首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Galliformes (landfowl) have been the focus of numerous divergence dating studies that seek a refined understanding of the early radiation of living birds. The Eocene fossil birds Amitabha urbsinterdictensis (Bridger Formation) and Gallinuloides wyomingensis (Green River Formation) have been used extensively in studies dealing with the timing of evolution in crown Galliformes. Divergence estimates from studies incorporating these fossils as calibration points suggest that multiple galliform lineages radiated in the Cretaceous and survived the Cretaceous–Tertiary mass extinction. However, the phylogenetic position of both fossils has been disputed, particularly with regard to crown or stem status. In order to resolve this debate, a new study of A. urbsinterdictensis and G. wyomingensis was undertaken. Further preparation and re‐examination of the A. urbsinterdictensis holotype indicates this fossil falls outside both crown and stem Galliformes, and reveals evidence for a relationship with Rallidae (rails). In order to reassess the status of G. wyomingensis, a matrix of 120 morphological characters was constructed by revising and expanding on previous studies. Phylogenetic analyses using this matrix place G. wyomingensis basal to all crown Galliformes. Stem placement of G. wyomingensis is retained and resolution is improved in combined analyses incorporating sequence data from cytochrome b, NADH dehydrogenase subunit 2, mitochondrial control region, 12S rDNA, and nuclear ovomucoid intron G. All evidence indicates that A. urbsinterdictensis and G. wyomingensis are inappropriate internal calibration points for Galliformes and may have contributed to overestimation of divergence event ages. Though stem galliforms existed in the Cretaceous, the divergence of crown lineages in the Cretaceous remains inconclusively demonstrated. Because few galliform fossils have been evaluated phylogenetically, further investigations into the tempo of galliform evolution must await identification of proper fossil calibration points. © The Willi Hennig Society 2009.  相似文献   

2.
Of the basal clades of extant birds (Neornithes) the 'landfowl' or galliforms (Aves, Galliformes) are the most speciose. Cladistic analysis of more than 100 morphological characters coded at the generic level for most putative galliform genera confirms that the megapodes ('mound builders'; Megapodiidae) are the most basal clade within the order. They are followed successively by the curassows, guans and chachalacas (Cracidae), which comprise the sister-group to all other extant Galliformes (i.e. Phasianoidea). Within this large 'phasianoid' clade, analyses suggest that the guineafowl (Numididae) are the most basal taxon, although monophyly of this 'family' is not strictly supported on the basis of the morphological characters employed. An additional major clade within the phasianoid Galliformes is recovered by this analysis, comprising the traditional groupings of New World quails (Odontophoridae) and Old World quails ('Perdicini'), yet only monophyly of the former is supported unambiguously by morphological characters. Relationships within the remainder of the phasianoid taxa, including the grouse (Tetraonidae), turkeys (i.e. Meleagris / Agriocharus spp.) as well as other 'pavonine' galliforms (i.e. peafowl; Pavo , Afropavo , Rheinardia , Argusianus and Polyplectron spp.) remain largely unresolved on the basis of morphological characters, yet monophyly of the major subdivisions is supported here. Although there are a number of important differences, especially with regard to relationships within the nonquail phasianoids, the results of this morphological phylogenetic (cladistic) analysis are broadly congruent both with traditional classifications and existing molecular hypotheses of galliform phylogenetic relationships.  相似文献   

3.
Smith EJ  Shi L  Tu Z 《Genetica》2005,124(1):23-32
Mitochondrial DNA (mtDNA) sequences remain the most widely used for phylogenetic analysis in birds. A major limitation of mtDNA sequences, however, is that mitochondria genes are inherited as a single linkage group. Here we describe the use of a 540-bp DNA sequence corresponding to the G3 domain of Gallus gallus nuclear aggrecan gene (AGC1) for phylogenetic analysis of the main groups of Galliformes including Phasianidae, Numididae, and Odontophoridae. We also included species from Cracidae and Megapodiidae which are considered by some as Craciformes and others, including here as Galliformes. The uncorrected sequence divergence of the G3 fragments ranges from 1 among the grouses to 36% between some of the distant groups within Galliformes. These sequences contain 39–48% AT nucleotides and the ratios of transition versus transversion are above 1.5 in majority of the comparisons. Using G3 sequences from an Anseriform, Oxyura jamaicensis, as out-groups, phylogenetic trees were obtained using maximum parsimony and distance algorithms and bootstrap analyses. These trees were consistent with those described using Avian sarcoma and leucosis virus gag genes and those from amino acid sequences of hemoglobin and lysozyme c. Our data also support relationships among Galliformes which were defined using mtDNA sequences. In addition to the general support of the five main families of Galliformes, our data are also consistent with previous work that showed Francolinus africanus and Gallus gallus are in the same clade and that Tetraoninae is a well-supported monophyletic subfamily within Phasianidae. The results presented here suggest that the AGC1 sequences meet the criterion of novel nuclear DNA sequences that can be used to help resolve the relationships among Galliformes.  相似文献   

4.
A phylogenetic analysis of 123 morphological characters of basal waterfowl (Aves: Anseriformes) and other selected avian orders confirmed that the screamers (Anhimae: Anhitn-idae) are the sister-group of other waterfowl (Anseres), and that the magpie goose (Anseranatidae: Anseranas semipalmata) is the sister group of other modern waterfowl exclusive of screamers (Anatidae sensu stricto). The analysis also supports the traditional hypothesis of the gallinaceous birds (Galliformes) as the sister group of the Anseriformes. Presbyornis, a fossil from the early Eocene of Wyoming and averred by Olson & Feduccia as showing that the Anseriformes were derived from shorebirds (Charadriiformes), was found to represent the sister group of the Anatidae. Associated hypotheses by Olson & Feduccia concerning the implications of Presbyornis for the phylogenetic relationships of flamingos (Phoenicopteriformes), the position of the Anhimidae within the waterfowl, relationships among modern Anatidae, and a plausible evolutionary scenario for waterfowl also are rejected. Analyses revealed that cranial characters were critical to the establishment of the Galliformes as the sister group of the Anseriformes; exclusion of the Anhimidae, especially in combination with Anseranas, also undermined the support for this inference. Placement of Presbyornis as the sister group of the Anatidae casts doubt on the role suggested by Feduccia of ‘transitional shorebirds' in the origin of modern avian orders, and calls into question the concept of ‘fossil mosaics’. The phylogenetic hypothesis is used to reconstruct an evolutionary scenario for selected ecomorphological characters in the galliform-anseriform transition, to predict the most parsimonious states of these characters for Presbyornis, and to propose a phylogenetic classification of the higher-order taxa of waterfowl. This re-examination of Presbyornis also is used to exemplify the fundamental methodological shortcomings of the intuitive approach to the reconstruction of phylogenetic relationships.  相似文献   

5.
Most species of glaucosomatids (Teleostei: Glaucosomatidae) are endemic to Australia, except Glaucosoma buergeri that is widely distributed from Australia to Japan. This study elucidated phylogenetic relationships among glaucosomatids based on the morphological characters of the saccular‐otolith sagitta, in addition to molecular evidence of mitochondrial 16S rDNA, cytochrome oxidase I (COI) and cytochrome b (cyt b) sequences, and nuclear rhodopsin sequences. The topologies of individuals' phylogenetic trees, based on 16S rDNA, COI and cyt b sequences, were statistically indistinguishable from one another, and were only slightly different from a tree based on rhodopsin sequences. These molecular tree topologies, however, differed from species relationships in morphology‐based phylogenetic hypothesis proposed in previous studies. Specimens of G. buergeri from Australia and Taiwan showed differences in the sagitta and molecular differentiation at the four genes, suggesting a possible speciation event. Both molecular and morphological evidences indicate that Glaucosoma magnificum is the plesiomorphic sister species of other glaucosomatid species. Glaucosoma hebraicum is the sister species of a clade composed of G. buergeri and Glaucosoma scapulare. Molecular and morphological evidences also support the species status of G. hebraicum.  相似文献   

6.

Background

The New Zealand quail, Coturnix novaezealandiae, was widespread throughout New Zealand until its rapid extinction in the 1870''s. To date, confusion continues to exist concerning the identity of C. novaezealandiae and its phylogenetic relationship to Coturnix species in neighbouring Australia, two of which, C. ypsilophora and C. pectoralis, were introduced into New Zealand as game birds. The Australian brown quail, C. ypsilophora, was the only species thought to establish with current populations distributed mainly in the northern part of the North Island of New Zealand. Owing to the similarities between C. ypsilophora, C. pectoralis, and C. novaezealandiae, uncertainty has arisen over whether the New Zealand quail is indeed extinct, with suggestions that remnant populations of C. novaezealandiae may have survived on offshore islands.

Methodology/Principal Findings

Using fresh and historical samples of Coturnix sp. from New Zealand and Australia, DNA analysis of selected mitochondrial regions was carried out to determine phylogenetic relationships and species status. Results show that Coturnix sp. specimens from the New Zealand mainland and offshore island Tiritiri Matangi are not the New Zealand quail but are genetically identical to C. ypsilophora from Australia and can be classified as the same species. Furthermore, cytochrome b and COI barcoding analysis of the New Zealand quail and Australia''s C. pectoralis, often confused in museum collections, show that they are indeed separate species that diverged approximately 5 million years ago (mya). Gross morphological analysis of these birds suggests a parallel loss of sustained flight with very little change in other phenotypic characters such as plumage or skeletal structure.

Conclusion/Significance

Ancient DNA has proved invaluable for the detailed analysis and identification of extinct and morphologically cryptic taxa such as that of quail and can provide insights into the timing of evolutionary changes that influence morphology.  相似文献   

7.
The phylogeny of the New Zealand hepialid moths was estimated from a cladistic analysis of sixty‐three morphological characters, from all life cycle stages. One hundred and sixteen maximum parsimony trees were produced. The phylogenetic reconstruction indicated that the currently recognized generic concepts, and the four informal lineages hypothesized in a previous morphological taxonomic revision, were monophyletic. The relationships of species within genus Wiseana were not fully resolved. Analysis of a data set of thirty‐nine adult male characters from the New Zealand taxa and the Australian genera Jeana, Oxycanus and Trictena supported the monophyly of the New Zealand ‘Oxycanus’ s.s lineage.  相似文献   

8.
DNA-sequence analyses of avian haemosporidian parasites, primarily of passerine birds, have described the phylogenetic relationships of major groups of these parasites, which are in general agreement with morphological taxonomy. However, less attention has been paid to haemosporidian parasites of non-passerine birds despite morphological and DNA-sequence evidence for unique clades of parasites in these birds. Detection of haemosporidian parasites in the Galapagos archipelago has raised conservation concerns and prompted us to characterise the origins and diversity of these parasites in the Galapagos dove (Zenaida galapagoensis). We used partial mitochondrial cytochrome b (cyt b) and apicoplast caseinolytic protease C (ClpC) genes to develop a phylogenetic hypothesis of relationships of haemosporidian parasites infecting New World Columbiformes, paying special attention to those parasites infecting the endemic Galapagos dove. We identified a well-supported and diverse monophyletic clade of haemosporidian parasites unique to Columbiformes, which belong to the sub-genus Haemoproteus (Haemoproteus). This is a sister clade to all the Haemoproteus (Parahaemoproteus) and Plasmodium parasites so far identified from birds as well as the Plasmodium parasites of mammals and reptiles. Our data suggest that the diverse Haemoproteus parasites observed in Galapagos doves are not endemic to the archipelago and likely represent multiple recent introductions.  相似文献   

9.

Background  

The genus Algansea is one of the most representative freshwater fish groups in central Mexico due to its wide geographic distribution and unusual level of endemicity. Despite the small number of species, this genus has had an unsettled taxonomic history due to high levels of intraspecific morphological variation. Moreover, several phylogenetic hypotheses among congeners have been proposed but have had the following shortcomings: the use of homoplasious morphological characters, the use of character codification and polarisation methods that lacked objectivity, and incomplete taxonomic sampling. In this study, a phylogenetic analysis among species of Algansea is presented. This analysis is based upon two molecular markers, the mitochondrial gene cytochrome b and the first intron of the ribosomal protein S7 gene.  相似文献   

10.
Summary This communication examines the question of phylogenetic congruency- i.e., whether or not the branching order of evolutionary trees is independent of the protein studied. It was found that trees constructed for birds on the basis of immunological comparison of their transferrins, albumins, and ovalbumins agree approximately with a published tree based on the amino acid sequences of their lysozymesc. This congruency is especially noteworthy with respect to the phylogenetic position of the chachalaca, a Mexican bird classified on morphological grounds in the family Cracidae of the order Galliformes. At the protein level, this species differs as much from non-cracid galliform birds as does the duck, which belongs to another order. Despite the organismal similarity between cracid and non-cracid galliform birds, the molecular relationship is remote. If this contrast between organismal and molecular results had been based on comparative studies with only lysozyme, one could have ascribed the contrast to the possibility that chachalaca lysozyme was paralogous, rather than orthologous, to the other bird lysozymesc. Examination of several proteins is thus desirable in cases of possible paralogy.This work was supported in part by grants GB-42028X from NSF and GM-21509 from NIH  相似文献   

11.
Species of the braconid wasp genus Yelicones Cameron from North, Central and South America are revised and the first phylogenetic analysis of the world Yelicones fauna is presented. The results are considered from a biogeographical perspective and the effect of including and excluding colour characters is investigated. One hundred and twenty‐four species from throughout the world are recognised. Eighty‐five species are from the New World, 63 of which are new. A fully illustrated key to New World species is provided. A total of 116 characters were scored, of which 86 were morphological and 30 were based on the wasps’ colour pattern. All analyses show a near perfect diversion between New and Old World species. However, analyses excluding and including colour produced completely opposite results in terms of whether New or Old World species were basal. We found that in our data matrix colour characters performed at least as well as morphological characters in terms of their ensemble retention index, making it difficult to decide which phylogenetic hypotheses is correct. However, consideration of venom apparatus features leads us to prefer the hypotheses placing the New World taxa basally.  相似文献   

12.
To study the evolution of mtDNA and the intergeneric relationships of New World Jays (Aves: Corvidae), we sequenced the entire mitochondrial DNA control region (CR) from 21 species representing all genera of New World jays, an Old World jay, crows, and a magpie. Using maximum likelihood methods, we found that both the transition/transversion ratio (κ) and among site rate variation (α) were higher in flanking domains I and II than in the conserved central domain and that the frequency of indels was highest in domain II. Estimates of κ and α were much more influenced by the density of taxon sampling than by alternative optimal tree topologies. We implemented a successive approximation method incorporating these parameters into phylogenetic analysis. In addition we compared our study in detail to a previous study using cytochrome b and morphology to examine the effect of taxon sampling, evolutionary rates of genes, and combined data on tree resolution. We found that the particular weighting scheme used had no effect on tree topology and little effect on tree robustness. Taxon sampling had a significant effect on tree robustness but little effect on the topology of the best tree. The CR data set differed nonsignificantly from the tree derived from the cytochrome b/morphological data set primarily in the placement of the genus Gymnorhinus, which is near the base of the CR tree. However, contrary to conventional taxonomy, the CR data set suggested that blue and black jays (Cyanocorax sensu lato) might be paraphyletic and that the brown jay Psilorhinus (=Cyanocorax) morio is the sister group to magpie jays (Calocitta), a phylogenetic hypothesis that is likely as parsimonious with regard to nonmolecular characters as monophyly of Cyanocorax. The CR tree also suggests that the common ancestor of NWJs was likely a cooperative breeder. Consistent with recent systematic theory, our data suggest that DNA sequences with high substitution rates such as the CR may nonetheless be useful in reconstructing relatively deep phylogenetic nodes in avian groups. Received: 10 November 1999 / Accepted: 16 March 2000  相似文献   

13.
The woodcreepers is a highly specialized lineage within the New World suboscine radiation. Most systematic studies of higher level relationships of this group rely on morphological characters, and few studies utilizing molecular data exist. In this paper, we present a molecular phylogeny of the major lineages of woodcreepers (Aves: Dendrocolaptinae), based on nucleotide sequence data from a nuclear non-coding gene region (myoglobin intron II) and a protein-coding mitochondrial gene (cytochrome b ). A good topological agreement between the individual gene trees suggests that the resulting phylogeny reflects the true evolutionary history of woodcreepers well. However, the DNA-based phylogeny conflicts with the results of a parsimony analysis of morphological characters. The topological differences mainly concern the basal branches of the trees. The morphological data places the genus Drymornis in a basal position (mainly supported by characters in the hindlimb), while our data suggests it to be derived among woodcreepers. Unlike most other woodcreepers, Drymornis is ground-adapted, as are the ovenbirds. The observed morphological similarities between Drymornis and the ovenbird outgroup may thus be explained with convergence or with reversal to an ancestral state. This observation raises the question of the use of characters associated with locomotion and feeding in phylogenetic reconstruction based on parsimony.  相似文献   

14.
The Mustelidae is a diverse family of carnivores which includes weasels, polecats, mink, tayra, martens, otters, badgers and, according to some authors, skunks. Evolutionary relationships within the family are under debate at a number of different taxonomic levels, and incongruencies between molecular and morphological results are important. We analysed a total of 241 cytochrome b (cyt b) gene sequences and 33 sequences of a complex repetitive flanking region from 33 different species to compile an extensive molecular phylogeny for the Mustelidae. We analysed these sequences and constructed phylogenetic trees using Bayesian and neighbor‐joining methods that are evaluated to propose changes to the taxonomy of the family. The peripheral position of skunks in phylogenetic trees based on both loci suggests that they should be considered a separate family, Mephitidae. The subfamily Melinae is the basal group within the Mustelidae and trees based on the cyt b gene suggest that the American badger, Taxidea taxus, should be considered a separate monotypic subfamily, Taxidiinae. Otters classified within the genera Lutra, Amblonyx and Aonyx are grouped within the same clade in cyt b and combined partial cyt b and flanking region trees and show reduced levels of inter specific divergence, suggesting that they could be classified together under a single genus, Lutra. The Bayesian tree based on combined data from both loci supports the idea that subfamily Mustelinae is paraphyletic, as otters (subfamily Lutrinae) are included in this subfamily. Low levels of genetic divergence among European polecat, Mustela putorius, steppe polecat, Mustela eversmannii, and European mink, Mustela lutreola, suggest that these species could be considered subspecies within a single species, Mustela putorius. Our results are consistent with a rapid diversification of mustelid lineages in six different radiation episodes identified since the Early Eocene, the oldest events being the separation of subfamilies and the split of marten (Martes, Gulo) and weasel (Mustela) lineages in the Early Middle Miocene. The separation of New World from Old World lineages and the split of the remaining genera are estimated to have occurred in Late Miocene. The most recent events have been the differentiation of species within genera and this probably occurred in four radiation episodes at the end of Late Miocene, Early Pliocene, Late Pliocene and Pleistocene epochs.  相似文献   

15.
The phylogenetic relationships, biogeography and classification of, and morpho‐behavioral (M/B) evolution in, gamebirds (Aves: Galliformes) are investigated. In‐group taxa (rooted on representatives of the Anseriformes) include 158 species representing all suprageneric galliform taxa and 65 genera. The characters include 102 M/B attributes and 4452 nucleic acid base pairs from mitochondrial cytochrome b (CYT B), NADH dehydrogenase subunit 2 (ND2), 12S ribosomal DNA (12S) and control region (CR), and nuclear ovomucoid intron G (OVO‐G). Analysis of the combined character data set yielded a single, completely resolved cladogram that had the highest levels of jackknife support, which suggests a need for a revised classification for the phasianine galliforms. Adding 102 M/B characters to the combined CYT B and ND2 partitions (2184 characters) decisively overturns the topology suggested by analysis of the two mtDNA partitions alone, refuting the view that M/B characters should be excluded from phylogenetic analyses because of their relatively small number and putative character state ambiguity. Exclusion of the OVO‐G partition (with > 70% missing data) from the combined data set had no effect on cladistic structure, but slightly lowered jackknife support at several nodes. Exclusion of third positions of codons in an analysis of a CYT B + ND2 partition resulted in a massive loss of resolution and support, and even failed to recover the monophyly of the Galliformes with jackknife support. A combined analysis of putatively less informative, “non‐coding” characters (CYT B/ND2 third position sites + CR +12S + OVO‐G sequences) yielded a highly resolved consensus cladogram congruent with the combined‐evidence cladogram. Traditionally recognized suprageneric galliform taxa emerging in the combined cladogram are: the families Megapodiidae (megapodes), Cracidae (cracids), Numididae (guineafowls), Odontophoridae (New World quails) and Phasianidae (pheasants, pavonines, partridges, quails, francolins, spurfowls and grouse) and the subfamilies Cracinae (curassows, chachalacas and the horned guan), Penelopinae (remaining guans), Pavoninae sensu lato (peafowls, peacock pheasants and argus pheasants), Tetraoninae (grouse) and Phasianinae (pheasants minus Gallus). The monophyly of some traditional groupings (e.g., the perdicinae: partridges/quails/francolins) is rejected decisively, contrasted by the emergence of other unexpected groupings. The most remarkable phylogenetic results are the placement of endemic African galliforms as sisters to geographically far‐distant taxa in Asia and the Americas. Biogeographically, the combined‐data cladogram supports the hypothesis that basal lineages of galliforms diverged prior to the Cretaceous/Tertiary (K‐T) Event and that the subsequent cladogenesis was influenced by the break‐up of Gondwana. The evolution of gamebirds in Africa, Asia and the Americas has a far more complicated historical biogeography than suggested to date. With regard to character evolution: spurs appear to have evolved at least twice within the Galliformes; a relatively large number of tail feathers (≥ 14) at least three times; polygyny at least twice; and sexual dimorphism many times. © The Willi Hennig Society 2006.  相似文献   

16.
Members of the family Conopidae (Diptera) have been the focus of little targeted phylogenetic research. The most comprehensive test of phylogenetic support for the present subfamily classification of Conopidae is presented here using 66 specimens, including 59 species of Conopidae and seven outgroup taxa. Relationships among subfamily clades are also explored. A total of 6824 bp of DNA sequence data from five gene regions (12S ribosomal DNA, cytochrome c oxidase subunit I, cytochrome b, 28S ribosomal DNA and alanyl‐tRNA synthetase) are combined with 111 morphological characters in a combined analysis using both parsimony and Bayesian methods. Parsimony analysis recovers three shortest trees. Bayesian analysis recovers a nearly identical tree. Five monophyletic subfamilies of Conopidae are recovered. The rarely acknowledged Zodioninae is restored, including the genera Zodion and Parazodion. The genus Sicus is removed from Myopinae. Morphological synapomorphies are discussed for each subfamily and inter‐subfamily clade, including a comprehensive review of the character interpretaions of previous authors. Included are detailed comparative illustrations of male and female genitalia of representatives of all five subfamilies with new morphological interpretation.  相似文献   

17.
Complete sequences of cytochrome b (1,137 bases) and 12S ribosomal RNA (961 bases) genes in mitochondrial DNA were successfully determined from the woolly mammoth (Mammuthus primigenius), African elephant (Loxodonta africana), and Asian elephant (Elephas maximus). From these sequence data, phylogenetic relationships among three genera were examined. Molecular phylogenetic trees reconstructed by the neighbor-joining and the maximum parsimony methods provided an identical topology both for cytochrome b and 12S rRNA genes. These results support the ``Mammuthus-Loxodonta' clade, which is contrary to some previous morphological reports that Mammuthus is more closely related to Elephas than to Loxodonta. Received: 8 April 1997 / Accepted: 23 July 1997  相似文献   

18.
19.
Eleven species of catfish (Siluriformes) found in Korean freshwater are economically important resources and include five endemic species. However, there are no studies on phylogenetic analysis of all catfish species in Korea at a molecular level. The species-level analysis of catfish species is usually carried out through morphological characters and controversial due to phenotypic variation. In this study, the partial sequences of 16S rRNA and cytochrome b mitochondrial genes were analyzed for species identification and phylogenetic relationships among 11 species of catfish from 10 different rivers in Korea. The nucleotide sequences of 16S rRNA and cytochrome b consisted of 587 and 441 nucleotide base pairs, respectively. Sequence analysis of both genes revealed that the 11 species fell into three distinct groups, which were genetically distinct from each other and exhibited identical phylogenetic resolution. Sequence divergences between congeneric species averaged 1.78% and 7.39% for 16S rRNA and cytochrome b, respectively. The phylogenetic relationships forming well-differentiated clades in the NJ, ML and BI trees were identical for both fragments. This research demonstrates that partial sequences of both the genes can efficiently identify the 11 species of catfish in Korea, indicating the usefulness of mtDNA-based approach in species identification.  相似文献   

20.
Coturnix chinensis (blue-breasted quail) has been classically grouped in Galliformes Phasianidae Coturnix, based on morphologic features and biochemical evidence. Since the blue-breasted quail has the smallest body size among the species of Galliformes, in addition to a short generation time and an excellent reproductive performance, it is a possible model fowl for breeding and physiological studies of the Coturnix japonica (Japanese quail) and Gallus gallus domesticus (chicken), which are classified in the same family as blue-breasted quail. However, since its phylogenetic position in the family Phasianidae has not been determined conclusively, the sequence of the entire blue-breasted quail mitochondria (mt) genome was obtained to provide genetic information for phylogenetic analysis in the present study. The blue-breasted quail mtDNA was found to be a circular DNA of 16,687 base pairs (bp) with the same genomic structure as the mtDNAs of Japanese quail and chicken, though it is smaller than Japanese quail and chicken mtDNAs by 10 bp and 88 bp, respectively. The sequence identity of all mitochondrial genes, including those for 12S and 16S ribosomal RNAs, between blue-breasted quail and Japanese quail ranged from 84.5% to 93.5%; between blue-breasted quail and chicken, sequence identity ranged from 78.0% to 89.6%. In order to obtain information on the phylogenetic position of blue-breasted quail in Galliformes Phasianidae, the 2,184 bp sequence comprising NADH dehydrogenase subunit 2 and cytochrome b genes available for eight species in Galliformes [Japanese quail, chicken, Gallus varius (green junglefowl), Bambusicola thoracica (Chinese bamboo partridge), Pavo cristatus (Indian peafowl), Perdix perdix (gray partridge), Phasianus colchicus (ring-neck pheasant), and Tympanchus phasianellus (sharp-tailed grouse)] together with that of Aythya americana (redhead) were examined using a maximum likelihood (ML) method. The ML analyses on the first/second codon positions, the third codon positions, and amino acid sequence consistently demonstrated that blue-breasted quail and Japanese quail are in the same phylogenetic cluster.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号