共查询到20条相似文献,搜索用时 0 毫秒
1.
Milgrom C Radeva-Petrova DR Finestone A Nyska M Mendelson S Benjuya N Simkin A Burr D 《Journal of biomechanics》2007,40(4):845-850
Stress fracture is a common musculoskeletal problem affecting athletes and soldiers. Repetitive high bone strains and strain rates are considered to be its etiology. The strain level necessary to cause fatigue failure of bone ex vivo is higher than the strains recorded in humans during vigorous physical activity. We hypothesized that during fatiguing exercises, bone strains may increase and reach levels exceeding those measured in the non-fatigued state. To test this hypothesis, we measured in vivo tibial strains, the maximum gastrocnemius isokinetic torque and ground reaction forces in four subjects before and after two fatiguing levels of exercise: a 2km run and a 30km desert march. Strains were measured using strain-gauged staples inserted percutaneously in the medial aspect of their mid-tibial diaphysis. There was a decrease in the peak gastrocnemius isokinetic torque of all four subjects' post-march as compared to pre-run (p=0.0001), indicating the presence of gastrocnemius muscle fatigue. Tension strains increased 26% post-run (p=0.002, 95 % confidence interval (CI) and 29% post-march (p=0.0002, 95% CI) as compared to the pre-run phase. Tension strain rates increased 13% post-run (p=0.001, 95% CI) and 11% post-march (p=0.009, 95% CI) and the compression strain rates increased 9% post-run (p=0.0004, 95% CI) and 17% post-march (p=0.0001, 95% CI). The fatigue state increases bone strains well above those recorded in rested individuals and may be a major factor in the stress fracture etiology. 相似文献
2.
Physiological tremor is an inherent feature of the motor system that is influenced by intrinsic (neuromuscular) and/or extrinsic (task) factors. Given that tremor must be accounted for during the performance of many fine motor skills; there is a requirement to clarify how different factors interact to influence tremor. This study was designed to assess the impact localized fatigue of a single arm and stance position had on bilateral physiological tremor and forearm muscle activity. Results demonstrated that unilateral fatigue produced bilateral increases in tremor and wrist extensor activity. For example, fatigue resulted in increases in extensor activity across both exercised (increased 8–10% MVC) and the non-exercised arm (increased 3–7% MVC). The impact of fatigue was not restricted to changes in tremor/EMG amplitude, with altered hand–finger coupling observed within both arms. Within the exercised arm, cross-correlation values decreased (pre-exercise r = 0.62–0.64; post-exercise r = 0.37–0.43) while coupling increased within the non-exercised arm (pre-exercise r = 0.51–0.55; post-exercise r = 0.62–0.67). While standing posture alone had no significant impact on tremor/EMG dynamics, the tremor and muscle increases seen with fatigue were more pronounced when standing. Together these results demonstrate that the combination of postural and fatigue factors can influence both tremor/EMG outputs and the underlying coordinative coupling dynamics. 相似文献
3.
Miyoshi T Sato T Sekiguchi H Yamanaka K Miyazaki M Igawa S Komeda T Nakazawa K Yano H 《Journal of gravitational physiology : a journal of the International Society for Gravitational Physiology》2001,8(1):P85-P86
It has been well known that balance instabilities after long-term exposure to microgravity (e.g., Anderson et al. 1986) or bedrest (BR) can be related to alterations and/or adaptations to postural control strategies. Little is known, however, how the reduced muscular activity affects the activation pattern of the lower limb muscles during quiet standing (QS). The purpose of this study was to investigate whether or not any changes in the lower limb muscle activation patterns during QS would occur after BR. 相似文献
4.
García-Vaquero MP Moreside JM Brontons-Gil E Peco-González N Vera-Garcia FJ 《Journal of electromyography and kinesiology》2012,22(3):398-406
The aim of this study was to analyze trunk muscle activity during bridge style stabilization exercises, when combined with single and double leg support strategies. Twenty-nine healthy volunteers performed bridge exercises in 3 different positions (back, front and side bridges), with and without an elevated leg, and a quadruped exercise with contralateral arm and leg raise ("bird-dog"). Surface EMG was bilaterally recorded from rectus abdominis (RA), external and internal oblique (EO, IO), and erector spinae (ES). Back, front and side bridges primarily activated the ES (approximately 17% MVC), RA (approximately 30% MVC) and muscles required to support the lateral moment (mostly obliques), respectively. Compared with conventional bridge exercises, single leg support produced higher levels of trunk activation, predominantly in the oblique muscles. The bird-dog exercise produced greatest activity in IO on the side of the elevated arm and in the contralateral ES. In conclusion, during a common bridge with double leg support, the antigravity muscles were the most active. When performed with an elevated leg, however, rotation torques increased the activation of the trunk rotators, especially IO. This information may be useful for clinicians and rehabilitation specialists in determining appropriate exercise progression for the trunk stabilizers. 相似文献
5.
The effect of acid-base balance on fatigue of skeletal muscle 总被引:5,自引:0,他引:5
H+ ions are generated rapidly when muscles are maximally activated. This results in an intracellular proton load. Typical proton loads in active muscles reach a level of 20-25 mumol X g-1, resulting in a fall in intracellular pH of 0.3-0.5 units in mammalian muscle and 0.6-0.8 units in frog muscle. In isolated frog muscles stimulated to fatigue a proton load of this magnitude is developed, and at the same time maximum isometric force is suppressed by 70-80%. Proton loss is slowed when external pH is kept low. This is paralleled by a slow recovery of contractile tension and seems to support the idea that suppression results from intracellular acidosis. Nonfatigued muscles subjected to similar intracellular proton loads by high CO2 levels show a suppression of maximal tension by only about 30%. This indicates that only a part of the suppression during fatigue is normally due to the direct effect of intracellular acidosis. Further evidence for a component of fatigue that is not due to intracellular acidosis is provided by the fact that some muscle preparations (rat diaphragm) can be fatigued with very little lactate accumulation and very low proton loads. Even under these conditions, a low external pH (6.2) can slow recovery of tension development 10-fold compared with normal pH (7.4). We must conclude that there are at least two components to fatigue. One, due to a direct effect of intracellular acidosis, acting directly on the myofibrils, accounts for a part of the suppression of contractile force. A second, which in many cases may be the major component, is not dependent on intracellular acidosis. This component seems to be due to a change of state in one or more of the steps of the excitation-contraction coupling process. Reversal of this state is sensitive to external pH which suggests that this component is accessible from the outside of the cell. 相似文献
6.
Gimmon Y Riemer R Oddsson L Melzer I 《Journal of electromyography and kinesiology》2011,21(6):922-928
Objective
Previous studies have demonstrated that ankle muscle fatigue alters postural sway. Our aim was to better understand postural control mechanisms during upright stance following plantar flexor fatigue.Method
Ten healthy young volunteers, 25.7 ± 2.2 years old, were recruited. Foot center-of-pressure (CoP) displacement data were collected during narrow base upright stance and eyes closed (i.e. blindfolded) conditions. Subjects were instructed to stand upright and as still as possible on a force platform under five test conditions: (1) non-fatigue standing on firm surface; (2) non-fatigue standing on foam; (3) ankle plantar flexor fatigue, standing on firm surface; (4) ankle plantar flexor fatigue, standing on foam; and (5) upper limb fatigue, standing on firm surface. An average of the ten 30-s trials in each of five test conditions was calculated to assess the mean differences between the trials. Traditional measures of postural stability and stabilogram-diffusion analysis (SDA) parameters were analyzed.Results
Traditional center of pressure parameters were affected by plantar flexor fatigue, especially in the AP direction. For the SDA parameters, plantar flexor fatigue caused significantly higher short-term diffusion coefficients, and critical displacement in both mediolateral (ML) and anteroposterior (AP) directions. Long-term postural sway was different only in the AP direction.Conclusions
Localized plantar flexor fatigue caused impairment to postural control mainly in the Sagittal plane. The findings indicate that postural corrections, on average, occurred at a higher threshold of sway during plantar flexor fatigue compared to non-fatigue conditions. 相似文献7.
David W Russ Krista Vandenborne Glenn A Walter Mark Elliott Stuart A Binder-Macleod 《Journal of applied physiology》2002,92(5):1978-1986
Increasing stimulation frequency has been shown to increase fatigue but not when the changes in force associated with changes in frequency have been controlled. An effect of frequency, independent of force, may be associated with the metabolic cost resulting from the additional activations. Here, two separate experiments were performed on human medial gastrocnemius muscles. The first experiment (n = 8) was designed to test the effect of the number of pulses on fatigue. The declines in force during two repetitive, 150-train stimulation protocols that produced equal initial forces, one using 80-Hz trains and the other using 100-Hz trains, were compared. Despite a difference of 600 pulses (23.5%), the protocols produced similar rates and amounts of fatigue. In the second experiment, designed to test the effect of the number of pulses on the metabolic cost of contraction, 31P-NMR spectra were collected (n = 6) during two ischemic, eight-train stimulation protocols (80- and 100-Hz) that produced comparable forces despite a difference of 320 pulses (24.8%). No differences were found in the changes in P(i) concentration, phosphocreatine concentration, and intracellular pH or in the ATP turnover produced by the two trains. These results suggest that the effect of stimulation frequency on fatigue is related to the force produced, rather than to the number of activations. In addition, within the range of frequencies tested, increasing total activations did not increase metabolic cost. 相似文献
8.
Antonis P Stylianou Carl W Luchies David E Lerner Gregory W King 《Journal of electromyography and kinesiology》2005,15(5):437-443
Innovative applications of non-linear time series analysis have recently been used to investigate physiological phenomena. In this study, we investigated the feasibility of using the correlation integral to monitor the localized muscle fatigue process in the biceps brachii during sustained maximal efforts. The subjects performed isometric maximum contractions until failure in elbow flexion (90 degrees from neutral). The median and the 70th percentile frequency of the Surface electromyography (SEMG) power spectrum, the integrated SEMG, and the Correlation Integral (CI) were evaluated during the trials. The linear correlation between these variables and the elbow torque production was used to quantify the ability of a parameter to follow the fatiguing process. The CI had the highest linear correlation with torque (0.77 (0.12SD)), while the spectral indices correlations with torque were much lower. The decreasing trend of the torque production was followed by the spectral indices for only the beginning part of the contraction, while the CI increased sharply after the torque production fell to about 0.60 of the MVC. This suggests that the CI is sensitive to different changes of the SEMG signal during fatigue than the spectral variables. 相似文献
9.
G Serra M Manca V Tugnoli M C Cristofori M Bottoni R Eleopra 《Bollettino della Società italiana di biologia sperimentale》1984,60(5):1013-1017
Muscular fatigue is a biological situation which is very difficult to quantify. The Authors studied through a computer analysis the power spectrum of electromyogram, recorded from abductor digiti minimi muscle during maximal and minimal contraction effort before and after fatigue and after muscle prolonged relaxation in 8 normal subjects. No significant spectrum differences were found between maximal and minimal effort in each trial, and between the spectra obtained before fatigue and after muscle prolonged relaxation. On the contrary significant differences were found between the spectra obtained after fatigue and the other conditions. The power spectrum analysis appears, also, to be a reliable neurophysiological parameter for the study of biological aspects of muscular fatigue. 相似文献
10.
11.
Lyons M Al-Nakeeb Y Nevill A 《Journal of strength and conditioning research / National Strength & Conditioning Association》2006,20(1):197-202
Despite the acknowledged importance of fatigue on performance, ecologically sound studies investigating fatigue and its effects on sport-specific skills are surprisingly limited. The aim of this study was to investigate the effects of moderate and high-intensity localized muscle fatigue on passing performance in soccer. Twenty physically active male college students (age, 22.9 +/- 5.3 years) participated in this study. Subjects performed the modified Loughborough Soccer Passing Test under the following three conditions: rest, moderate fatigue, and high-intensity fatigue. Fatigue intensity was established using a percentage of the maximal number of alternate split squats performed by the subject in 1 minute. Results revealed a significant difference between performance at rest and performance following high-intensity, localized muscle fatigue. The results suggest the need for trainers and coaches to incorporate high-intensity exercise drills into training plans to help players better cope with the demands of the game on the pitch. 相似文献
12.
The influence of force and circulation on average muscle fibre conduction velocity during local muscle fatigue 总被引:3,自引:0,他引:3
M J Zwarts L Arendt-Nielsen 《European journal of applied physiology and occupational physiology》1988,58(3):278-283
Two series of experiments were performed to examine the relationship between force and change in average muscle fibre conduction velocity (MFCV) during local muscle fatigue. The average MFCV was estimated using the cross-correlation method. In the first experiment this relationship was studied with surface EMG of vastus lateralis at force levels from 10 to 100% of maximal voluntary contraction (MVC) with and without occluded circulation. The product of relative force and time was held constant. At 10-20% MVC, MFCV increased slightly under the 2 conditions. Between 30-40% MVC, MFCV decreased, this decline in conduction velocity being significantly greater with occluded circulation. Above 40% MVC the decline in MFCV was larger at higher forces, but without any differences between the ischaemic and non-ischaemic conditions. In the second experiment the relationship between change in force and MFCV was studied during sustained maximal voluntary contractions of biceps brachii. MFCV declined during the first 26-39 s of the contraction, followed by an increase. Since this increase occurred when the force had dropped to 30-50% of the initial maximal force, a partial restoration of blood flow is thought to be responsible for this phenomenon. Because an increase in MFCV was noted, despite a further decline in force, this implies that at high force levels the change in MFCV during fatigue could partly be caused by mechanisms different from those accounting for the force loss. It is concluded that above 40% MVC intramuscular pressure is sufficiently high to cause ischaemia, and MFCV is found to be very sensitive to changes in intramuscular blood flow. 相似文献
13.
Brown S Kilding AE 《Journal of strength and conditioning research / National Strength & Conditioning Association》2011,25(5):1204-1209
Exercise-induced inspiratory muscle fatigue (IMF) has been quantified for several sports. However, it is not yet known if, or to what extent, IMF is determined by the competition distance. The aim of the present study was to assess the influence of 3 different competitive front-crawl swimming race distances on the magnitude of IMF. Ten well-trained swimmers from a local swim team participated in the study and on separate days completed maximal 100-, 200-, and 400-m time trials (TTs). Before and after each trial, maximal inspiratory pressure (MIP) was measured and %IMF determined from pre- and post-time-trial differences in MIP. The heart rate (HR) and rate of perceived dyspnea (RPD) was also assessed. For all distances, posttrial MIP was lower than pretrial MIP, though this was only significant for 100 m (p < 0.05). There were no differences between distances for absolute posttrial MIP. The %IMF after the 100-m TT (8.2 ± 4.1%) was, however, significantly greater than the 400 m (4.9 ± 3.8%) TT (p < 0.05) but not 200-m TT. There were no differences between trials for HR or RPD (p > 0.05). There were no relationships between %IMF and mean pretrial MIP (r = -0.28, p > 0.05) or between %IMF and time for any TT (100 m, r = 0.25; 200 m, r = 0.34; 400 m r = 0.18; p > 0.05). The lack of difference between trials for posttrial absolute MIP suggests that race distance during swimming does not substantially influence the degree of IMF. 相似文献
14.
The rise time of an isometric twitch, the tetanic tension, the twitch tetanus ratio, the frequency-tension relationship, and the height of the MUAP (motor unit action potential) were measured in fast twitch (medial gastrocnemius) and slow twitch (soleus) muscles of the cat immediately before, in the middle, and immediately after fatiguing isometric contractions at tensions of 30, 50 and 80% of each muscle's initial strength (tetanic tension recorded from the unfatigued muscle). Although the twitch-tetanus ratio was always less for the soleus than for the medial gastrocnemius muscles, the twitch-tetanus ratio for any one muscle was constant throughout the duration of fatiguing isometric contractions at any of the tensions examined. In contrast, the twitch tension and tetanic tension of the muscles were both less after the contractions, the largest reduction occurring for both muscles during contractions sustained at the lowest isometric tensions. The time to peak tension of an isometric twitch was prolonged for both muscles following the contractions. This was associated with a corresponding shift in the frequency tension relationship such that at the point of muscular fatigue, the muscles tetanized at lower frequencies of stimulation than did the unfatigued muscle. In contrast, the amplitude of the MUAP showed only a modest reduction throughout the duration of the fatiguing contractions. 相似文献
15.
Kyle T. Ebersole Terry J. Housh Glen O. Johnson Tammy K. Evetovich Douglas B. Smith Sharon R. Perry 《European journal of applied physiology and occupational physiology》1998,78(3):264-269
The purpose of this investigation was to examine the effect of leg flexion angle on the relationship between mechanomyographic
(MMG) amplitude and isometric torque production. Adult males (n = 9) performed isometric muscle actions of the leg extensors at 25, 50, 75, and 100 percent maximal voluntary contraction
(%MVC) on a calibrated CYBEX 6000 dynamometer at 25, 50, and 75° below full extension. A piezoelectric MMG recording device
was placed over the mid-portion of the rectus femoris. At 25° of leg flexion, the MMG amplitude increased to 100%MVC. At 50
and 75° of leg flexion, however, MMG amplitude increased to 75%MVC, and then did not change significantly (P > 0.05) between 75 and 100%MVC. These findings indicate that the MMG amplitude-isometric torque relationship is joint angle
specific and may be the result of leg flexion angle differences in: (1) muscle stiffness, or (2) motor unit activation strategies.
Accepted: 2 March 1998 相似文献
16.
Energy metabolism and fatigue during intense muscle contraction 总被引:5,自引:0,他引:5
17.
A dynamical model is presented as a framework for muscle activation, fatigue, and recovery. By describing the effects of muscle fatigue and recovery in terms of two phenomenological parameters (F, R), we develop a set of dynamical equations to describe the behavior of muscles as a group of motor units activated by voluntary effort. This model provides a macroscopic view for understanding biophysical mechanisms of voluntary drive, fatigue effect, and recovery in stimulating, limiting, and modulating the force output from muscles. The model is investigated under the condition in which brain effort is assumed to be constant. Experimental validation of the model is performed by fitting force data measured from healthy human subjects during a 3-min sustained maximal voluntary handgrip contraction. The experimental results confirm a theoretical inference from the model regarding the possibility of maximal muscle force production, and suggest that only 97% of the true maximal force can be reached under maximal voluntary effort, assuming that all motor units can be recruited voluntarily. The effects of different motor unit types, time-dependent brain effort, sources of artifacts, and other factors that could affect the model are discussed. The applications of the model are also discussed. 相似文献
18.
Cytotoxic T lymphocyte (CTL) responses are thought to be important for the control of many viral and other infections. Qualitative aspects of the CTL response, including the epitope specificity, affinity, and clonal composition, may affect the ability of T cells to mediate infection control. Although it is clear that the mode of introduction and the dose of antigen can affect these qualitative aspects of the response, little is understood of the mechanisms. We have developed an in silico model of the CTL response, which we use to study the impact of antigen dose, antigen kinetics and repeated antigen delivery on the response. The results suggest that recent observations on differences in response to killed antigen can be explained simply by differences in timing of T-cell activation. These findings may provide insight into how different vaccination strategies can quantitatively and qualitatively affect the outcome of the immune response. 相似文献
19.
Post-traumatic knee osteochondral injuries are often coupled with anterior cruciate ligament (ACL) injury mechanisms during landing. However, it is not well understood whether restraining axial tibial rotation during landing would influence the extent and distribution of osteochondral disruption. Using ski landing as an example, this study subjected knee specimens to simulated landing impact without and with axial tibial rotation restraint, and investigated the extent and distribution of osteochondral disruption at the tibial plateau. Twenty-one porcine knee specimens were randomly divided into three test conditions, namely: (1) control, (2) impact only (I), and 3) impact with restraint (IR). Simulated landing impact was applied to the specimens based on a single 10 Hz haversine. Osteochondral explants were obtained from anterior, middle and posterior regions of medial and lateral tibial compartments. The extent of cartilage and trabecular disruption in these explants was examined based on histology, SEM and microCT. Only specimens in unrestrained condition incurred ACL failure upon impact. Restraining axial tibial rotation during simulated impact generally inflicted cartilage damage and deformation, and further caused trabecular disruption. Axial tibial rotation restraint did not necessarily restrict anterior tibial translation, as indicated by the presence of relative posterior femoral translation and osteochondral disruption at anterior–posterior tibial regions. While the results obtained in the current study may not be completely translatable to human models, there is likelihood that restraining axial tibial rotation during landing may help to prevent ACL failure, but will also induce osteochondral disruption in most tibial regions. 相似文献
20.
Christian J. Barton Julia A. Coyle Paul Tinley 《Journal of electromyography and kinesiology》2009,19(4):598-606
Heel lifts are a treatment option for low back pain (LBP), whilst high-heeled shoes have been linked to LBP development. This study evaluated the effects of in-shoe 20 mm high bilateral heel lifts on trunk muscle activity. Activity of the erector spinae (ErSp), internal oblique and external oblique muscles was evaluated using surface electromyography in 15 young (20.7 ± 0.9 years) healthy female participants. Measures were taken during overground gait, both immediately and following two days habituation to the heel lifts. Immediately following the addition of the heel lifts, levels of ErSp muscle activity in the 5% epoch following heel strike increased by 19.2% (p < 0.05). Following habituation, levels of ErSp muscle activity in the 5% epoch prior to heel strike increased by 24.1% (p < 0.05), and a 14 ms (p < 0.001) earlier onset of ErSp muscle activity prior to heel strike was observed. These results indicate the heel lifts altered muscle activity reactively around heel strike (i.e. greater activity after heel strike) immediately after application and proactively (i.e. earlier onsets and greater activity prior to heel strike) after short term habituation. When put in context of previous research on trunk muscle activity in LBP populations, these changes may be important considerations for the aetiology, treatment and prevention of LBP. 相似文献