首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tissue factor pathway inhibitor (TFPI) produced by endothelial cells contains sulfated Asn-linked oligosaccharides. We have determined that greater than 70% of the oligosaccharides on recombinant TFPI expressed in 293 cells terminate with the sequence SO4-4GalNAc beta 1, 4GlcNAc beta 1, 2Man alpha. Oligosaccharides terminating with this sequence have previously been described on lutropin, thyrotropin, and pro-opiomelanocortin: glycoproteins synthesized in the anterior pituitary. A GalNAc-transferase that recognizes the tripeptide motif Pro-Xaa-Arg/Lys 6-9 residues N-terminal to Asn glycosylation sites accounts for the specific addition of GalNAc to the oligosaccharide acceptor on these glycoproteins, whereas a GalNAc beta 1,4GlcNAc beta 1, 2Man alpha-4-sulfotransferase accounts for the addition of sulfate. The sulfated oligosaccharides present on these hormones are responsible for their rapid clearance from plasma by a receptor in hepatic reticuloendothelial cells. GalNAc- and sulfotransferase activities with the same properties as those expressed in the pituitary are detected at high levels in 293 cells and at lower levels in endothelial cells. Chinese hamster ovary (CHO) cells do not contain detectable levels of either transferase and rTFPI expressed in CHO cells does not contain sulfated Asn-linked oligosaccharides. TFPI contains the sequence Pro-Phe-Lys, 9 residues N-terminal to the glycosylation site at position 228; this tripeptide may act as the recognition sequence for the GalNAc-transferase. rTFPI produced by 293 cells, but not that produced by CHO cells, is bound by the receptor on hepatic reticuloendothelial cells suggesting the sulfated structures play a role in the biologic behavior of TFPI.  相似文献   

2.
The specificity of GalNAc-transferase is consistent with the existence of an extended site composed of nine subsites, denoted by R4, R3, R2, R1, R0, R1', R2', R3', and R4', where the acceptor at R0 is either Ser or Thr to which the reducing monosaccharide is being anchored. To predict whether a peptide will react with the enzyme to form a Ser- or Thr-conjugated glycopeptide, a new method has been proposed based on the vector-projection approach as well as the sequence-coupled principle. By incorporating the sequence-coupled effect among the subsites, the interaction mechanism among subsites during glycosylation can be reflected and, by using the vector projection approach, arbitrary assignment for insufficient experimental data can be avoided. The very high ratio of correct predictions versus total predictions for the data in both the training and the testing sets indicates that the method is self-consistent and efficient. It provides a rapid means for predicting O-glycosylation and designing effective inhibitors of GalNAc-transferase, which might be useful for targeting drugs to specific sites in the body and for enzyme replacement therapy for the treatment of genetic disorders.  相似文献   

3.
The completed fruit fly genome was found to contain up to 15 putative UDP-N-acetyl-alpha-d-galactosamine:polypeptide N-acetylgalactosaminyltransferase (GalNAc-transferase) genes. Phylogenetic analysis of the putative catalytic domains of the large GalNAc-transferase enzyme families of Drosophila melanogaster (13 available), Caenorhabditis elegans (9 genes), and mammals (12 genes) indicated that distinct subfamilies of orthologous genes are conserved in each species. In support of this hypothesis, we provide evidence that distinctive functional properties of Drosophila and human GalNAc-transferase isoforms were exhibited by evolutionarily conserved members of two subfamilies (dGalNAc-T1 (l(2)35Aa) and GalNAc-T11; dGalNAc-T2 (CG6394) and GalNAc-T7). dGalNAc-T1 and novel human GalNAc-T11 were shown to encode functional GalNAc-transferases with the same polypeptide acceptor substrate specificity, and dGalNAc-T2 was shown to encode a GalNAc-transferase with similar GalNAc glycopeptide substrate specificity as GalNAc-T7. Previous data suggested that the putative GalNAc-transferase encoded by l(2)35Aa had a lethal phenotype (Flores, C., and Engels, W. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 2964-2969), and this was substantiated by sequencing of three lethal alleles l(2)35Aa(HG8), l(2)35Aa(SF12), and l(2)35Aa(SF32). The finding that subfamilies of GalNAc-transferases with distinct catalytic functions are evolutionarily conserved stresses that GalNAc-transferase isoforms may serve unique biological functions rather than providing functional redundancy, and this is further supported by the lethal phenotype of l(2)35Aa.  相似文献   

4.
We measured the activities of alpha-1,3-mannosyl-glycoprotein beta-1,2-N-acetylglucosaminyltransferase, alpha-1,6-mannosyl-glycoprotein beta-1,2-N-acetylglucosaminyltransferase, beta-1,4-mannosyl-glycoprotein beta-1,2-xylosyltransferase and glycoprotein 3-alpha-L-fucosyltransferase in the Golgi fraction of suspension-cultured cells of sycamore (Acer pseudoplatanus L.) using fluorescence-labelled oligosaccharides as acceptor substrates for these transferase reactions. The structures of the pyridylaminated oligosaccharides produced by these reactions were analyzed by two-dimensional sugar mapping using high-performance liquid chromatography. We demonstrated that (formula; see text) was processed to produce by these in vitro reactions. On the basis of these results, we discuss a biosynthetic pathway for xylose containing N-linked oligosaccharides in plant glycoproteins.  相似文献   

5.
Initiation of mucin-type O-glycosylation is controlled by a large family of UDP GalNAc:polypeptide N-acetylgalactosaminyltransferases (GalNAc-transferases). Most GalNAc-transferases contain a ricin-like lectin domain in the C-terminal end, which may confer GalNAc-glycopeptide substrate specificity to the enzyme. We have previously shown that the lectin domain of GalNAc-T4 modulates its substrate specificity to enable unique GalNAc-glycopeptide specificities and that this effect is selectively inhibitable by GalNAc; however, direct evidence of carbohydrate binding of GalNAc-transferase lectins has not been previously presented. Here, we report the direct carbohydrate binding of two GalNAc-transferase lectin domains, GalNAc-T4 and GalNAc-T2, representing isoforms reported to have distinct glycopeptide activity (GalNAc-T4) and isoforms without apparent distinct GalNAc-glycopeptide specificity (GalNAc-T2). Both lectins exhibited specificity for binding of free GalNAc. Kinetic and time-course analysis of GalNAc-T2 demonstrated that the lectin domain did not affect transfer to initial glycosylation sites, but selectively modulated velocity of transfer to subsequent sites and affected the number of acceptor sites utilized. The results suggest that GalNAc-transferase lectins serve to modulate the kinetic properties of the enzymes in the late stages of the initiation process of O-glycosylation to accomplish dense or complete O-glycan occupancy.  相似文献   

6.
The synthesis of an europium tris-bipyridine cryptate labeled 2'-deoxyuridine-5 '-triphosphate analog (K-11-dUTP) is described. This labeled triphosphate was incorporated into DNA through enzymatic reactions with terminal transferase and DNA polymerases. The enzymatic reactions were monitored by TRACE (Time Resolved Amplification of Cryptate Emission), a homogeneous method using Fluorescence Resonance Energy Transfer (FRET) from an europium cryptate as donor to a modified allophycocyanine as acceptor.  相似文献   

7.
Abstract

The synthesis of an europium tris-bipyridine cryptate labeled 2′-deoxyuridine-5′-triphosphate analog (K-11-dUTP) is described. This labeled triphosphate was incorporated into DNA through enzymatic reactions with terminal transferase and DNA polymerases. The enzymatic reactions were monitored by TRACE (Time Resolved Amplification of Cryptate Emission), a homogeneous method using Fluorescence Resonance Energy Transfer (FRET) from an europium cryptate as donor to a modified allophycocyanine as acceptor.  相似文献   

8.
beta1,4-Galactosyltransferase I (Gal-T1) normally transfers Gal from UDP-Gal to GlcNAc in the presence of Mn(2+) ion. In the presence of alpha-lactalbumin (LA), the Gal acceptor specificity is altered from GlcNAc to Glc. Gal-T1 also transfers GalNAc from UDP-GalNAc to GlcNAc, but with only approximately 0.1% of Gal-T activity. To understand this low GalNAc-transferase activity, we have carried out the crystal structure analysis of the Gal-T1.LA complex with UDP-GalNAc at 2.1-A resolution. The crystal structure reveals that the UDP-GalNAc binding to Gal-T1 is similar to the binding of UDP-Gal to Gal-T1, except for an additional hydrogen bond formed between the N-acetyl group of GalNAc moiety with the Tyr-289 side chain hydroxyl group. Elimination of this additional hydrogen bond by mutating Tyr-289 residue to Leu, Ile, or Asn enhances the GalNAc-transferase activity. Although all three mutants exhibit enhanced GalNAc-transferase activity, the mutant Y289L exhibits GalNAc-transferase activity that is nearly 100% of its Gal-T activity, even while completely retaining its Gal-T activity. The steady state kinetic analyses on the Leu-289 mutant indicate that the K(m) for GlcNAc has increased compared to the wild type. On the other hand, the catalytic constant (k(cat)) in the Gal-T reaction is comparable with the wild type, whereas it is 3-5-fold higher in the GalNAc-T reaction. Interestingly, in the presence of LA, these mutants also transfer GalNAc to Glc instead of to GlcNAc. The present study demonstrates that, in the Gal-T family, the Tyr-289/Phe-289 residue largely determines the sugar donor specificity.  相似文献   

9.
    
We have previously shown that human colon carcinoma CaCo-2 cells express the Sda-1,4-N-acetylgalactosaminyltransferase (Sda-GalNAc-transferase) and that the enzyme activity correlates with the degree of enterocytic differentiation. Here we report that a large amount of this glycosyltransferase is released in soluble form, particularly when CaCo-2 cells are maintained in culture for more than 3 weeks in order to ensure an higher degree of enterocyte differentiation. The soluble enzyme was concentrated and partially purified by Blue-Sepharose and fetuin-Sepharose chromatography. The substrate specificity of the partially purified enzyme was similar to that of Sda-enzyme from epithelial cells of colon mucosa, and for its activity strictly required the presence in acceptors of NeuAc in 2,3-linkage to subterminal galactose. Among the low molecular glycans tested, NeuAc2,3Gal1,4GlcNAc appeared to be the best acceptor, whereas sialyl-Lewisx and sialyl-Lewisa did not serve as acceptors, indicating that the fucosylation of sub-terminal GlcNAc hindered the transferase activity. Contrary to this, the activity towards a disialylated acceptor such as di-sialyl-lacto-N-tetraose was reduced but not abolished. When CaCo-2 cells were cultured on porous membranes and the transferase activity assayed in medium collected from chambers corresponding to either the apical or basolateral face of highly differentiated CaCo-2 cells, a preferential release from the basolateral surface was found. Considering that Sda-GalNAc-transferase is mainly located in the large intestine, current results support the notion that colonic cells largely contribute to the presence of the enzyme in human plasma.  相似文献   

10.
A homologous family of UDP- N -acetylgalactosamine: polypeptide N - acetylgalactosaminyltransferases (GalNAc-transferases) initiate O- glycosylation. These transferases share overall amino acid sequence similarities of approximately 45-50%, but segments with higher similarities of approximately 80% are found in the putative catalytic domain. Here we have characterized the genomic organization of the coding regions of three GalNAc-transferase genes and determined their chromosomal localization. The coding regions of GALNT1 , -T2 , and -T3 were found to span 11, 16, and 10 exons, respectively. Several intron/exon boundaries were conserved within the three genes. One conserved boundary was shared in a homologous C. elegans GalNAc- transferase gene. Fluorescence in situ hybridization showed that GALNT1 , -T2 , and -T3 are localized at chromosomes 18q12-q21, 1q41-q42, and 2q24-q31, respectively. These results suggest that the members of the polypeptide GalNAc-transferase family diverged early in evolution from a common ancestral gene through gene duplication.   相似文献   

11.
We describe an assay for light microscopic visualization of specific glycosyltransferases on tissue sections or on cells. The assay uses a sequence of enzyme reactions that yields two moles of NADH for each mole of the uridine-5'-diphosphate (UDP) released during transfer of a monosaccharide from a UDP sugar to an acceptor. When diaphorase and tetrazolium salts are present in the incubation mixture, the tetrazolium salts are reduced to colored diformazans, which precipitate at the sites of glycosyltransferase activity. The validity of the assay was established by applying the technique to spermatozoa and liver, in which some glycosyltransferases have previously been localized. When suspensions of mouse spermatozoa were assayed for galactosyltransferase (GalTase) activity, diformazan precipitates appeared on the plasma membranes overlying the anterior heads of the spermatozoa, in agreement with immunochemical localizations. In mouse liver slices assayed with bilirubin as acceptor for glucuronyltransferase (GluTase) activity, dense diformazan deposits appeared on the hepatocytes but not on endothelial cells, also in agreement with immunochemical data. In the absence of acceptor or UDP sugar donor, diformazan deposits were minimal and random in all tissues tested. The assay's versatility was tested by incubating tissues with different sugar donors and acceptors to localize other sites of transferase activity. In mouse frozen liver sections, GalTase activity occurred in both hepatocytes and endothelial cells; in sections of rat submaxillary glands, GalTase activity was detected in mast cells. In liver sections, GlcuTase activity with o-aminophenol as acceptor was located primarily on the endothelial cells. With the appropriate sugar donor and acceptor, this assay should detect any transferase, other than the glucosyltransferases, that utilizes UDP sugars.  相似文献   

12.
Porcine A blood group-specific N-acetylgalactosaminyl-transferase required either Mn2+, Cd2+, or Zn2+ for activity and 2'-O-alpha-fucosylgalactosides as acceptor substrates. The presence of detergent stabilizes the enzyme but is not essential for catalysis. To obtain information about the kinetic mechanism of the transferase reaction, initial rate parameters have been determined using 2'-fucosyllactose or A--mucin as acceptors, and Mn2+ or Cd2+ as cosubstrates. 2'-Fucosyllactose is a competitive inhibitor with respect to A--mucin and a noncompetitive inhibitor with respect to UDP-N-acetylgalactosamine. UDP inhibits noncompetively with respect to acceptor; thus UDP-N-acetylgalactosamine or acceptor can bind to the transferase via an equilibrium random pathway. The transferase converts human O blood type erythrocytes of A blood types. After exhaustive glycosylation, 3 X 10(6) N-acetylgalactosaminyl residues were incorporated per cell. Gel electrophoretic analysis of the labeled erythrocyte membranes indicates that glycoproteins with apparents molecular weights from 30,000 to 100,000 have been glycosylated; glycolipids account for only 15% of the labeled material, although pure H-glycolipid is a good acceptor. The transferase, with its strict acceptor specificity, can thus be used as a tool to study the biosynthesis and function of glycolipids and glycoproteins.  相似文献   

13.
Human granulocyte-macrophage colony-stimulating factor (hGM-CSF) is O-glycosylated at residues Ser9 and Thr10 during secretion by yeast and COS-1 cells [Ernst, J.F., Mermod, J.-J. and Richman, L.I. (1992) Eur. J. Biochem. 203, 663-667]. Two types of octapeptides encompassing residues 4-11 (peptide 4-11) and variants thereof, or residues 8-15 (peptide 8-15) of hGM-CSF were tested as substrates for in vitro O-glycosylation using dolichyl-phosphate- D-mannose: protein O-D-mannosyltransferase (Man-transferase) of the yeast Saccharomyces cerevisiae, or UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase (GalNAc-transferase) of rat liver cells. Peptide 8-15 was found to be O-glycosylated at residues Ser9 and Thr10 by GalNAc-transferase and, with reduced efficiency, also by Man-transferase. Peptide 4-11 was a good substrate for yeast Man-transferase, leading to mannosylation of only Thr10, whereas it was very poorly O-glycosylated at positions Ser5 and Ser7 by GalNAc-transferase. The observed differences in peptide-acceptor activities indicate that the site of O-glycosylation depends on similar, but not identical protein structural features in yeast and mammalian cells.  相似文献   

14.
Coenzyme A (CoA) transferase from Peptostreptococcus elsdenii has been purified and crystallized, and some of its properties have been established. The work was facilitated by a newly developed coupled and continuous spectrophotometric assay in which the disappearance of added acrylate could be followed at 245 nm. The rate-limiting conversion of acetyl- and beta-hydroxypropionyl CoA to acrylyl CoA by CoA transferase was followed by the non-rate-limiting conversion to beta-hydroxypropionyl CoA by excess crotonase. Thus, a small priming quantity of acetyl CoA served to generate acrylyl CoA, which, by hydration, generated beta-hydroxypropionyl CoA. This product then served to generate more acrylyl CoA in cyclic fashion. The net result was the CoA transferase-limited conversion of acrylate to beta-hydroxypropionate. The purified transferase has a molecular weight of 125,000 and is composed of two subunits of 63,000 each, as determined by disc gel electrophoresis. Short-chain-length monocarboxylic acids are substrates, whereas dicarboxylic or beta-ketocarboxylic acids are not. The reaction kinetics are typical of a ping-pong bi bi mechanism composed of two half reactions linked by a covalent enzyme intermediate. Incubation of the transferase with acetyl CoA in the absence of a fatty acid acceptor yielded a stable intermediate which, by absorption spectrophotometry, radioactivity measurements, reduction with borohydride, reactivity with hydroxylamine, and catalytic activity, was identified as an enzyme-CoA compound. Kinetic constants for CoA transferase are: final specific activity, 110 U/mg of protein corresponding to 1.38 X 10(4) mumol of acrylate activated per mumol of transferase; Km for acrylate, 1.2 X 10(-3) M; Km for acetyl CoA (beta-hydroxypropionyl CoA), 2.4 X 10(-5) M.  相似文献   

15.
S te Heesen  B Janetzky  L Lehle    M Aebi 《The EMBO journal》1992,11(6):2071-2075
Asparagine-linked N-glycosylation is a highly conserved and functionally important modification of proteins in eukaryotic cells. The central step in this process is a cotranslational transfer of lipid-linked core oligosaccharides to selected Asn-X-Ser/Thr-sequences of nascent polypeptide chains, catalysed by the enzyme N-oligosaccharyl transferase. In this report we show that the essential yeast protein WBP1 (te Heesen et al., 1991) is required for N-oligosaccharyl transferase in vivo and in vitro. Depletion of WBP1 correlates with a defect in transferring core oligosaccharides to carboxypeptidase Y and proteinase A in vivo. In addition, in vitro N-glycosylation of the acceptor peptide Tyr-Asn-Leu-Thr-Ser-Val using microsomal membranes from WBP1 depleted cells is reduced as compared with membranes from wild-type cells. We propose that WBP1 is an essential component of the oligosaccharyl transferase in yeast.  相似文献   

16.
17.
Leishmania express lipophosphoglycans and proteophosphoglycans that contain Galbeta1-4Manalpha1-P phosphosaccharide repeat structures assembled by the sequential addition of Manalpha1-P and betaGal. The synthetic acceptor substrate Galbeta1-4Manalpha1-P-decenyl and a series of analogues were used to probe Leishmania alpha-D-mannosyl phosphate transferase activity. We show that the activity detected with Galbeta1-4Manalpha1-P-decenyl is the elongating alpha-D-mannosyl phosphate transferase associated with lipophosphoglycan biosynthesis (eMPT(LPG)). Differences in the apparent K(m) values for the donor and acceptor substrates were found using L. major, L. mexicana, and L. donovani promastigote membranes, but total activity correlated with the number of lipophosphoglycan repeats. Further comparisons showed that lesion-derived L. mexicana amastigotes, that do not express lipophosphoglycan, lack eMPT(LPG) and that nondividing L. major metacyclic promastigotes contain 5-fold less eMPT(LPG) activity than dividing procyclic promastigotes. The fine specificity of promastigote eMPT(LPG) activity was determined using 24 synthetic analogues of Galbeta1-4Manalpha1-P-decenyl. The three species gave similar results: the negative charge of the phosphodiester and the C-6 hydroxyl of the alphaMan residue are essential for substrate recognition, the latter most likely acting as a hydrogen bond acceptor. The C-6' hydroxyl of the betaGal residue is required for substrate recognition as well as for catalysis. The rate of Manalpha1-P transfer declines with increasing acceptor substrate chain length. The presence of a monosaccharide substituent at the C-3 position of the terminal betaGal residue abrogates Man-P transfer, showing that chain elongation must precede side chain modification during lipophosphoglycan biosynthesis. In contrast, substitution of the penultimate phosphosaccharide repeat does not abrogate transfer but is slightly stimulatory in L. mexicana and inhibitory in L. major.  相似文献   

18.
We show that Escherichia coli 50S ribosomal subunits depleted of protein L16 can nevertheless catalyze the transfer of the peptide moiety from fMet-tRNA to puromycin, being, however, unable to use a fragment CACCA-Phe as an acceptor substrate. On the other hand, we found that protein L16 as well as its large fragment (amino acids 10-136) both interact with tRNA in solution (Kd approximately 10(-7) M). Moreover, L16 interacts with CACCA-Phe in solution as well as protects 3' end of tRNA from the enzymatic degradation. We suggest that L16, although not being the peptidyl transferase as such, is involved in the binding of the 3' end cytidines of tRNA into the ribosomal A site.  相似文献   

19.
Xyloglucans are the major component of plant cell walls and bind tightly to the surface of individual cellulose microfibrils, thereby cross-linking them into a complex polysaccharide network of the cell wall. The cleavage and reconnection of xyloglucan cross-links are considered to play the leading role during chemical processes essential for wall expansion and, therefore, cell growth and differentiation. Although it is hypothesized that some transglycosylation is involved in these chemical processes, the enzyme responsible for the reaction was not identified. We have now purified a novel class of endo-type glycosyltransferase to apparent homogeneity from the extracellular space or the cell wall of the epicotyls of Vigna angularis, a bean plant. The enzyme is a glycoprotein with a molecular mass of about 33 kDa. The enzyme catalyzes both 1) endo-type splitting of a xyloglucan molecule and 2) linking of a newly generated reducing end of the xyloglucan to the nonreducing end of another xyloglucan molecule, thereby mediating the transfer of a large segment of the xyloglucan to another xyloglucan molecule. The transferase exhibits no glycosidase or glycanase activity. Substrate specificity of the enzyme was investigated using several polysaccharides with different glycosidic linkages as donor substrates and pyridylamino oligosaccharides as acceptor substrates, in which the reducing end of the carbohydrate was tagged with a fluorescent group. The enzyme required a basic xyloglucan structure, i.e. a beta-(1-->4)-glucosyl backbone with xylosyl side chains, for both acceptor and donor activity. Galactosyl or fucosyl side chains on the main chain were not required for the acceptor activity. The enzyme exhibited higher reaction rates when xyloglucans with higher M(r) were used as donor substrates. Xyloglucans smaller than 10 kDa were no longer the donor substrate. On the other hand, pyridylamino heptasaccharide acted as a good acceptor as did xyloglucan polymers. Based on these results we propose to designate this novel enzyme a xyloglucan: xyloglucano-transferase, to be abbreviated endo-xyloglucan transferase (EXT) or xyloglucan recombinase. This enzyme is the first enzyme identified that mediates the transfer of a high M(r) segment between polysaccharide molecules to generate chimeric polymers. We conclude that endo-xyloglucan transferase functions as a reconnecting enzyme for xyloglucans and is involved in the interweaving or reconstruction of cell wall matrix, which is responsible for chemical creepage that leads to morphological changes in the cell wall.  相似文献   

20.
The specificity of UDP-Gal-NAc:polypeptide N-acetylgalactosaminytransferase (GalNAc-transferase) is consistent with the existence of an extended site composed of nine subsites, denoted by P4, P3, P2, P1, P0, P1′, P2′, P3′, and P4′, where the acceptor at P0 is being either Ser or Thr. To predict whether a peptide will react with the enzyme to form a Ser- or Thr-conjugated glycopeptide, a vector projection method is proposed which uses a training set of amino acid sequences surrounding 90 Ser and 106 Thr O-glycosylation sites extracted from the National Biomedical Research Foundation Protein Database. The model postulates independent interactions of the 9 amino acid moieties with their respective binding sites. The high ratio of correct predictions vs. total predictions for the data in both the training and the testing sets indicates that the method is self-consistent and efficient. It provides a rapid means for predicting O-glycosylation and designing effective inhibitors of GalNAc-transferase. © 1995 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号