首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis of three bis(thiosemicarbazone) compounds formed by the reaction of benzil with either thiosemicarbazide, 4-methyl-3-thiosemicarbazide or 4-phenyl-3-thiosemicarbazide are reported. The compounds were characterised by NMR spectroscopy, mass spectrometry and in the case of benzil bis(4-methyl-3-thiosemicarbazone) and benzil bis(4-phenyl-3-thiosemicarbazone) by X-ray crystallography. Attempts to purify benzil bis(thiosemicarbazone) and benzil bis (4-methyl-3-thiosemicarbazone) by recrystallisation resulted in the isolation of cyclised products that were characterised by X-ray crystallography. The 3 bis(thiosemicarbazone) compounds were used to synthesise both Cu(II) and Cu(I) complexes. The copper(II) complexes were formed by the reaction of the proligands with copper(II) acetate which gave neutral copper(II) complexes in which the thiosemicarbazone is doubly deprotonated, acting as a dianionic ligand. The copper(II)-benzil bis(4-phenyl-3-thiosemicarbazonato) complex was characterised by X-ray crystallography to show the copper in an essentially square planar N2S2 environment. The copper(I) complexes were synthesised by reacting the bis (thiosemicarbazone) ligands with [Cu(CH3CN)4]PF6 to give cationic complexes. The copper(I)-benzil-bis(thiosemicarbazone) complex was characterised by X-ray crystallography which revealed that the complex was a dimeric dication. Each of the benzil bis(thiosemicarbazone) ligands act as a bidentate N,S donor to each copper(I) atom, forming an overall helical structure in which each copper atom is in a strongly distorted tetrahedral N2S2 environment. Electrochemical measurements show that the copper(II)-benzil bis(thiosemicarbazonato) complex undergoes a reversible reduction at biologically accessible potentials.  相似文献   

2.
Transition metal complexes containing bidentate N, S donor ligands i.e., carvone thiosemicarbazone [(RS)-5-isopropenyl-2-methylcyclohex-2-en-1-one thiosemicarbazone (IPMCHTSC)] and carvone N(1)-phenylthiosemicarbazone [(RS)-5-isopropenyl-2-methylcyclohex-2-en-1-one phenylthiosemicarbazone (IPMCHPhTSC)] have been synthesized. All the metal complexes (1-8) have been characterized by elemental analysis, molar conductance measurement and various spectral studies [infrared (IR), electronic, fast-atom bombardment (FAB) mass and NMR (for ligands)] and thermogravimetric analysis. FAB mass spectroscopic studies of (1), (3), (4), (5), (6) (7), and (8) suggest their monomeric nature. Metal complexes are [M(LH)Cl(2)] and [M(LH)(2)Cl(2)] type, where M?=?Fe(III), Co(II), and Cu(II) and LH?=?IPMCHTSC and IPMCHPhTSC. The proposed geometries of the complexes were octahedral for 1:2 complexes, square planar for 1:1 complexes and distorted octahedral for Cu(II) complexes (1:2). The free radical scavenging activity of ligands (IPMCHTSC and IPMCHPhTSC) and their metal complexes have been determined at the concentration range of 10-400 μg/mL by means of their interaction with the stable free radical 2,2'-diphenyl-1-picrylhydrazyl and 5-200 μg/mL by 2,2'-Azinobis-3-ethylbenzothiazoline-6-sulphonic acid. All the compounds have shown encouraging antioxidant activities.  相似文献   

3.
Twelve zinc(II) complexes with thiosemicarbazone and semicarbazone ligands were prepared and characterized by elemental analysis, thermogravimetric and differential thermal analysis (TG/DTA), FT-IR and 1H and 13C NMR spectroscopy. Seven three-dimensional structures of zinc(II) complexes were determined by single-crystal X-ray analysis. Their antimicrobial activities were evaluated by MIC against four bacteria (B. subtilis, S. aureus, E. coli and P. aeruginosa), two yeasts (C. albicans and S. cerevisiae) and two molds (A. niger and P. citrinum). The 5- and 6-coordinate zinc(II) complexes with a tridentate thiosemicarbazone ligand (Hatsc), ([Zn(atsc)(OAc)](n) 1, [Zn(Hatsc)(2)](NO(3))(2).0.3H(2)O 2, [ZnCl(2)(Hatsc)] 3 and [Zn(SO(4))(Hatsc)(H(2)O)].H(2)O 4 [Hatsc=2-acetylpyridine(thiosemicarbazone)]), showed antimicrobial activities against test organisms, which were different from those of free ligands or the starting zinc(II) compounds. Especially, complex 2 showed effective activities against P. aeruginosa, C. albicans and moderate activities against S. cerevisiae and two molds. These facts are in contrast to the results that the 5- or 6-coordinate zinc(II) complexes with a tridentate 2-acetylpyridine-4N-morpholinethiosemicarbazone, ([Zn(mtsc)(2)].0.2EtOH 5, the previously reported catena-poly [Zn(mtsc)-mu-(OAc-O,O')](n) and [Zn(NO(3))(2)(Hmtsc)] [Hmtsc=2-acetylpyridine (4N-morpholyl thiosemicarbazone)]), showed no activities against the test microorganisms. The 5- and 6-coordinate zinc(II) complexes with a tridentate 2-acetylpyridinesemicarbazone, ([Zn(OAc)(2)(Hasc)] 6 and [Zn(Hasc)(2)](NO(3))(2) 7 [Hasc=2-acetylpyridine(semicarbazone)]), showed no antimicrobial activities against bacteria, yeasts and molds. Complex [ZnCl(2)(Hasc)] 8, which was isostructural to complex 3, showed modest activity against Gram-positive bacterium, B. subtilis. The 1:1 complexes of zinc(II) with pentadentate thiosemicarbazone ligands, ([Zn(dmtsc)](n) 9 and [Zn(datsc)](n) 10 [H(2)dmtsc=2,6-diacetylpyridine bis(4N-morpholyl thiosemicarbazone) and H(2)datsc=2,6-diacetylpyridine bis(thiosemicarbazone)]), did not inhibit the growth of the test organisms. On the contrary, 7-coordinate zinc(II) complexes with one pentadentate semicarbazone ligand and two water molecules, ([Zn(H(2)dasc)(H(2)O)(2)](OAc)(2).5.3H(2)O 11 and [Zn(H(2)dasc)(H(2)O)(2)](NO(3))(2).H(2)O 12 [H(2)dasc=2,6-diacetylpyridine bis(semicarbazone)]), showed modest to moderate activities against bacteria. Based on the X-ray structures, the structure-activity correlation for the antimicrobial activities was elucidated. The zinc(II) complexes with 4N-substituted ligands showed no antimicrobial activities. In contrast to the previously reported nickel(II) complexes, properties of the ligands such as the ability to form hydrogen bonding with a counter anion or hydrated water molecules or the less bulkiness of the 4N moiety would be a more important factor for antimicrobial activities than the coordination number of the metal ion for the zinc(II) complexes.  相似文献   

4.
The preparation of platinum(II) complexes derived from 3,5-diacetyl-1,2,4-triazol bis(4-phenylthiosemicarbazone) (H(5)L(1)), 3,5-diacetyl-1,2,4-triazol bis(thiosemicarbazone) (H(7)L(2)), 3,5-diacetyl-1,2,4-triazol bis(4-methylthiosemicarbazone) (H(5)L(3)) and 3,5-diacetyl-1,2,4-triazol bis(4-ethylthiosemicarbazone) (H(5)L(3)) is described. The new complexes [Pt(mu-H(3)L(1))](2), [Pt(mu-H(5)L(2))](2), [Pt(mu-H(3)L(3))](2) and [Pt(mu-H(3)L(4))](2) have been characterized by elemental analyses, fast atom bombardment mass spectrometry (FAB(+)) and spectroscopic studies. The crystal and molecular structure of compounds [Pt(mu-H(3)L(1))](2), parent ligand H(5)L(1) and [Pt(mu-H(3)L(3))](2) have been determined by single crystal X-ray diffraction. The ligands coordinate, in a dideprotonate form to the platinum ions in a new tridentate fashion (NNS) and S-brigding bonding modes. Thus the molecular units of the platinum complexes are stacked as dimers. The testing of the cytotoxic activity of the synthesized compounds together with their palladium analogues against human A2780 and A2780cisR epithelial ovarian carcinoma cells lines suggests that the compounds may be endowed with important antitumor properties since they show IC(50) values in a micromolar range similar to those of cisplatin. The structure and antitumor activity relationships of platinum and palladium complexes are also discussed.  相似文献   

5.
The new pyrazole ligand 5-(2-hydroxyphenyl)-3-methyl-1-(2-pyridylo)-1H-pyrazole-4-carboxylic acid methyl ester (2) and the corresponding Pt(II), Pd(II) and Cu(II) complexes 3-5 have been synthesized as potential anticancer compounds, and characterized using IR, and (1)H NMR as well as mass spectrometry. The 3-D structures of the Cu(II) complexes were determined by quantum mechanic calculation DFT methodology (density functional theory). The cytotoxicity assay of the ligand and complexes has been performed on leukemia cell lines. In general, the complexes showed lower cytotoxicity than cisplatin, and the Pt(II) and Cu(II) complexes were found to be more efficient in the induction of leukemia cell death than the Pd(II) complex. Our investigations indicate that the antiproliferating activity of the Pt(II) and Cu(II) complexes was partly due to the modulation of cellular differentiation.  相似文献   

6.
The metal(II) complexes [M(4-Me-5-NH2-1-iqtsc- H)Cl2] (M = Co(II), Ni(II) or Cu(II) and 4-Me-5- NH2-1-iqtsc-H = 4-methyl-5-amino-1-formylisoquinoline thiosemicarbazone), [Zn(4-Me-5-NH2-1-iqtsc-H)- (OAc)2]· H2O and [Pt(4-Me-5-NH2-1-iqtsc)Cl)] were isolated and characterized by elemental analysis, conductance measurement, magnetic moments (300- 78 K)and spectral studies. On the basis of these studies distorted trigonal-bipyramidal structures for the Co(II), Ni(II), Cu(II) and Zn(II) complexes and a square-planar structure for the Pt(II) complex are proposed. All these complexes were screened for their antitumour activity in the P388 lymphocytic leukaemia test system in mice. With the exception of the Pt(II) and Zn(II) complexes, the complexes showed no significant activity; the Zn(II) and Pt(II) complexes showed T/C (%) values of 150 and 144 at a much lesser extent [2].  相似文献   

7.
The preparation of palladium(II) complexes of 3,5-diacyl-1,2,4-triazole bis(thiosemicarbazone) (H2L2), 2,6-diacylpyridine bis(thiosemicarbazone) (H2L3) and benzyl bis(thiosemicarbazone) (H2L4) is described. The new complexes [PdCl2(H2L2)] (1), [PdCl2(H2L3)] (2) and [PdL4].DMF (3) have been characterized by elemental analyses and spectroscopic studies (IR, 1H NMR and UV-Vis). The crystal and molecular structure of PdL4.DMF (L = bideprotonated form of benzyl bis(thiosemicarbazone)) has been determined by single-crystal X-ray diffraction: green triclinic crystal, a = 10.258(5), b = 10.595(5), c = 11.189(5) A, alpha = 97.820(5), beta = 108.140(5), gamma = 105.283(5) degrees, space group P1, Z = 1. The palladium atom is tetracoordinated by four donor atoms (SNNS) from L4 to form a planar tricyclic ligating system. The testing of the cytotoxic activity of compound 3 against several human, monkey and murine cell lines sensitive (HeLa, Vero and Pam 212) and resistant to cis-DDP (Pam-ras) suggests that compound 3 might be endowed with important antitumor properties since it shows IC50 values in a microM range similar to those of cis-DDP [cis-diamminedichloroplatinum(II)]. Moreover, compound 3 displays notable cytotoxic activity in Pam-ras cells resistant to cis-DDP (IC50 values of 78 microM versus 156 microM, respectively). On the other hand, the analysis of the interaction of this novel Pd-thiosemicarbazone compound with DNA secondary structure by means of circular dichroism spectroscopy indicates that it induces on the double helix conformational changes different from those induced by cis-DDP.  相似文献   

8.
Biological studies on [Fe(L)2](NO3).0.5H2O (1), [Fe(L)2][PF6] (2), [Co(L)2](NCS) (3), [Ni(HL)2]Cl2.3H2O (4) and Cu(L)(NO3) (5), where HL=C7H8N4S, pyridine-2-carbaldehyde thiosemicarbazone, have been carried out. The crystal structure of compound 3 has been solved. It consists of discrete monomeric cationic entities containing cobalt(III) ions in a distorted octahedral environment. The metal ion is bonded to one sulfur and two nitrogen atoms of each thiosemicarbazone molecule. The thiocyanate molecules act as counterions. The copper(II) and iron(III) complexes react with reduced glutathione and 2-mercaptoethanol. The reaction of compound 1 with the above thiols causes the reduction of the metal ion and bis(thiosemicarbazonato)iron(II) species are obtained. The redox activity, and in particular the reaction with cell thiols, seems to be related to the cytotoxicity of these complexes against Friend erithroleukemia cells and melanoma B16F10 cells.  相似文献   

9.
Complexes of Co(II), Ni(lI), Cu(II), Zn(II) and Pt(II) with 1-formylisoquinoline thiosemicarbazone (1-iqtsc-H) were prepared and characterized by elemental analyses, conductance measurement and spectral studies. On the basis of these studies a distorted octahedral structure for [Co(1-iqtsc)2]·2H2O, a distorted trigonal-bipyramidal structure for [Ni- (1-iqtsc-H)Cl2], [Cu(1-iqtsc-H)Cl2] and [Zn(1-iqtsc- H)(OAc)2]·H2O and a square-planar structure for [Pt(1-iqtsc)Cl] are suggested. All these metal(II) complexes were screened for their antitumour activity in the P388 lymphocytic leukaemia test system in mice. Except for Pt(Il), the complexes were found to possess significant activity; the Ni(II) complex showed a T/C value of 161 at the optimum dosage.  相似文献   

10.
The synthesis and spectroscopic (IR, (1)H and (13)C NMR) characterization of new complexes of Pt(II), Pd(II), Cu(II), and Hg(II) with the Schiff base ligand MeCONHCH(2)CH(2)N=CHPy (L) (Py=pyridine) are reported, together with studies on the cytotoxicities of these complexes, L and [ReBr(CO)(3)(L)] against human leukemia (MOLT-4), breast cancer (MCF-7) and Chang Liver (non-cancerous) cells. The crystal structures of [Pt(L)Cl(2)] (2), [Cu(L)Cl(2)] (4) and [Hg(L)Cl(2)](2) (5) are also reported. Of the complexes studied, [Cu(L)Cl(2)] (4) was identified as the most cytotoxic active derivative against cells of neoplastic origin (MOLT-4, and MCF-7), while having low toxicity on cells of benign origin (Chang Liver).  相似文献   

11.
Novel bismuth(III) complexes 1-4 with the tridentate thiosemicarbazone ligand of 2N1S donor atoms [Hmtsc (L1); 2-acetylpyridine (4N-morpholyl thiosemicarbazone)], the pentadentate double-armed thiosemicarbazone ligand of 3N2S donor atoms [H2dmtsc (L3); 2,6-diacetylpyridine bis(4N-morpholyl thiosemicarbazone)] and the pentadentate double-armed semicarbazone ligand of 3N2O donor atoms [H2dasc (L4b); 2,6-diacetylpyridine bis(semicarbazone)], were prepared by reactions of bismuth(III) nitrate or bismuth(III) chloride and characterized by elemental analysis, thermogravimetric and differential thermal analysis (TG/DTA), FTIR and NMR (1H and 13C) spectroscopy. The crystal and molecular structures of complexes 1, 2a, 2b and 4b, and the "free" ligand L1 were determined by single-crystal X-ray structure analysis. The dimeric 7-coordinate bismuth(III) complex [Bi(dmtsc)(NO3)]2, 1, and the monomeric 7-coordinate complexes [Bi(Hdasc)(H2O)](NO3)2.H2O (major product), 2a, and [Bi(dasc)(H2O)]NO3.H2O (minor product), 2b, all with pentagonal bipyramidal bismuth(III) centers, are depicted with one electron pair (6s2) of the bismuth(III) atom, deprotonated forms of multidentate thiosemicarbazone or semicarbazone ligands, and monodentate NO3 or H2O ligands, respectively. These complexes are related to the positional isomers of one electron pair of the bismuth(III) atom; 1 has an electron pair positioned in the pentagonal plane (basal position), while 2a and 2b have an electron pair in the apical position. The monomeric 8-coordinate complex [Bi(mtsc)2(NO3)], 4b, which was obtained by slow evaporation in MeOH of the 1.5 hydrates 4a, was depicted with one electron pair of the bismuth(III) atom, two deprotonated mtsc- ligand and one nitrate ion. On the other hand, crystals of the complex "[Bi(mtsc)Cl2]", 3, prepared by a reaction of BiCl3 with L1 showed several polymorphs (3a, 3b, 3c and 3d) due to coordination and/or solvation of dimethyl sulfoxide (DMSO) used in the crystallization. Bismuth(III) complexes 1 and 4a showed selective and effective antibacterial activities against Gram-positive bacteria. The structure-activity relationship was discussed.  相似文献   

12.
The synthetic, spectroscopic, and biological studies of Cu(II), Ni(II), Zn(II), Co(II), Mn(II), Fe(III) and Cr(III) complexes of N(4)-(7'-chloroquinolin-4'-ylamino)-N(1)-(2-hydroxy-benzylidene)thiosemicarbazone (HL) obtained by the reaction of N(4)-(7'-chloroquinolin-4'-ylamino)thiosemicarbazide with 2-hydroxybenzaldehyde. The structures of the complexes were determined on the basis of the elemental analyses, spectroscopic data (IR, electronic, (1)H and (13)C NMR and Mass spectra) along with magnetic susceptibility measurements, molar conductivity and thermogravimetric analyses. Electrical conductance measurement revealed the non-electrolytic nature of the complexes. The resulting colored products are mononuclear in nature. On the basis of the above studies, only one ligand was suggested to be coordinated to each metal atom by thione sulfur, azomethine nitrogen and phenolic oxygen to form mononuclear complexes in which the thiosemicarbazone behaves as a monobasic tridendate ligand. The ligand and its metal complexes were tested against Gram + ve bacteria (Staphylococcus aureus), Gram - ve bacteria (Escherichia coli), fungi (Candida albicans) and (Fusarium solani). The tested compounds exhibited significant activity.  相似文献   

13.
Five novel antimony(III) complexes with the mono- and bis(thiosemicarbazone) ligands of 2N1S or 4N2S donor atoms, N'-[1-(2-pyridyl)ethylidene]morpholine-4-carbothiohydrazide (Hmtsc, L1) and bis[N'-[1-(2-pyridyl)ethylidene]]-1,4-piperazinedicarbothiohydrazide (H(2)ptsc, L7), and the tridentate semicarbazone ligand of 2N1O donor atoms, 2-acetylpyridine semicarbazone (Hasc, L2b), were prepared by reactions of SbCl(3) or SbBr(3), and characterized by elemental analysis, TG/DTA, FT-IR and (1)H NMR spectroscopy. The crystal and molecular structures of five antimony(III) complexes were determined by single-crystal X-ray structure analysis. The neutral, 6-coordinate antimony(III) complexes ([Sb(mtsc)Cl(2)] 1, [Sb(mtsc)Br(2)] 2, [Sb(asc)Cl(2)] 3 and [Sb(asc)Br(2)] 4) are depicted with one electron pair (5s(2)) of the antimony(III) atom, deprotonated forms of multidentate thiosemicarbazone or semicarbazone ligands, and two monodentate halogen ligands, respectively. In the dimer complex 5 ([Sb(2)(ptsc)Cl(4)]) with the ligand in which two tridentate thiosemicarbazone moieties are connected by the piperazine moiety, each antimony(III) was also described as a neutral 6-coordinate structure. These antimony(III) complexes were thermally stable around 200 degrees C. Water-soluble antimony(III) complexes 1 and 2 showed moderate antimicrobial activities against Gram-positive (Bacillus subtilis and Staphylococcus aureus) and -negative bacteria (Escherichia coli and Pseudomonas aeruginosa), yeasts (Candida albicans and Saccharomyces cerevisiae) and molds (Aspergillus niger and Penicillium citrinum). Complex 5 showed moderate antimicrobial activities against four bacteria, and two molds, while the ligand itself showed only modest antimicrobial activities against selected bacteria (B. subtilis, E. coli and S. aureus). The molecular structures and antimicrobial activities of antimony(III) complexes were compared with those of bismuth(III) complexes in the same 15 group in the periodic table.  相似文献   

14.
Formation constants and structures of copper(II) complexes with oxidized glutathione (L) have been determined by computer modelling of spectrophotometric and NMR relaxation measurements data over a wide range of pH (1-13) and metal and ligand concentrations in aqueous KNO(3) (1M) at 298K. Among 11 found complexes, four forms were characterized for the first time. Based on a comparison of thermodynamic, relaxation, and optical and EPR spectroscopy parameters the structural conclusions were made. In particular, the CuLH(2) and CuLH(-) complexes both contain two isomers which are similar to mono- and bis-aminoacid copper(II) complexes. In the Cu(2)L and Cu(3)L(2)(2-) species one of the copper atoms is bound only with the carboxylate or carbonyl groups and the others are coordinated similarly to aminoacid chelates. Along with the last, in Cu(2)LH(-2)(2-) two bridging OH(-) groups in one isomer or two chelate rings including deprotonated peptide nitrogen and glycinyl carboxylate oxygen in another are also present. In Cu(3)L(2)H(-4)(6-) the mixed variant of coordination between CuL(2-) (CuN(2)O(2)) and Cu(2)LH(-4)(4-)(CuN(3)O) is realized. The structures of polynuclear complexes have been optimized in density functional theory computations. Rate constants of ligand exchange reactions of Cu(LH)(2)(4-) and CuL(2)(6-) with participation of the LH(3-) and L(4-) forms were determined for the first time. Factors determining rates of these processes have been revealed and their proceeding by associative substitution mechanism shown.  相似文献   

15.
1‐phenyl‐3‐methyl‐4‐benzoyl‐5‐pyrazolone 4‐ethyl‐thiosemicarbazone (HL) and its copper(II), vanadium(V) and nickel(II) complexes: [Cu(L)(Cl)]·C2H5OH·( 1 ), [Cu(L)2]·H2O ( 2 ), [Cu(L)(Br)]·H2O·CH3OH ( 3 ), [Cu(L)(NO3)]·2C2H5OH ( 4 ), [VO2(L)]·2H2O ( 5 ), [Ni(L)2]·H2O ( 6 ), were synthesized and characterized. The ligand has been characterized by elemental analyses, IR, 1H NMR and 13C NMR spectroscopy. The tridentate nature of the ligand is evident from the IR spectra. The copper(II), vanadium(V) and nickel(II) complexes have been characterized by different physico‐chemical techniques such as molar conductivity, magnetic susceptibility measurements and electronic, infrared and electron paramagnetic resonance spectral studies. The structures of the ligand and its copper(II) ( 2 , 4 ), and vanadium(V) ( 5 ) complexes have been determined by single‐crystal X‐ray diffraction. The composition of the coordination polyhedron of the central atom in 2 , 4 and 5 is different. The tetrahedral coordination geometry of Cu was found in complex 2 while in complex 4 , it is square planar, in complex 5 the coordination polyhedron of the central ion is distorted square pyramid. The in vitro antibacterial activity of the complexes against Escherichia coli, Salmonella abony, Staphylococcus aureus, Bacillus cereus and the antifungal activity against Candida albicans strains was higher for the metal complexes than for free ligand. The effect of the free ligand and its metal complexes on the proliferation of HL‐60 cells was tested.  相似文献   

16.
The preparation of new palladium(II) and platinum(II) complexes derived from alpha-diphenyl ethanedione bis(thiosemicarbazone), 1, and alpha-diphenyl ethanedione bis(4-ethylthiosemicarbazone), 2, is described. The palladium complexes 3 and 4 and platinum complexes 5 and 6 have been characterized by elemental analyses, fast atom bombardment mass spectrometry (FAB(+)) and spectroscopic studies (IR, (1)HNMR). The crystal and molecular structures of the dimeric cyclopalladated compound 4 and the mononuclear platinum complex 6 have been determined by single crystal X-ray diffraction. The cytotoxic activity of the free ligands and palladium and platinum complexes against human A2780 and A2780cisR (acquired resistance to cisplatin) epithelial ovarian carcinoma cells lines is also reported. The IC(50) values for compounds 1, 5 and 6 were found to be higher than that of cisplatin but the maximum antiproliferative activity was similar. Furthermore, the compounds largely retain their activity in the A2780cisR cell line, having a much better resistance factor than cisplatin in the pair of cell lines tested.  相似文献   

17.
Copper(II) and platinum(II) complexes of 2-benzoylpyrrole (2-BZPH) were synthesized and characterized with IR, 1H and 13C NMR spectroscopies and coordination geometry with ligands arranged in transoid fashion. The crystal structure of [Cu(II)(2-BZP)2] was determined by X-ray diffraction. Death of complex treated Jurkat cells was measured by flow cytometry. The bis-chelate complexes [Cu(II)(2-BZP)2] and [Pt(II)(2-BZP)2] adopt square-planar coordination geometry with ligands, arranged in transoid fashion. Concentrations of 1-10 microM Platinum(II) complexes reduced cell survival from 100% to 20%, in contrast to the copper(II) complex which caused no cell death at a concentration of 10 microM. While the Pt(II) complexes may have damaged DNA to induce cell death, treatment with the Cu(II) complex did not induce Jurkat cell death.  相似文献   

18.
The synthetic, spectroscopic, and biological studies of Cu(II), Ni(II), Zn(II), Co(II), Mn(II), Fe(III) and Cr(III) complexes of N4-(7′-chloroquinoline-4′-ylamino)-N1-(2-hydroxy-benzylidene)thiosemicarbazone (HL) obtained by the reaction of N4-(7′-chloroquinolin-4′-ylamino)thiosemicarbazide with 2-hydroxybenzaldehyde. The structures of the complexes were determined on the basis of the elemental analyses, spectroscopic data (IR, electronic, 1H and 13C NMR and Mass spectra) along with magnetic susceptibility measurements, molar conductivity and thermogravimetric analyses. Electrical conductance measurement revealed the non-electrolytic nature of the complexes. The resulting colored products are mononuclear in nature. On the basis of the above studies, only one ligand was suggested to be coordinated to each metal atom by thione sulfur, azomethine nitrogen and phenolic oxygen to form mononuclear complexes in which the thiosemicarbazone behaves as a monobasic tridendate ligand. The ligand and its metal complexes were tested against Gram + ve bacteria (Staphylococcus aureus), Gram ? ve bacteria (Escherichia coli), fungi (Candida albicans) and (Fusarium solani). The tested compounds exhibited significant activity.  相似文献   

19.
Copper(II) complexes of carvedilol molecule, (CARVH): 1-[carbazolyl-(4)-oxyl]-3-[(2-methoxyphenoxyethyl)-amino]-2-propanol, were synthesized and characterized with respect to their structural and spectroscopic properties. The crystal structure of [Cu(Carv)Cl(MeOH)](2).4MeOH complex revealed that the molecule chelates two Cu(II) ions via the N and O atoms belonging to the amino and propanol moiety, respectively. The coordination behaviour of carvedilol studied by 1H nuclear magnetic resonance (NMR, 1-D and 2-D-COSY) spectroscopy in dimethyl sulfoxide solution at room temperature, allowed us to obtain structural information and to identify the donor atoms involved in the coordination process in solution.  相似文献   

20.
The purpose of this research was to characterize by X-ray crystallography the ternary dimethylformamide (DMF) Cu(II) complex of acetylsalicylic acid (aspirin), in an effort to compare the structure-activity relationships for the anticonvulsant activity of this and other Cu(II)aspirinate chelates. The ternary DMF Cu(II) complex of aspirin was synthesized and crystals grown from a DMF solution were characterized by single crystal X-ray diffraction. This crystalline material was analyzed for anticonvulsant activity in the Maximal Electroshock (MES) Grand Mal and subcutaneous Metrazol (scMET) Petit Mal models of seizure used to detect anticonvulsant activity. The ternary DMF complex was found to be a monomolecular binuclear complex, tetrakis-mu-(acetylsalicylato)bis(dimethylformamido)dicopper(II) [Cu(II)(2)(aspirinate)(4)(DMF)(2)] with the following parameters: monoclinic, space group P2(1)/n, a=12.259 (1), b=10.228 (1), c=16.987 (1) A, beta=92.07 (1) degrees; V=2128.5 (3) A(3); Z=2. The structure was determined at 180 K from 2903 unique reflections (I>1sigma(I)) to the final values of R=0.030 and wR=0.033 using F. This binuclear complex contains four acetylsalicylate bridging ligands which are related to each other in a two by two symmetry center. The four nearest O atoms around each Cu atom form a closely square planar arrangement with the square pyramidal coordination completed by the dimethylformamide oxygen atom occupying an apical position at a distance of 2.154 (1) A. Each Cu atom is displaced towards the DMF ligand by 0.187 A from the plane of the four O atoms. Electron paramagnetic resonance (EPR) spectra of [Cu(II)(2)(aspirinate)(4)(DMF)(2)] crystals show a strong antiferromagnetic coupling of the copper atoms, similar to that observed with other binuclear copper(II)salicylate compounds. Studies used to detect anticonvulsant activity revealed that [Cu(II)(2)(aspirinate)(4)(DMF)(2)] was an effective anticonvulsant in the MES model of seizure but ineffective against scMET-induced seizures. The monomolecular ternary binuclear [Cu(II)(2)(aspirinate)(4)(DMF)(2)] complex is more effective in inhibiting MES-induced seizures than other binuclear or mononuclear Cu(II) chelates of aspirin including: binuclear polymeric [Cu(II)(2)(aspirinate)(4)], [Cu(II)(2)(aspirinate)(4)(H(2)O)], which is anticipated to be less polymeric, and monomolecular ternary [Cu(II)(2)(aspirinate)(4)(DMSO)(2)] and [Cu(II)(aspirinate)(2)(Pyr)(2)]. These and other chelates appear to be more effective in the scMET model of seizure than [Cu(II)(2)(aspirinate)(4)(DMF)(2)]. These structure-activity relationships support the potential efficacy of Cu chelates of aspirin in treating epilepsies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号