首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Coronavirus membrane (M) proteins are capable of interacting with nucleocapsid (N) and envelope (E) proteins. Severe acute respiratory syndrome coronavirus (SARS-CoV) M co-expression with either N or E is sufficient for producing virus-like particles (VLPs), although at a lower level compared to M, N and E co-expression. Whether E can release from cells or E/N interaction exists so as to contribute to enhanced VLP production is unknown. It also remains to be determined whether E palmitoylation or disulfide bond formation plays a role in SARS-CoV virus assembly.

Results

SARS-CoV N is released from cells through an association with E protein-containing vesicles. Further analysis suggests that domains involved in E/N interaction are largely located in both carboxyl-terminal regions. Changing all three E cysteine residues to alanines did not exert negative effects on E release, E association with N, or E enhancement of VLP production, suggesting that E palmitoylation modification or disulfide bond formation is not required for SARS-CoV virus assembly. We found that removal of the last E carboxyl-terminal residue markedly affected E release, N association, and VLP incorporation, but did not significantly compromise the contribution of E to efficient VLP production.

Conclusions

The independence of the SARS-CoV E enhancement effect on VLP production from its viral packaging capacity suggests a distinct SARS-CoV E role in virus assembly.  相似文献   

2.
The severe acute respiratory syndrome coronavirus (SARS-CoV) was recently identified as the etiology of SARS. The virus particle consists of four structural proteins: spike (S), small envelope (E), membrane (M), and nucleocapsid (N). Recognition of a specific sequence, termed the packaging signal (PS), by a virus N protein is often the first step in the assembly of viral RNA, but the molecular mechanisms involved in the assembly of SARS-CoV RNA are not clear. In this study, Vero E6 cells were cotransfected with plasmids encoding the four structural proteins of SARS-CoV. This generated virus-like particles (VLPs) of SARS-CoV that can be partially purified on a discontinuous sucrose gradient from the culture medium. The VLPs bearing all four of the structural proteins have a density of about 1.132 g/cm(3). Western blot analysis of the culture medium from transfection experiments revealed that both E and M expressed alone could be released in sedimentable particles and that E and M proteins are likely to form VLPs when they are coexpressed. To examine the assembly of the viral genomic RNA, a plasmid representing the GFP-PS580 cDNA fragment encompassing the viral genomic RNA from nucleotides 19715 to 20294 inserted into the 3' noncoding region of the green fluorescent protein (GFP) gene was constructed and applied to the cotransfection experiments with the four structural proteins. The SARS-CoV VLPs thus produced were designated VLP(GFP-PS580). Expression of GFP was detected in Vero E6 cells infected with the VLP(GFP-PS580), indicating that GFP-PS580 RNA can be assembled into the VLPs. Nevertheless, when Vero E6 cells were infected with VLPs produced in the absence of the viral N protein, no green fluorescence was visualized. These results indicate that N protein has an essential role in the packaging of SARS-CoV RNA. A filter binding assay and competition analysis further demonstrated that the N-terminal and C-terminal regions of the SARS-CoV N protein each contain a binding activity specific to the viral RNA. Deletions that presumably disrupt the structure of the N-terminal domain diminished its RNA-binding activity. The GFP-PS-containing SARS-CoV VLPs are powerful tools for investigating the tissue tropism and pathogenesis of SARS-CoV.  相似文献   

3.
Modular organization of SARS coronavirus nucleocapsid protein   总被引:1,自引:0,他引:1  
The SARS-CoV nucleocapsid (N) protein is a major antigen in severe acute respiratory syndrome. It binds to the viral RNA genome and forms the ribonucleoprotein core. The SARS-CoV N protein has also been suggested to be involved in other important functions in the viral life cycle. Here we show that the N protein consists of two non-interacting structural domains, the N-terminal RNA-binding domain (RBD) (residues 45–181) and the C-terminal dimerization domain (residues 248–365) (DD), surrounded by flexible linkers. The C-terminal domain exists exclusively as a dimer in solution. The flexible linkers are intrinsically disordered and represent potential interaction sites with other protein and protein-RNA partners. Bioinformatics reveal that other coronavirus N proteins could share the same modular organization. This study provides information on the domain structure partition of SARS-CoV N protein and insights into the differing roles of structured and disordered regions in coronavirus nucleocapsid proteins. CK Chang and SC Sue contributed equally to this project.  相似文献   

4.
The production of virus-like particles (VLPs) constitutes a relevant and safe model to study molecular determinants of virion egress. The minimal requirement for the assembly of VLPs for the coronavirus responsible for severe acute respiratory syndrome in humans (SARS-CoV) is still controversial. Recent studies have shown that SARS-CoV VLP formation depends on either M and E proteins or M and N proteins. Here we show that both E and N proteins must be coexpressed with M protein for the efficient production and release of VLPs by transfected Vero E6 cells. This suggests that the mechanism of SARS-CoV assembly differs from that of other studied coronaviruses, which only require M and E proteins for VLP formation. When coexpressed, the native envelope trimeric S glycoprotein is incorporated onto VLPs. Interestingly, when a fluorescent protein tag is added to the C-terminal end of N or S protein, but not M protein, the chimeric viral proteins can be assembled within VLPs and allow visualization of VLP production and trafficking in living cells by state-of-the-art imaging technologies. Fluorescent VLPs will be used further to investigate the role of cellular machineries during SARS-CoV egress.  相似文献   

5.
Expression of the budding yeast retrotransposon Ty3 results in production of viruslike particles (VLPs) and retrotransposition. The Ty3 major structural protein, Gag3, similar to retrovirus Gag, is processed into capsid, spacer, and nucleocapsid (NC) during VLP maturation. The 57-amino-acid Ty3 NC protein has 17 basic amino acids and contains one copy of the CX2CX4HX4C zinc-binding motif found in retrovirus NC proteins. Ty3 RNA, protein, and VLPs accumulate in clusters associated with RNA processing bodies (P bodies). This study investigated the role of the NC domain in Ty3-P body clustering and VLP assembly. Fifteen Ty3 NC Ala substitution and deletion mutants were examined using transposition, immunoblot, RNA protection, cDNA synthesis, and multimerization assays. Localization of Ty3 proteins and VLPs was characterized microscopically. Substitutions of each of the conserved residues of the zinc-binding motif resulted in the loss of Ty3 RNA packaging. Substitution of the first two of four conserved residues in this motif caused the loss of Ty3 RNA and protein clustering with P bodies and disrupted particle formation. NC was shown to be a mediator of formation of Ty3 RNA foci and association of Ty3 RNA and protein with P bodies. Mutations that disrupted these NC functions resulted in various degrees of Gag3 nuclear localization and a spectrum of different particle states. Our findings are consistent with the model that Ty3 assembly is associated with P-body components. We hypothesize that the NC domain acts as a molecular switch to control Gag3 conformational states that affect both assembly and localization.  相似文献   

6.
Expression of a retroviral protein, Gag, in mammalian cells is sufficient for assembly of immature virus-like particles (VLPs). VLP assembly is mediated largely by interactions between the capsid (CA) domains of Gag molecules but is facilitated by binding of the nucleocapsid (NC) domain to nucleic acid. We have investigated the role of SP1, a spacer between CA and NC in HIV-1 Gag, in VLP assembly. Mutational analysis showed that even subtle changes in the first 4 residues of SP1 destroy the ability of Gag to assemble correctly, frequently leading to formation of tubes or other misassembled structures rather than proper VLPs. We also studied the conformation of the CA-SP1 junction region in solution, using both molecular dynamics simulations and circular dichroism. Consonant with nuclear magnetic resonance (NMR) studies from other laboratories, we found that SP1 is nearly unstructured in aqueous solution but undergoes a concerted change to an α-helical conformation when the polarity of the environment is reduced by addition of dimethyl sulfoxide (DMSO), trifluoroethanol, or ethanol. Remarkably, such a coil-to-helix transition is also recapitulated in an aqueous medium at high peptide concentrations. The exquisite sensitivity of SP1 to mutational changes and its ability to undergo a concentration-dependent structural transition raise the possibility that SP1 could act as a molecular switch to prime HIV-1 Gag for VLP assembly. We suggest that changes in the local environment of SP1 when Gag oligomerizes on nucleic acid might trigger this switch.  相似文献   

7.
It is now well accepted that the structural protein Pr55(Gag) is sufficient by itself to produce HIV-1 virus-like particles (VLPs). This polyprotein precursor contains different domains including matrix, capsid, SP1, nucleocapsid, SP2 and p6. In the present study, we wanted to determine by mutagenesis which region(s) is essential to the production of VLPs when Pr55(Gag) is inserted in a mammalian expression vector, which allows studying the protein of interest in the absence of other viral proteins. To do so, we first studied a minimal Pr55(Gag) sequence called Gag min that was used previously. We found that Gag min fails to produce VLPs when expressed in an expression vector instead of within a molecular clone. This failure occurs early in the cell at the assembly of viral proteins. We then generated a series of deletion and substitution mutants, and examined their ability to produce VLPs by combining biochemical and microscopic approaches. We demonstrate that the matrix region is not necessary, but that the efficiency of VLP production depends strongly on the presence of its basic region. Moreover, the presence of the N-terminal domain of capsid is required for VLP production when Gag is expressed alone. These findings, combined with previous observations indicating that HIV-1 Pr55(Gag)-derived VLPs act as potent stimulators of innate and acquired immunity, make the use of this strategy worth considering for vaccine development.  相似文献   

8.
 Co(II) and Zn(II) binding constants have been measured for binding to the HIV-1 nucleocapsid N-terminal metal binding domain (residues 1–18), using competition titration methods and monitoring Co(II) binding by visible absorbance spectroscopy. Enthalpies for binding were directly measured by isothermal titration colorimetry. The results are compared with recent studies of related systems, including a study of Zn(II) binding by the full length protein. Received: 1 December 1998 / Accepted: 31 December 1998  相似文献   

9.
Luo H  Chen J  Chen K  Shen X  Jiang H 《Biochemistry》2006,45(39):11827-11835
Coronavirus nucleocapsid (N) protein envelops the genomic RNA to form long helical nucleocapsid during virion assembly. Since N protein oligomerization is usually a crucial step in this process, characterization of such an oligomerization will help in the understanding of the possible mechanisms for nucleocapsid formation. The N protein of severe acute respiratory syndrome coronavirus (SARS-CoV) was recently discovered to self-associate by its carboxyl terminus. In this study, to further address the detailed understanding of the association feature of this C-terminus, its oligomerization was systematically investigated by size exclusion chromatography and chemical cross-linking assays. Our results clearly indicated that the C-terminal domain of SARS-CoV N protein could form not only dimers but also trimers, tetramers, and hexamers. Further analyses against six deletion mutants showed that residues 343-402 were necessary and sufficient for this C-terminus oligomerization. Although this segment contains many charged residues, differences in ionic strength have no effects on its oligomerization, indicating the absence of electrostatic force in SARS-CoV N protein C-terminus self-association. Gel shift assay results revealed that the SARS-CoV N protein C-terminus is also able to associate with nucleic acids and residues 363-382 are the responsible interaction partner, demonstrating that this fragment might involve genomic RNA binding sites. The fact that nucleic acid binding could promote the SARS-CoV N protein C-terminus to form high-order oligomers implies that the oligomeric SARS-CoV N protein probably combines with the viral genomic RNA in triggering long nucleocapsid formation.  相似文献   

10.
Luo H  Ye F  Chen K  Shen X  Jiang H 《Biochemistry》2005,44(46):15351-15358
The nucleocapsid (N) protein of SARS coronavirus (SARS-CoV) is reported to function in encapsidating the viral genomic RNA into helical nucleocapsid, and its self-association is believed to be vital in coating the viral genomic RNA. Characterization of SARS-CoV N multimerization may thereby help us better understand the coronavirus assembly. In the current work, using the yeast two-hybrid technique, an unexpected interaction between residues 1-210 and 211-290 (central region) of the SARS-CoV N protein was detected, and SPR results further revealed that the SR-rich motif (amino acids 183-197) of SARS-CoV N protein is responsible for such an interaction. Chemical cross-linking and gel-filtration analyses indicated that the residues 283-422 of the SARS-CoV N protein have multimeric ability, although the full-length N protein is prone to exist predominantly as dimers. In addition, the multimeric ability of the C-terminal domain of SARS-CoV N protein could be weakened by the SR-rich motif interaction with the central region (amino acids 211-290). All of these data suggested that the SR-rich motif of the SARS-CoV N protein might play an import role in the transformation of the SARS-CoV N protein between the dimer and multimer during its binding to its central region for self-association or dissociation. This current paper will hopefully provide some new ideas in studying SARS-CoV N multimerization.  相似文献   

11.
The human immunodeficiency virus (HIV) Pr55Gag precursor proteins direct virus particle assembly. While Gag-Gag protein interactions which affect HIV assembly occur in the capsid (CA) domain of Pr55Gag, the nucleocapsid (NC) domain, which functions in viral RNA encapsidation, also appears to participate in virus assembly. In order to dissect the roles of the NC domain and the p6 domain, the C-terminal Gag protein domain, we examined the effects of NC and p6 mutations on virus assembly and RNA encapsidation. In our experimental system, the p6 domain did not appear to affect virus release efficiency but p6 deletions and truncations reduced the specificity of genomic HIV-1 RNA encapsidation. Mutations in the nucleocapsid region reduced particle release, especially when the p2 interdomain peptide or the amino-terminal portion of the NC region was mutated, and NC mutations also reduced both the specificity and the efficiency of HIV-1 RNA encapsidation. These results implicated a linkage between RNA encapsidation and virus particle assembly or release. However, we found that the mutant ApoMTRB, in which the nucleocapsid and p6 domains of HIV-1 Pr55Gag were replaced with the Bacillus subtilis MtrB protein domain, released particles efficiently but packaged no detectable RNA. These results suggest that, for the purposes of virus-like particle assembly and release, NC can be replaced by a protein that does not appear to encapsidate RNA.  相似文献   

12.
The severe acute respiratory syndrome coronavirus (SARS-CoV) membrane protein is an abundant virion protein, and its interaction with the nucleocapsid protein is crucial for viral assembly and morphogenesis. Although the interacting region in the nucleocapsid protein was mapped to residues 168-208, the interacting region in the membrane protein and the interaction nature are still unclear. In this work, by using yeast two-hybrid and surface plasmon resonance techniques, the residues 197-221 of the membrane protein and the residues 351-422 of the nucleocapsid protein were determined to be involved in their interaction. Sequence analysis revealed that these two fragments are highly charged at neutral pH, suggesting that their interaction may be of ionic nature. Kinetic assays indicated that the endodomain (aa102-221) of the membrane protein interacts with the nucleocapsid protein with high affinity (K(D)=0.55+/-0.04 microM), however, this interaction could be weakened greatly by acidification, higher salt concentration (400 mM NaCl) and divalent cation (50 mM Ca2+), which suggests that electrostatic attraction might play an important role in this interaction. In addition, it is noted that two highly conserved amino acids (L218 and L219) in the membrane protein are not involved in this interaction. Here, we show that electrostatic interactions between the carboxyl termini of SARS-CoV membrane protein and nucleocapsid protein largely mediate the interaction of these two proteins. These results might facilitate therapeutic strategies aiming at the disruption of the association between SARS-CoV membrane and nucleocapsid proteins.  相似文献   

13.
One immunization with murine polyomavirus (MPyV) VP1 virus-like particles containing a fusion protein between MPyV VP2 and the extra cellular and transmembrane domain of Her2 (Her21–683PyVLPs) efficiently protects BALB/c mice from outgrowth of the Her2 expressing tumor D2F2/E2. To possibly enhance the anti-Her2 immune response and abrogate the induced anti-VLP antibody response, immunization with murine dendritic cells (DCs) loaded with Her21–683PyVLPs was performed. Mice were immunized once or more with 5 or 50 μg Her21–683PyVLPs alone or loaded on DCs, and challenged 14 days after the last immunization with a lethal dose of Her2-positive D2F2/E2 cells. Mice were protected from tumor outgrowth, when immunized only once with 5 or 50 μg Her21–683PyVLPs loaded on DCs, or 50 μg of Her21–683PyVLPs alone, whereas immunization once or more with 5 μg of Her21–683PyVLPs alone only protected half of the mice. Immunization with recombinant Her2 protein alone, or loaded on DCs, did not induce tumor immunity. Using both immunization strategies, Her2-specific T cell immunity was demonstrated, while Her2-specific antibodies were not detected. Loading VLPs on DCs reduced anti-VLP antibodies sixfold, but did not influence the efficiency of subsequent immunizations. Notably, DC maturation by Her21–683PyVLPs in vitro was not demonstrated although the IL-12 production was significantly increased. In conclusion, loading of VLPs on DCs can enhance specific VLP immunization considerably.  相似文献   

14.
We introduced mutations into the HIV-1 major homology region (MHR; capsids 153-172) and adjacent C-terminal region to analyze their effects on virus-like particle (VLP) assembly, membrane affinity, and the multimerization of the Gag structural protein. Results indicate that alanine substitutions at K158, F168 or E175 significantly diminished VLP production. All assembly-defective Gag mutants had markedly reduced membrane-binding capacities, but results from a velocity sedimentation analysis suggest that most of the membrane-bound Gag proteins were present, primarily in a higher-order multimerized form. The membrane-binding capacity of the K158A, F168A, and E175A Gag proteins increased sharply upon removal of the MA globular domain. While demonstrating improved multimerization capability, the two MA-deleted versions of F168A and E175A did not show marked improvement in VLP production, presumably due to a defect in association with the raft-like membrane domain. However, K158A bound to detergent-resistant raft-like membrane; this was accompanied by noticeably improved VLP production following MA removal. Our results suggest that the HIV-1 MHR and adjacent downstream region facilitate multimerization and tight Gag packing. Enhanced Gag multimerization may help expose the membrane-binding domain and thus improve Gag membrane binding, thereby promoting Gag multimerization into higher-order assembly products.  相似文献   

15.
Cells expressing the yeast retrotransposon Ty3 form concentrated foci of Ty3 proteins and RNA within which virus-like particle (VLP) assembly occurs. Gag3, the major structural protein of the Ty3 retrotransposon, is composed of capsid (CA), spacer (SP), and nucleocapsid (NC) domains analogous to retroviral domains. Unlike the known SP domains of retroviruses, Ty3 SP is highly acidic. The current studies investigated the role of this domain. Although deletion of Ty3 SP dramatically reduced retrotransposition, significant Gag3 processing and cDNA synthesis occurred. Mutations that interfered with cleavage at the SP-NC junction disrupted CA-SP processing, cDNA synthesis, and electron-dense core formation. Mutations that interfered with cleavage of CA-SP allowed cleavage of the SP-NC junction, production of electron-dense cores, and cDNA synthesis but blocked retrotransposition. A mutant in which acidic residues of SP were replaced with alanine failed to form both Gag3 foci and VLPs. We propose a speculative "spring" model for Gag3 during assembly. In the first phase during concentration of Gag3 into foci, intramolecular interactions between negatively charged SP and positively charged NC domains of Gag3 limit multimerization. In the second phase, the NC domain binds RNA, and the bound form is stabilized by intermolecular interactions with the SP domain. These interactions promote CA domain multimerization. In the third phase, a negatively charged SP domain destabilizes the remaining CA-SP shell for cDNA release.  相似文献   

16.
We present a cell-free protein synthesis (CFPS) platform and a one-step, direct conjugation scheme for producing virus-like particle (VLP) assemblies that display multiple ligands including proteins, nucleic acids, and other molecules. Using a global methionine replacement approach, we produced bacteriophage MS2 and bacteriophage Qβ VLPs with surface-exposed methionine analogues (azidohomoalanine and homopropargylglycine) containing azide and alkyne side chains. CFPS enabled the production of VLPs with yields of ~ 300 μg/mL and with 85% incorporation of methionine analogues without requiring a methionine auxotrophic production host. We then directly conjugated azide- and alkyne-containing proteins (including an antibody fragment and the granulocyte-macrophage colony stimulating factor, or GM-CSF), nucleic acids and poly(ethylene glycol) chains to the VLP surface using Cu(I) catalyzed click chemistry. The GM-CSF protein, after conjugation to VLPs, was shown to partially retain its ability to stimulate the proliferation of cells. Conjugation of GM-CSF to VLPs resulted in a 3-5-fold reduction in its bioactivity. The direct attachment scheme facilitated conjugation of three different ligands to the VLPs in a single step, and enabled control of the relative ratios and surface abundance of the attached species. This platform can be used for the production of novel VLP bioconjugates for use as drug delivery vehicles, diagnostics, and vaccines.  相似文献   

17.
The retroviral structural protein, Gag, is capable of independently assembling into virus-like particles (VLPs) in living cells and in vitro. Immature VLPs of human immunodeficiency virus type 1 (HIV-1) and of Rous sarcoma virus (RSV) are morphologically distinct when viewed by transmission electron microscopy (TEM). To better understand the nature of the Gag-Gag interactions leading to these distinctions, we constructed vectors encoding several RSV/HIV-1 chimeric Gag proteins for expression in either insect cells or vertebrate cells. We used TEM, confocal fluorescence microscopy, and a novel correlative scanning EM (SEM)-confocal microscopy technique to study the assembly properties of these proteins. Most chimeric proteins assembled into regular VLPs, with the capsid (CA) domain being the primary determinant of overall particle diameter and morphology. The presence of domains between matrix and CA also influenced particle morphology by increasing the spacing between the inner electron-dense ring and the VLP membrane. Fluorescently tagged versions of wild-type RSV, HIV-1, or murine leukemia virus Gag did not colocalize in cells. However, wild-type Gag proteins colocalized extensively with chimeric Gag proteins bearing the same CA domain, implying that Gag interactions are mediated by CA. A dramatic example of this phenomenon was provided by a nuclear export-deficient chimera of RSV Gag carrying the HIV-1 CA domain, which by itself localized to the nucleus but relocalized to the cytoplasm in the presence of wild type HIV-1 Gag. Wild-type and chimeric Gag proteins were capable of coassembly into a single VLP as viewed by correlative fluorescence SEM if, and only if, the CA domain was derived from the same virus. These results imply that the primary selectivity of Gag-Gag interactions is determined by the CA domain.  相似文献   

18.
The RNA packaging process for retroviruses involves a recognition event of the genome-length viral RNA by the viral Gag polyprotein precursor (PrGag), an important step in particle morphogenesis. The mechanism underlying this genome recognition event for most retroviruses is thought to involve an interaction between the nucleocapsid (NC) domain of PrGag and stable RNA secondary structures that form the RNA packaging signal. Presently, there is limited information regarding PrGag-RNA interactions involved in RNA packaging for the deltaretroviruses, which include bovine leukemia virus (BLV) and human T-cell leukemia virus types 1 and 2 (HTLV-1 and -2, respectively). To address this, alanine-scanning mutagenesis of BLV PrGag was done with a virus-like particle (VLP) system. As predicted, mutagenesis of conserved basic residues as well as residues of the zinc finger domains in the BLV NC domain of PrGag revealed residues that led to a reduction in viral RNA packaging. Interestingly, when conserved basic residues in the BLV MA domain of PrGag were mutated to alanine or glycine, but not when mutated to another basic residue, reductions in viral RNA packaging were also observed. The ability of PrGag to be targeted to the cell membrane was not affected by these mutations in MA, indicating that PrGag membrane targeting was not associated with the reduction in RNA packaging. These observations indicate that these basic residues in the MA domain of PrGag influence RNA packaging, without influencing Gag membrane localization. It was further observed that (i) a MA/NC double mutant had a more severe RNA packaging defect than either mutant alone, and (ii) RNA packaging was not found to be associated with transient localization of Gag in the nucleus. In summary, this report provides the first direct evidence for the involvement of both the BLV MA and NC domains of PrGag in viral RNA packaging.  相似文献   

19.
Development of HIV/AIDS vaccine using chimeric gag-env virus-like particles   总被引:4,自引:0,他引:4  
We attempted to develop a candidate HIV/AIDS vaccine, by using unprocessed HIV-2 gag pr45 precursor protein. We found that a 45 kDa unprocessed HIV-2 gag precursor protein (pr45), with a deletion of a portion of the viral protease, assembles as virus-like particles (VLP). We mapped the functional domain of HIV-2 gag VLP formation in order to find the minimum length of gag protein to form VLP. A series of deletion mutants was constructed by sequentially removing the C-terminal region of HIV-2 gag precursor protein and expressed truncated genes in Spodoptera frugiperda (SF) cells by infecting recombinant baculoviruses. We found that deletion of up to 143 amino acids at the C-terminus of HIV-2 gag, leaving 376 amino acids at the N-terminus of the protein, did not affect VLP formation. There is a proline-rich region at the amino acid positions 373 to 377 of HIV-2 gag, and replacement of these proline residues by site-directed mutagenesis completely abolished VLP assembly. Our data demonstrate that the C-terminal p12 region of HIV-2 gag precursor protein, and zinc finger domains, are dispensable for gag VLP assembly, but the presence of at least one of the three prolines at amino acid positions 373, 375 or 377 of HIV-2NIH-Z is required for VLP formation. Animals immunized with these gag particles produced high titer antibodies and Western blot analyses showed that anti-gag pr45 rabbit sera react with p17, p24 and p55 gag proteins of HIV-1. We then constructed chimeric gag genes, which carry the hypervariable V3 region of HIV-1 gp120, because the V3 loop is known to interact with chemokine receptor as a coreceptor, and known to induce the major neutralizing antibodies and stimulate the cytoxic T lymphocyte responses in humans and mice. We expressed chimeric fusion protein of HIV-2 gag with 3 tandem copies of consensus V3 domain that were derived from 245 different isolates of HIV-1. In addition, we also constructed and expressed chimeric fusion protein that contains HIV-2 gag with V3 domains of HIV-1IIIB, HIV-1MN, HIV-1SF2 and HIV-1RF. The chimeric gag-env particles had a spherical morphology, and the size was slightly larger than that of a gag particle. Immunoprecipitation and Western blot analyses show that these chimeric proteins were recognized by HIV-1 positive human sera and antisera raised against V3 peptides, as well as by rabbit anti-gp120 serum. We obtained virus neutralizing antibodies in rabbits by immunizing these gag-env VLPs. In addition, we found that gag-env chimeric VLPs induce a strong CTL activity against V3 peptide-treated target cells. Our results indicate that V3 peptides from all major clades of HIV-1 carried by HIV-2 gag can be used as a potential HIV/AIDS vaccine.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号