T(286)) and expression of cyclin D1T(286)A rescues the delay in G(1)/S progression. DeltaMEKK3:ER-dependent phosphorylation of T(286) does not appear to be mediated by GSK3beta but requires activation of the ERK1/2 and p38 pathways. ERK1/2 can physically associate with cyclin D1 but activation of ERK1/2 alone is not sufficient for phosphorylation of T(286). Rather, cyclin D1 phosphorylation appears to require coincident activation of ERK1/2 and p38. Thus activation of DeltaMEKK3:ER promotes a sustained G(1) cell cycle arrest by a bipartite mechanism involving the rapid destruction of cyclin D1 and the slower more prolonged expression of p21(CIP1). This has parallels with the bipartite response to ionizing radiation and p53-independent mechanisms of G(1) cell cycle arrest in simple organisms such as yeast.  相似文献   

10.
ERK1/2 (extracellular-signal-regulated kinase 1/2) MAPKs (mitogen-activated protein kinases) are tightly regulated by the cellular microenvironment in which they operate. Mxi2 is a p38α splice isoform capable of binding to ERK1/2 and ensuring their translocation to the nucleus. Therein Mxi2 sustains ERK1/2 phosphorylation levels and, as a consequence, ERK1/2 nuclear signals are enhanced. However, the molecular mechanisms underlying this process are still unclear. In the present study, we show that Mxi2 prevents nuclear but not cytoplasmic phosphatases from binding to and dephosphorylating ERK1/2, disclosing an unprecedented mechanism for the spatial regulation of ERK1/2 activation. We also demonstrate that the kinetics of ERK1/2 extranuclear signals can be significantly altered by artificially tethering Mxi2 to the cytoplasm. In this case, Mxi2 abolishes ERK1/2 inactivation by cytoplasmic phosphatases and potentiates ERK1/2 functions at this compartment. These results highlight Mxi2 as a key spatial regulator of ERK1/2 functions, playing a pivotal role in the balance between ERK1/2 nuclear and cytoplasmic signals.  相似文献   

11.
Cells lacking vinculin are highly metastatic and motile. The reasons for this finding have remained unclear. Both enhanced survival and motility are critical to metastasis. Here, we show that vinculin null (vin-/-) cells and cells expressing a vinculin Y822F mutant have increased survival due to up-regulated activity of extracellular signal-regulated kinase (ERK). This increase is shown to result from vinculin's modulation of paxillin-FAK interactions. A vinculin fragment (amino acids 811-1066) containing the paxillin binding site restored apoptosis and suppressed ERK activity in vin-/- cells. Both vinY822F and vin-/- cells exhibit increased interaction between paxillin and focal adhesion kinase (FAK) and increased paxillin and FAK phosphorylation. Transfection with paxillin Y31FY118F dominant-negative mutant in these cells inhibits ERK activation and restores apoptosis. The enhanced motility of vin-/- and vinY822F cells is also shown to be due to a similar mechanism. Thus, vinculin regulates survival and motility via ERK by controlling the accessibility of paxillin for FAK interaction.  相似文献   

12.
Summary Monocyte chemotactic protein-1 (MCP-1), a potent chemoattractant for monocytes, is thought to play a major role in atherosclerosis, but whether its atherogenic effects involve the direct modulation of vascular smooth muscle cell (SMC) functions remains unclear. This study examined the effects of MCP-1 on the migration of cultured A7r5 SMCs and the signaling pathways involved. Addition of recombinant MCP-1 stimulated SMC migration in modified Boyden chambers coated with type I collagen in a concentration-dependent manner, with 10–9 M being maximally effective. Using untreated A7r5 cells, two MCP-1 receptors, CCR2 and CCR4, were detected and MCP-1 secretion was significantly increased by stimulation with platelet-derived growth factor. MCP-1-stimulated A7r5 migration was completely blocked by the NAD(P)H oxidase inhibitor, diphenylene iodonium (DPI), and dose-dependently inhibited by polyethylene glycol-conjugated superoxide dismutase (PEG-SOD), suggesting a role for reactive oxygen species (ROS) in this process. During MCP-1 stimulation, ROS production increased rapidly, then gradually decayed over 60 min, and this effect was markedly decreased by pretreatment with DPI or PEG-SOD. Interestingly, U0126 and PD98059, which inhibit activation of extracellular signal-regulated kinases 1/2 (ERK 1/2), significantly inhibited MCP-1-activated ROS generation. Furthermore, transfection of an active mutant of MEK1 (ERK 1/2 kinase) markedly increased superoxide production in rat aortic smooth muscle cells, as detected by dihydroethydium staining, suggesting that ERK 1/2 activation stimulates ROS generation. ERK 1/2 activation was increased for at least 30 min in cells incubated with MCP-1, and this effect was abolished by U0126 or DPI pretreatment. These results demonstrate that MCP-1 is a chemoattractant for SMCs and that MCP-1-stimulated migration requires both ROS production and ERK 1/2 activation in a positive activation loop, which may contribute to the atherogenic effects of MCP-1.These authors contributed equally to this work.  相似文献   

13.
14.
Li F  Yang H  Duan Y  Yin Y 《Cell biology international》2011,35(11):1141-1146
Myostatin is known as an inhibitor of muscle development, but its role in adipogenesis and lipid metabolism is still unclear, especially the underlying mechanisms. Here, we demonstrated that myostatin inhibited 3T3-L1 preadipocyte differentiation into adipocyte by suppressing C/EBPα (CCAAT/enhancer-binding protein α) and PPARγ (peroxisome-proliferator-activated receptor γ), also activated ERK1/2 (extracellular-signal-regulated kinase 1/2). Furthermore, myostatin enhanced the phosphorylation of HSL (hormone-sensitive lipase) and ACC (acetyl-CoA carboxylase) in fully differentiated adipocytes, as well as ERK1/2. Besides, we noted that myostatin markedly raised the levels of leptin and adiponectin release and mRNA expression during preadipocyte differentiation, but the levels were inhibited by myostatin treatments in fully differentiated adipocytes. These results suggested that myostatin suppressed 3T3-L1 preadipocyte differentiation and regulated lipid metabolism of mature adipocyte, in part, via activation of ERK1/2 signalling pathway.  相似文献   

15.
16.
Members of the protein kinase C (PKC) isozyme family are important signal transducers in virtually every mammalian cell type. Within the heart, PKC isozymes are thought to participate in a signaling network that programs developmental and pathological cardiomyocyte hypertrophic growth. To investigate the function of PKC signaling in regulating cardiomyocyte growth, adenoviral-mediated gene transfer of wild-type and dominant negative mutants of PKC alpha, beta II, delta, and epsilon (only wild-type zeta) was performed in cultured neonatal rat cardiomyocytes. Overexpression of wild-type PKC alpha, beta II, delta, and epsilon revealed distinct subcellular localizations upon activation suggesting unique functions of each isozyme in cardiomyocytes. Indeed, overexpression of wild-type PKC alpha, but not betaI I, delta, epsilon, or zeta induced hypertrophic growth of cardiomyocytes characterized by increased cell surface area, increased [(3)H]-leucine incorporation, and increased expression of the hypertrophic marker gene atrial natriuretic factor. In contrast, expression of dominant negative PKC alpha, beta II, delta, and epsilon revealed a necessary role for PKC alpha as a mediator of agonist-induced cardiomyocyte hypertrophy, whereas dominant negative PKC epsilon reduced cellular viability. A mechanism whereby PKC alpha might regulate hypertrophy was suggested by the observations that wild-type PKC alpha induced extracellular signal-regulated kinase1/2 (ERK1/2), that dominant negative PKC alpha inhibited PMA-induced ERK1/2 activation, and that dominant negative MEK1 (up-stream of ERK1/2) inhibited wild-type PKC alpha-induced hypertrophic growth. These results implicate PKC alpha as a necessary mediator of cardiomyocyte hypertrophic growth, in part, through a ERK1/2-dependent signaling pathway.  相似文献   

17.
Materno-foetal transmission causes one of the most serious forms of infection with the intracellular protozoan parasite Toxoplasma gondii. In the placenta, trophoblast cells constitute the barrier between maternal circulation and foetal tissue. We looked at the factors that determine the extent of cell adhesion to human BeWo trophoblast cells during T. gondii infection. BeWo monolayers stimulated with the supernatant of T. gondii-infected PBMC showed a large increase in THP-1 cell adhesion and upregulation of the intercellular adhesion molecule (ICAM)-1. Neutralization of cytokines by corresponding antibodies demonstrated that anti-IFN-gamma, but not anti-TNF-alpha or anti-IL-1beta, led to a significant reduction of THP-1 adhesion to a BeWo monolayer. Treatment of BeWo cells with single cytokines failed to induce upregulation of adhesion. In contrast, simultaneous treatment with IFN-gamma and either TNF-alpha or IL-1beta mimicked strongly the effect of infected cell supernatant. The results suggest that IFN-gamma plays a pivotal role in the cell adhesion process through upregulation of ICAM-1 and in the process of congenital transmission of T. gondii.  相似文献   

18.
Peroxynitrite, a highly reactive nitrogen species, promotes in U937 cells (a promonocytic cell line) a mitochondrial permeability transition (MPT)-dependent necrosis. An initial event triggered by peroxynitrite (i.e., inhibition of complex III of the mitochondrial respiratory chain) is responsible for the time-dependent formation of H(2)O(2), essential for the occurrence of cell death. Otherwise non-toxic concentrations of peroxynitrite nevertheless commit cells to MPT-dependent necrosis, which is however prevented by a cytoprotective signaling driven by arachidonic acid (AA) released by the cytosolic PLA(2) isoform. Interestingly, the mechanism whereby delayed formation of H(2)O(2) promotes toxicity in cells exposed to intrinsically toxic concentrations of peroxynitrite is independent of the accumulation of additional damage. Cell death is in fact mediated by inhibition of the AA-dependent cytoprotective signaling. Exogenous AA, however, prevented toxicity also under these conditions. An additional point to be made is that the major findings obtained using U937 cells were reproduced in different cell types belonging to the monocyte/macrophage lineage. Hence, within the context of the inflammatory response, monocytes and macrophages may cope with peroxynitrite by using AA, a signaling molecule largely available at the inflammatory sites.  相似文献   

19.
The control of cellular responses with fibroblast growth factors and neurotrophins is mediated through membrane-linked docking proteins, SNT (suc1-binding neurotrophic target)-1/FRS2alpha and SNT-2/FRS2beta. ERK1/2 are members of the mitogen-activated protein kinase family that regulate diverse cellular activities in response to various stimuli. Here, we demonstrate that SNT-2 does not become tyrosine phosphorylated significantly in response to EGF but forms a complex with ERK2 via the region of 186-252 amino acid residues, and the complex formation is enhanced upon EGF stimulation. SNT-2 downregulates ERK2 phosphorylation, suppresses and delays ERK2 nuclear accumulation which occurs following EGF stimulation. In contrast, the mutant SNT-2 which carries deletion of 186-252 amino acids and lacks ERK2 binding does not have these effects. These observations suggest that SNT-2 negatively regulates ERK2 signaling activated via EGF stimulation through direct binding to ERK2.  相似文献   

20.
Polyamine depletion with the ornithine decarboxylase inhibitor alpha-difluoromethyl ornithine (DFMO), prevents Rac1 activation causing the formation of a thick actin cortex at the cell periphery and inhibits migration of intestinal epithelial cells. In the present study, we demonstrate that MEK activation by EGF increased Rac1 activation, dissociation of intercellular contacts, and migration in both control and polyamine-depleted cells, while U0126, a specific inhibitor of MEK1, prevented disruption of junctions as well as EGF-induced Rac1 activation. Constitutively active MEK1 (CA-MEK) expression altered cell-cell contacts in control and polyamine depleted cells. The expression of constitutively active Rac1 (CA-Rac1) restored beta-catenin to the cell periphery and prevented the formation of actin cortex and caused the appearance of F-actin stress fibers in polyamine-depleted cells. Inhibition of Rac activation by NSC23766, a specific inhibitor of Tiam1, an upstream guanidine nucleotide exchange factor for Rac1, reproduced the beta-catenin localization and actin structure of polyamine-depleted cells. Tiam1 localized more extensively with beta-catenin at the cell periphery in CA-Rac1 cells compared to vector cells. Polyamine depletion decreased the expression of E-cadherin to a greater extent compared to beta-catenin. Subcellular fractionation further confirmed our immuno-localization and western blotting observations. These data suggest that EGF acting through MEK1/ERK to activate Rac1 regulates cell-cell contacts. Thus, decreased migration in polyamine depleted cells may be due to the inhibition of Tiam1 activation of Rac1 and the subsequent decreased expression of beta-catenin and E-cadherin leading to reduced cell-cell contacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号