首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to assess the biochemical and histological signs of pancreatic damage development and pancreatic recovery in the course of ischemia-reperfusion induced pancreatitis. Acute pancreatitis was induced in rats by limitation of pancreatic blood flow (PBF) in inferior splenic artery for 30 min using microvascular clips, followed by reperfusion. Rats were sacrificed at the time: 1 h, 12 h, 24 h, and 2, 3, 5, 7, 10, 14, 21 and 28 days after ischemia. PBF was measured using laser Doppler flowmeter. Plasma amylase, interleukin 1beta (IL-1beta) and interleukin 10 (IL-10) concentration, pancreatic DNA synthesis, as well as, morphological features of pancreatic damage were examined. Ischemia with reperfusion caused acute necrotizing pancreatitis followed by pancreatic regeneration. After removal of microvascular clips, PBF was reduced and the maximal fall of PBF was observed 24 h after ischemia, then PBF grew reaching the control value at 28th day. Plasma amylase activity was increased between 12th h and 3rd day with maximum at 24 h after ischemia. Also plasma IL-1beta and IL-10 were elevated with maximal value at the first and second day after ischemia, respectively. DNA synthesis was maximally reduced at the first day (by 70%) and from second day the reversion of this tendency was observed with full restoration of pancreatic DNA synthesis within four weeks. Morphological features of pancreatic tissue showed necrosis, strongly pronounced edema and leukocyte infiltration. Maximal intensity of morphological signs of pancreatic damage was observed between first and second day of reperfusion. During pancreatic regeneration between second and tenth day after ischemia the temporary appearance of chronic pancreatitis-like features such as fibrosis, acinar cell loss, formation of tubular complexes and dilatation of ducts was observed. The regeneration was completed within four weeks after pancreatitis development. We conclude that partial and temporary pancreatic ischemia followed by reperfusion causes acute necrotizing pancreatitis with subsequent regeneration within four weeks. Pancreatic repair after necrotizing pancreatitis is connected with the increase in plasma IL-10 concentration and transitory formation of tubular complexes.  相似文献   

2.
We have recently shown that treatment with calcitonin gene-related peptide (CGRP) before and during induction of acute pancreatitis exhibits a protective effect against pancreatic damage evoked by overdose of caerulein. Studies in the stomach have shown that administration of CGRP exhibits dual action on gastric mucosa, CGRP administration before induction of gastric lesions, protects gastric mucosa against damage, whereas treatment with this peptide after development of gastric ulcer exacerbates mucosal injury. These observations prompt us to determine the influence of CGRP administrated before and after induction of pancreatitis on development and evolution of pancreatic tissue damage. METHODS: Acute pancreatitis was induced by s.c. infusion of caerulein (10 microg/kg/h) for 5 h. CGRP was administrated (10 microg/kg s.c. per dose) 30 min prior to caerulein infusion and 3 h later during caerulein infusion or at the time 1 h, 4 h and 7 h after the end of caerulein infusion. Rats were sacrificed at the time 0 h, 3 h or 9 h after cessation of caerulein administration. The pancreatic blood flow (PBF), plasma activity of amylase, plasma interleukin-1beta concentration, cell proliferation, biochemical and morphological signs of pancreatitis were examined. RESULTS: Caerulein-induced pancreatitis (CIP) led to 42% decrease in DNA synthesis, 30% inhibition of PBF, as well as, a significant increase in pancreatic weight, plasma amylase activity, plasma interleukin-1beta concentration, and development of the histological signs of pancreatic damage (edema, leukocyte infiltration and vacuolization). Treatment with CGRP prior and during induction of CIP attenuated the pancreatic damage what was manifested by partial reversion of the drop in DNA synthesis (40.9+1.7 v. 34.2+2.0 dpm/microg DNA) and PBF (83+3% v. 70+3%). Increases in pancreatic weight and plasma interleukin-1beta were reduced. Morphology showed improvement of pancreatic integrity. Administration of CGRP after induction of CIP aggravated pancreatic damage what was manifested by additional decrease in PBF and DNA synthesis. Also pancreatic weight as well as histological signs of pancreatic damage were increased. CONCLUSIONS: (1) Administration of CGRP before and during induction of pancreatitis protects pancreas against pancreatic damage. (2) Treatment with CGRP after development of CIP aggravates pancreatic damage.  相似文献   

3.
Acute pancreatitis leads to pancreatic damage followed by subsequent regeneration. The aim of our study was to evaluate the presence of growth factors in the course of spontaneous pancreatic regeneration after ischemia/reperfusion (I/R)-induced pancreatitis. METHODS: In rats, I/R was evoked by clamping of splenic artery for 30 min followed by reperfusion. Rats were sacrificed 1, 5, 12 h or 1, 2, 3, 5, 7, 9 or 21 days after removal of vascular clips. Pancreatic blood flow (PBF), plasma lipase, interleukin-1beta (IL-1beta), interleukin-10, pancreatic cells proliferation and morphological signs of pancreatitis were determined. Pancreatic presence of fibroblast growth factor-2 (FGF-2), vascular endothelial growth factor (VEGF), platelet-derived growth factor-A (PDGF-A) and transforming growth factor-beta type II receptor (TGFbeta RII) was detected by immunohistochemisty. RESULTS: Exposure to I/R led to the development of acute necrotizing pancreatitis followed by regeneration. Morphological features showed maximal pancreatic damage between the 1(st) and 2(nd) day of reperfusion. It was correlated with a maximal increase in plasma lipase, and pro-inflammatory IL-1beta concentration, as well as, a reduction in PBF and pancreatic DNA synthesis. I/R increased FGF-2 content in pancreatic acinar cells between the 12(th) and 24(th) h, and between 5(th) and 9(th) day of reperfusion. At the 2(nd) day the presence of FGF-2 in pancreatic acinar cells was reduced. After I/R PDGF-A appeared in pancreatic vessels from the 12(th) h to 5 (th) day of reperfusion. PDGF-A was not observed in pancreatic acinar cells in the control or in I/R group. In pancreatic ducts, the presence of PDGF-A was reduced between the 1(st) and 3(rd), and between 7(th) and 9(th) day of reperfusion. In acinar cells, VEGF content was increased after I/R at the time between the 1(st) and 24(th) h, and between 3(rd) and 7(th) day of reperfusion. At the 2(nd) day of reperfusion, VEGF was not detected in the pancreatic acinar cells. Moreover, VEGF was found in the inflammatory infiltration, in the tubular complexes between the 2(nd) and 5(th) day, and in granulation tissue at the 9(th) day of reperfusion. In pancreatic acinar cells, I/R caused an increase in TGFbeta RII presence between the 5(th) and 24(th) h, and between 7(th) and 9(th) day of reperfusion. Between the 2(nd) and 5(th) day of reperfusion the acinar presence of TGFbeta RII was reduced. In the pancreatic ducts, the presence of TGFbeta RII was increased after I/R from the 1(st) h to 9(th) day of observation. Four weeks after induction of acute pancreatitis, the pancreatic regeneration was completed and the presence of growth factors tested returned to control value. CONCLUSIONS: The presence of FGF, VEGF, PDGF-A and TGFbeta RII is modified in the course of I/R-induced acute pancreatitis. Maximal content of FGF, VEGF and TGFbeta RII has been observed in early stage of pancreatic regeneration suggesting the involvement these factors in pancreatic recovery.  相似文献   

4.
BACKGROUND/AIM: Insulin-like growth factor-1 (IGF-1) and other growth factors overexpression was reported in acute pancreatitis. Previous studies have shown the protective effect of epidermal growth factor (EGF), Hepatocyte Growth Factor (HGF) and Fibroblast Growth Factor (FGF) in the course of experimental acute pancreatitis. The aim of our studies was to determine the effect of IGF-1 administration on the development of caerulein-induced pancreatitis. METHODS: Acute pancreatitis was induced by infusion of caerulein (10 micro/kg/h) for 5 h. IGF-1 was administrated twice at the doses: 2, 10, 50, or 100 micro/kg s.c. RESULTS: Administration of IGF-1 without induction of pancreatitis increased plasma interleukin-10 (IL-10). Infusion of caerulein led to development of acute edematous pancreatitis. Histological examination showed pancreatic edema, leukocyte infiltration and vacuolization of acinar cells. Also, acute pancreatitis led to an increase in plasma lipase and interleukin 1beta (IL-1beta) level, whereas pancreatic DNA synthesis and pancreatic blood flow were decreased. Treatment with IGF-1, during induction of pancreatitis, increased plasma IL-10 and attenuated the pancreatic damage, what was manifested by histological improvement of pancreatic integrity, the partial reversion of the drop in pancreatic DNA synthesis and pancreatic blood flow, and the reduction in pancreatitis-evoked increase in plasma amylase, lipase and IL-1beta level. Protective effect of IGF-1 administration was dose-dependent. Similar strong protective effect was observed after IGF-1 at the dose 2 x 50 and 2 x 100 microg/kg. CONCLUSIONS: (1) Administration of IGF-1 attenuates pancreatic damage in caerulein-induced pancreatitis; (2) This effect is related, at least in part, to the increase in IL-10 production, the reduction in liberation of IL-1beta and the improvement of pancreatic blood flow.  相似文献   

5.
Ischemic preconditioning has been shown to protect several organs from ischemia/reperfusion-induced injury. In the pancreas, protective effect of ischemic preconditioning has been shown against pancreatitis evoked by ischemia/reperfusion, as well as by caerulein. However, the effect of ischemic preconditioning on the course of acute pancreatic is unclear. The aim of our study was to evaluate the influence of ischemic preconditioning on pancreatic regeneration and pancreatic presence of platelet-derived growth factor-A (PDGF-A) and vascular endothelial growth factor (VEGF) in the course of ischemia/reperfusion-induced pancreatitis. METHODS: In male Wistar rats, ischemic preconditioning of the pancreas was performed by short-term clamping of celiac artery (twice for 5 min with 5 min interval). Acute pancreatitis was induced by clamping of inferior splenic artery for 30 min followed by reperfusion. Rats were sacrificed 1, 5, 12 h or 1, 2, 3, 5, 7, 9 and 21 days after the start of reperfusion. Severity of acute pancreatitis and pancreatic regeneration were determined by biochemical and morphological examination, expression of growth factors was determined by immunohistochemical analysis. RESULTS: In ischemia/reperfusion-induced pancreatitis, the pancreatic damage reached the maximal range between the first and second day of reperfusion, and was followed by subsequent pancreatic regeneration. Ischemic preconditioning alone caused mild passing pancreatic damage and an increase in plasma concentration of pro-inflammatory interleukin-1 and anti-inflammatory interleukin-10. Ischemic preconditioning applied before ischemia/reperfusion-induced pancreatitis reduced morphological and biochemical signs of the pancreatitis-evoked pancreatic damage and accelerated pancreatic regeneration. This effect was associated with improvement of pancreatic blood flow. Ischemic preconditioning, ischemia/reperfusion-induced pancreatitis and their combination increased the presence of VEGF in acinar and islet cells, and immunostaining for PDGF-A in blood vessels. This effect was maximally pronounced after combination of ischemic preconditioning plus pancreatitis and occurred earlier than after pancreatitis alone. CONCLUSIONS: Ischemic preconditioning reduces pancreatic damage and accelerates pancreatic healing in the course of ischemia/reperfusion-induced pancreatitis. This effect is associated with the increase in plasma concentration of anti-inflammatory interleukin-10, improvement of pancreatic blood flow and alteration of pancreatic immunohistochemical expression of PDGF-A and VEGF.  相似文献   

6.
Previous studies have shown that ischemic preconditioning protects several organs, including the pancreas, from ischemia/reperfusion-induced injury. The aim of the investigation was to determine whether ischemic preconditioning affects the course edematous pancreatitis. METHODS: In rats, ischemic preconditioning was performed by short-term clamping the celiac artery. Acute pancreatitis was induced by caerulein. The severity of acute pancreatitis was evaluated between the first and tenth day of inflammation. RESULTS: Ischemic preconditioning applied alone caused a mild pancreatic damage. Combination of ischemic preconditioning with caerulein attenuated the severity of pancreatitis in histological examination and reduced the pancreatitis-evoked increase in plasma lipase and pro-inflammatory interleukin-1beta. This effect was associated with an increase in plasma level of anti-inflammatory interleukin-10 and partial reversion of the pancreatitis-evoked drop in pancreatic DNA synthesis and pancreatic blood flow. In secretory studies, ischemic preconditioning in combination with induction of acute pancreatitis attenuated the pancreatitis-evoked decrease in secretory reactivity of isolated pancreatic acini to stimulation by caerulein. In the initial period of acute pancreatitis, ischemic preconditioning alone and in combination with caerulein-induced acute pancreatitis prolonged the activated partial thromboplastin time (APTT), increased plasma level of D-dimer and shortened the euglobulin clot lysis time. The protective effect of ischemic preconditioning was observed during entire time of experiment and led to acceleration of pancreatic regeneration. CONCLUSIONS: Ischemic preconditioning reduces the severity of caerulein-induced pancreatitis and accelerates pancreatic repair; and this effect is related to the activation of fibrinolysis and reduction of inflammatory process.  相似文献   

7.
Chen CC  Wang SS  Tsay SH  Lee FY  Lu RH  Chang FY  Lee SD 《Cytokine》2006,33(2):95-99
Gabexate mesilate is a synthetic protease inhibitor. The effectiveness of gabexate mesilate in patients with acute pancreatitis is controversial. Proinflammatory cytokines are associated with systemic inflammatory response syndrome (SIRS) in acute pancreatitis. A compensatory anti-inflammatory response occurs in parallel with SIRS. We investigated the effects of gabexate mesilate on acute necrotizing pancreatitis in rats, emphasizing the changes in serum levels of proinflammatory and anti-inflammatory cytokines. Acute necrotizing pancreatitis was induced by retrograde infusion of sodium taurodeoxycholate into the pancreatobiliary duct in rats. The rats were divided into three groups. Group I was given gabexate mesilate 2 mg/kg/h i.v. continuously 1 h before the induction of acute pancreatitis. Group II was given gabexate mesilate the same dose immediately after the induction of acute pancreatitis. Group III was given normal saline as the controls. Serum levels of amylase, lipase, tumor necrosis factor alpha, interleukin-6, and interleukin-10, pancreatic histopathology and hemodynamics were examined at 5h after the induction of acute pancreatitis. Gabexate mesilate significantly reduced serum levels of amylase, lipase, tumor necrosis factor alpha and interleukin-6 at 5 h. Serum levels of interleukin-10 significantly increased in Group I, as compared with Groups II and III. The severity of pancreatic histopathology, the reduction of mean arterial pressure, the volume of ascites and pancreatic wet weight/body weight ratios were also significantly improved by the administration of gabexate mesilate. The beneficial effects of gabexate mesilate on acute pancreatitis may be, in part, due to the modulation of inflammatory cytokine responses.  相似文献   

8.
The potential pathophysiological role of platelet-endothelium interactions was investigated during ischemia/reperfusion (I/R), and the effect of a selective endothelin(A) receptor antagonist (ET(A)-RA) was evaluated in an acute pancreatitis model. Acute pancreatitis was induced by warm ischemia (60 min) in Wistar rats, and its effects with and without antagonist treatment were investigated. Equivalent sham-operated animals were also studied. Microcirculatory changes were assessed by in vivo microscopy, and serum levels for lipase/amylase and histological specimens were investigated. Capillary constriction to 83.7 +/- 6.7% of sham-operated diameters was observed after 60 min of ischemia. A capillary density of 56.8 +/- 9.3% of the sham-operated group (396.3 +/- 15.8 mm(-1)) was measured after reperfusion. Stagnant leukocytes (329.5 +/- 30.4%) and platelets (337.5 +/- 32.3%) increased in postcapillary venules (P < 0.05). Administration of the ET(A)-RA significantly reduced I/R injury. Capillary diameters were maintained (101.4 +/- 4.5%), and capillary density was improved to 73.3 +/- 7.6% of sham-operated animals (P < 0.05). Stagnant leukocytes (152.3 +/- 10.6%) and platelets (207.1 +/- 19.8%) in sinusoids and postcapillary venules were reduced (P < 0.05). The extent of acute pancreatitis was reduced in the therapy group as indicated by serum lipase/amylase values and histological tissue damage (P < 0.05). Thus, ET(A)-RA therapy was effective in reducing I/R-induced pancreatitis in this experimental model.  相似文献   

9.
Stimulation of capsaicin sensitive nerves or administration of calcitonin gene-related peptide (CGRP) before induction of acute pancreatitis (AP) attenuates pancreatic damage, whereas CGRP administration after development of AP aggravates lesion of pancreatic tissue. The aim of this study was to determine the effect of prolonged activity of sensory nerves or CGRP administration on the pancreatic repair after repeated episodes of AP. Five episodes of acute caerulein-induced pancreatitis (10 microg/kg/h for 5 h s.c.) were performed at weekly intervals in rats receiving either vehicle or capsaicin at the sensory nerve stimulatory dose (0.5 mg/kg, 3 times daily), or CGRP (10 microg/kg, 3 times daily). Two weeks after the last induction of AP morphological signs of pancreatic damage, pancreatic blood flow (PBF), serum and pancreatic amylase activity, fecal chymotrypsin activity, pancreatic weight, pancreatic RNA and DNA content, as well as, serum interleukin-1beta (Il-1beta ) were assessed. Pancreata of animals receiving vehicle alone showed almost full recovery within two weeks after last episode of pancreatitis induction. In capsaicin-treated group of rats, we observed the increase in PBF by 44% and in serum Il-1beta concentration by 91%. The pancreatic amylase activity, fecal activity of chymotrypsin, pancreatic nucleic acids content and DNA synthesis were decreased. In rats treated with CGRP the alterations in PBF, serum Il-1beta concentration, as well as, in pancreatic and fecal activity of enzymes were similar to capsaicin treated group but less pronounced. We conclude that prolonged activity of capsaicin-sensitive sensory nerves and the presence of their main mediator-CGRP during pancreatic regeneration after AP leads to pancreatic functional insufficiency typical for chronic pancreatitis.  相似文献   

10.
Ghrelin attenuates the development of acute pancreatitis in rat.   总被引:12,自引:0,他引:12  
BACKGROUND: Ghrelin, a circulating growth hormone-releasing peptide isolated from human and rat stomach, stimulates growth hormone secretion, food intake and exhibits gastroprotective properties. Ghrelin is predominantly produced by a population of endocrine cells in the gastric mucosa, but its presence in bowel, pancreas, pituitary and hypothalamus has been reported. In human fetal pancreas, ghrelin is expressed in a prominent endocrine cell population. In adult pancreatic islets the population of these cell is reduced. The aim of present study was to investigate the influence of ghrelin administration on the development of acute pancreatitis. METHODS: Acute pancreatitis was induced in rat by caerulein injection. Ghrelin was administrated twice (30 min prior to the first caerulein or saline injection and 3 h later) at the doses: 2, 10 or 20 nmol/kg. Immediately after cessation of caerulein or saline injections the following parameters were measured: pancreatic blood flow, plasma lipase activity, plasma interleukin-1beta (IL-1beta) and interleukin 10 (IL-10) concentration, pancreatic DNA synthesis, and morphological signs of pancreatitis. RESULTS: Administration of ghrelin without induction of pancreatitis did not affect significantly any parameter tested. Caerulein led to the development of acute edematous pancreatitis. Treatment with ghrelin at the dose 2 nmol/kg, during induction of pancreatitis, was without effect on pancreatic histology or biochemical and functional parameters. Treatment with ghrelin at the dose 10 and 20 nmol/kg attenuated the development of pancreatitis and the effects of both doses were similar. Administration of ghrelin (10 or 20 nmol/kg) reduced inflammatory infiltration of pancreatic tissue and vacuolization of acinar cells. Also, plasma lipase activity and plasma IL-1beta concentration were reduced, and caerulein-induced fall in pancreatic DNA synthesis was reversed. Administration of ghrelin at the dose 10 and 20 nmol/kg was without effect on caerulein-induced pancreatic edema and pancreatitis-related fall in pancreatic blood flow. CONCLUSIONS: (1) Administration of ghrelin attenuates pancreatic damage in caerulein-induced pancreatitis; (2) Protective effect of ghrelin administration seems Background: Ghrelin, a circulating growth hormone-releasing peptide isolated from human and rat stomach, stimulates growth hormone secretion, food intake and exhibits gastroprotective properties. Ghrelin is predominantly produced by a population of endocrine cells in the gastric mucosa, but its presence in bowel, pancreas, pituitary and hypothalamus has been reported. In human fetal pancreas, ghrelin is expressed in a prominent endocrine cell population. In adult pancreatic islets the population of these cell is reduced. The aim of present study was to investigate the influence of ghrelin administration on the development of acute pancreatitis. Methods: Acute pancreatitis was induced in rat by caerulein injection. Ghrelin was administrated twice (30 min prior to the first caerulein or saline injection and 3 h later) at the doses: 2, 10 or 20 nmol/kg. Immediately after cessation of caerulein or saline injections the following parameters were measured: pancreatic blood flow, plasma lipase activity, plasma interleukin-1beta (IL-1beta) and interleukin 10 (IL-10) concentration, pancreatic DNA synthesis, and morphological signs of pancreatitis. Results: Administration of ghrelin without induction of pancreatitis did not affect significantly any parameter tested. Caerulein led to the development of acute edematous pancreatitis. Treatment with ghrelin at the dose 2 nmol/kg, during induction of pancreatitis, was without effect on pancreatic histology or biochemical and functional parameters. Treatment with ghrelin at the dose 10 and 20 nmol/kg attenuated the development of pancreatitis and the effects of both doses were similar. Administration of ghrelin (10 or 20 nmol/kg) reduced inflammatory infiltration of pancreatic tissue and vacuolization of acinar cells. Also, plasma lipase activity and plasma IL-1beta conc; concentration were reduced, and caerulein-induced fall in pancreatic DNA synthesis was reversed. Administration of ghrelin at the dose 10 and 20 nmol/kg was without effect on caerulein-induced pancreatic edema and pancreatitis-related fall in pancreatic blood flow. Conclusions: (1) Administration of ghrelin attenuates pancreatic damage in caerulein-induced pancreatitis; (2) Protective effect of ghrelin administration seems to be related the inhibition in inflammatory process and the reduction in liberation of pro-inflammatory IL-1beta.  相似文献   

11.
Acute Pancreatitis (AP) is a multifactorial disease. It was characterized by severe inflammation and acinar cell destruction. Thus, the present study was initiated to evaluate the role the of Cinnamic acid nanoparticles (CA-NPs) as a modulator for the redox signaling pathway involved in the development of pancreatitis. AP in rats was induced by L-arginine and exposure to gamma radiation. The pancreatic injury was evaluated using biochemical and histological parameters. Upon the oral administration of CA-NPs, both the severity of acute pancreatitis and the serum levels of amylase and lipase were decreased. Furthermore, the malondialdehyde (MDA) levels of the pancreatic tissue were significantly reduced and the depletion of glutathione was considerably restored. The injury and apoptosis of pancreatic tissues were markedly improved by the reduction of the caspase-3 levels. Additionally, the alleviation of pancreatic oxidative damage by CA-NPs was accompanied by a down-regulation of the NLRP3, NF-κB, and ASK1/MAPK signaling pathways. Collectively, the current findings showed that CA-NPs could protect the pancreatic acinar cell from injury not only by its antioxidant, anti-inflammatory effect but also by modulation of the redox-sensitive signal transduction pathways contributed to acute pancreatitis severity. Accordingly, cinnamic acid nanoparticles have therapeutic potential for the management of acute pancreatitis.  相似文献   

12.
13.
Acute pancreatitis is a common, and as yet incurable, clinical condition, the incidence of which has been increasing over recent years. Chemokines are believed to play a key role in the pathogenesis of acute pancreatitis. We have earlier shown that treatment with a neutralizing antibody against CINC, a CXC chemokine, protects rats against acute pancreatitis-associated lung injury. The hexapeptide antileukinate (Ac-RRWWCR-NH2) is a potent inhibitor of binding of CXC chemokines to the receptors (CXCR2). This study aims to evaluate the effect of treatment with antileukinate on acute pancreatitis and the associated lung injury in mice. Acute pancreatitis was induced in adult male Swiss mice by hourly intra-peritoneal injections of caerulein (50 microg/kg/h) for 10 h. Antileukinate (52.63 mg/kg, s.c.) was administered to mice either 30 min before or 1 h after starting caerulein injections. Severity of acute pancreatitis was determined by measuring plasma amylase, pancreatic water content, pancreatic myeloperoxidase (MPO) activity, pancreatic macrophage inflammatory protein-2 (MIP-2) levels and histological examination of sections of pancreas. A rise in lung MPO activity and histological evidence of lung injury in lung sections was used as criteria for pancreatitis-associated lung injury. Treatment with antileukinate protected mice against acute pancreatitis and associated lung injury, showing thereby that anti-chemokine therapy may be of value in this condition.  相似文献   

14.
Earlier studies have shown that mice deficient in NK1 receptors or its ligand, substance P, are protected against acute pancreatitis and associated lung injury. In the current study, the protective effect of NK1 receptor blockage against acute pancreatitis and associated lung injury was investigated, using a specific receptor antagonist, CP-96345. Acute pancreatitis was induced in mice by intraperitoneal (i.p.) injections of caerulein. Substance P levels in plasma, pancreas, and lungs were found to be elevated in a caerulein dose-dependent manner. Mice treated with CP-96345, either prophylactically, or therapeutically, were protected against acute pancreatitis and associated lung injury as evident by attenuation in plasma amylase, pancreatic and pulmonary myeloperoxidase activities, and histological evidence of pancreatic and pulmonary injuries. Pulmonary microvascular permeability was also reduced as a result of CP-96345 treatment. These results point to a key role of NK1 receptors in acute pancreatitis and associated lung injury.  相似文献   

15.
目的:研究L-精氨酸和雨蛙素分别诱导SD大鼠急性胰腺炎(AP)模型的差异,为进一步研究急性胰腺炎提供可靠模型。方法:L-精氨酸采用3次腹腔注射,间隔1 h,雨蛙素采用7次腹腔注射,间隔1 h诱导急性胰腺炎模型。碘-淀粉比色法检测血清淀粉酶水平,血清脂肪酶测定试剂盒检测脂肪酶活性,胰腺组织切片观察组织的破坏情况,TUNEL法检测腺泡细胞凋亡。结果:①L-精氨酸诱导的大鼠模型血清淀粉酶和脂肪酶水平在诱导成功后6 h即显著升高,蛙皮素诱导的大鼠模型在12 h显著升高,与正常对照组比较均有统计学差异(P<0.05),提示急性胰腺炎建模成功。②L-精氨酸诱导的模型中胰腺组织结构破坏,有大片出血坏死灶、大量炎细胞浸润;而蛙皮素诱导的模型组织腺泡、间质水肿,炎性细胞浸润,少量散在出血坏死灶,血管变化常不明显,渗液清亮。结论:L-精氨酸和雨蛙素均能诱导SD大鼠急性胰腺炎模型,L-精氨酸诱导重症急性胰腺炎,雨蛙素诱导轻型急性胰腺炎,是研究急性胰腺炎的良好模型。  相似文献   

16.
Central neuropeptides play a role in many physiological functions through the autonomic nervous system. We have recently demonstrated that central injection of a thyrotropin-releasing hormone (TRH) analog increases pancreatic blood flow through vagal and nitric oxide-dependent pathways. In this study, the central effect of a TRH analog on experimental acute pancreatitis was investigated in rats. Acute pancreatitis was induced by two intraperitoneal injections of cerulein (40 microg/kg) at 1-h interval. Either stable TRH analog, RX 77368 (5-100 ng), or saline was injected intracisternally 15 min before the first cerulein injection under ether anesthesia. Serum amylase level was measured before and 5 h after the first cerulein injection. Pancreatic wet/dry weight ratio and histological changes were also evaluated. Intracisternal TRH analog inhibited cerulean-induced elevation of serum amylase level, increase in pancreatic wet/dry weight ratio and pancreatic histological changes, such as interstitial edema, inflammation and vacuolization. The pancreatic cytoprotection induced by central TRH analog was abolished by subdiaphragmatic vagotomy and N(G)-nitro-L-arginine-methyl ester (L-NAME), but not by 6-hydroxydopamine (6-OHDA). Intravenous administration of the TRH analog did not influence cerulein-induced acute pancreatitis. These results indicate that the TRH analog acts in the central nervous system to protect against acute pancreatitis through vagal and nitric oxide-dependent pathways.  相似文献   

17.
The risk of developing pancreatitis is elevated in type 2 diabetes and obesity. Cases of pancreatitis have been reported in type 2 diabetes patients treated with GLP-1 (GLP-1R) receptor agonists. To examine whether the GLP-1R agonist exenatide potentially induces or modulates pancreatitis, the effect of exenatide was evaluated in normal or diabetic rodents. Normal and diabetic rats received a single exenatide dose (0.072, 0.24, and 0.72 nmol/kg) or vehicle. Diabetic ob/ob or HF-STZ mice were infused with exenatide (1.2 and 7.2 nmol·kg(-1)·day(-1)) or vehicle for 4 wk. Post-exenatide treatment, pancreatitis was induced with caerulein (CRN) or sodium taurocholate (ST), and changes in plasma amylase and lipase were measured. In ob/ob mice, plasma cytokines (IL-1β, IL-2, IL-6, MCP-1, IFNγ, and TNFα) and pancreatitis-associated genes were assessed. Pancreata were weighed and examined histologically. Exenatide treatment alone did not modify plasma amylase or lipase in any models tested. Exenatide attenuated CRN-induced release of amylase and lipase in normal rats and ob/ob mice but did not modify the response to ST infusion. Plasma cytokines and pancreatic weight were unaffected by exenatide. Exenatide upregulated Reg3b but not Il6, Ccl2, Nfkb1, or Vamp8 expression. Histological analysis revealed that the highest doses of exenatide decreased CRN- or ST-induced acute inflammation, vacuolation, and acinar single cell necrosis in mice and rats, respectively. Ductal cell proliferation rates were low and similar across all groups of ob/ob mice. In conclusion, exenatide did not modify plasma amylase and lipase concentrations in rodents without pancreatitis and improved chemically induced pancreatitis in normal and diabetic rodents.  相似文献   

18.
Endotoxemia in newborn rats attenuates acute pancreatitis at adult age.   总被引:2,自引:0,他引:2  
Bacterial endotoxin (lipopolysaccharide, LPS), at high concentration is responsible for sepsis, and neonatal mortality, however low concentration of LPS protected the pancreas against acute damage. The aim of this study was to investigate the effect of exposition of suckling rats to LPS on the course of acute pancreatitis at adult age. Suckling rat (30-40g) received intraperitoneal (i.p.) injection of saline (control) or LPS from Escherichia coli or Salmonella typhi (5, 10 or 15 mg/kg-day) during 5 consecutive days. Two months later these rats have been subjected to i.p. cearulein infusion (25 microg/kg) to produce caerulein-induced pancreatitis (CIP). The following parameters were tested: pancreatic weight and morphology, plasma amylase and lipase activities, interleukin 1beta (IL-1 beta), interleukin 6 (IL-6), and interleukin 10 (IL-10) plasma concentrations. Pancreatic concentration of superoxide dismutase (SOD) and lipid peroxidation products; malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) have been also measured. Caerulein infusion produced CIP in all animals tested, that was confirmed by histological examination. In the rats, which have been subjected in the neonatal period of life to LPS at doses 10 or 15 mg/kg-day x 5 days, all manifestations of CIP have been reduced. In these animals acute inflammatory infiltration of pancreatic tissue and pancreatic cell vacuolization have been significantly diminished. Also pancreatic weight, plasma lipase and alpha-amylase activities, as well as plasma concentrations of IL-1beta and IL-6 have been markedly decreased, whereas plasma anti-inflammatory IL-10 concentration was significantly increased in these animals as compared to the control rats, subjected in the infancy to saline injection instead of LPS. Caerulein-induced fall in pancreatic SOD concentration was reversed and accompanied by significant reduction of MDA + 4 HNE in the pancreatic tissue. The effects of LPS derived from E. coli or S. typhi were similar. Pretreatment of suckling rats with LPS at dose of 10 mg/kg-day x 5 days resulted in the most prominent attenuation of acute pancreatitis at adult age, whereas LPS at dose of 5 mg/kg-day x 5 days given to the neonatal rats failed to affect significantly acute pancreatitis induced in these animals 2 months later. We conclude that: 1/ Prolonged exposition of suckling rats to bacterial endotoxin attenuated acute pancreatitis induced in these animals at adult age. 2/ This effect could be related to the increased concentration of antioxidative enzyme SO in the pancreatic tissue and to the modulation of cytokines production in these animals.  相似文献   

19.
We hypothesized that neurogenic inflammation is a common final pathway for parenchymal inflammation in pancreatitis and evaluated the role of primary sensory neurons in secretagogue-induced and obstructive pancreatitis. Neonatal rats received either the primary sensory neuron-denervating agent capsaicin (50 mg/kg s.c.) or vehicle. At 8 wk of age, pancreatitis was produced by six hourly injections of caerulein (50 microg/kg i.p.) or by common pancreaticobiliary duct ligation (CPBDL). The severity of pancreatitis was assessed by serum amylase, pancreatic myeloperoxidase (MPO) activity, histological grading, pancreatic plasma extravasation, and wet-to-dry weight ratio. Caerulein significantly increased MPO activity and wet-to-dry weight ratio, produced histological evidence of edematous pancreatitis, induced plasma extravasation, and caused hyperamylasemia. CPBDL increased MPO activity and produced histological evidence of pancreatitis. Neonatal capsaicin administration significantly reduced tissue MPO levels, histological severity scores, and wet-to-dry weight ratio and abolished plasma extravasation. These results demonstrate that primary sensory neurons play a significant role in the inflammatory cascade in experimental pancreatitis and appear to constitute a common final pathway for pancreatic parenchymal inflammation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号