首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
NADH acts as an incomplete competitive inhibitor for 5,8-dioxy-1,4-naphtoquinone during its rotenone-insensitive reduction by mitochondrial NADH:ubiquinone reductase. NAD+ and ADP-ribose act as incomplete mixed-type inhibitors. Ki of NAD+ and NADH towards quinone are about one order less than towards ferricyanide. The bimolecular rate constant of the reduction of the enzyme by NADH in the quinone reductase reaction is about 2 times less than that of ferricyanide reductase reaction. These data indicate that the reduction site of 5,8-dioxy-1,4-naphtoquinone is close to NAD+/NADH and ferricyanide binding site. It seems that during the steady-state reduction of ferricyanide and 5,8-dioxy-1,4-naphtoquinone these oxidizers react with NADH:ubiquinone reductase reduced to different extents.  相似文献   

2.
J. Herrera  D.J.D. Nicholas 《BBA》1974,368(1):54-60
Nitrate reductase from Nitrobacter agilis was inactivated by NADH (but not by NADPH) in the absence of nitrate.The inactivation of the enzyme by over-reduction with NADH was overcome by oxidizing the reduced enzyme with nitrate, ferricyanide, NAD+ or NADP+.  相似文献   

3.
(1) The steady-state kinetics of the NADH dehydrogenase activity of Type-II (low molecular weight) NADH dehydrogenase with the acceptors ferricyanide, cytochrome c and 2,6-dichloroindophenol are consistent with the simultaneous operation of an ordered and a ping-pong mechanism. Thus, depending on the acceptor concentration, the reduced enzyme is preferentially oxidized before or after NAD+ disociates from it. (2) The acceptors are able to oxidize the reduced enzyme and its NAD+ complex equally well. In contrast to the kinetics of the Type-I (high molecular weight) enzyme, double substrate inhibition is not found, implying that the site of oxidation of the reduced enzyme by acceptors and the NADH-binding site are remote. (3) With the indophenol, in the concentration range measured, the ordered mechanism is mainly operative. At infinite NADH and acceptor concentrations the rate constant of the reduction of enzyme by bound NADH is measured. (4) With ferricyanide and cytochrome c, in the concentration range measured, erroneous conclusions may be drawn from extrapolations owing to the fact that extrapolated lines in double-reciprocal plots of turnover number against acceptor concentration, at different NADH concentrations, intersect in the third quadrant. A method is described that allows the extrapolation of these data to zero acceptor concentrations. (5) The relation between activity and NADH concentration is sigmoidal (h = 2.0) with ferricyanide or cytochrome c as acceptor, but hyperbolic with 2,6-dichloroindophenol. The latter is also an inhibitor, competitive with respect to NADH. It is concluded that this two-electron acceptor, like ubiquinone, acts as an allosteric effector. (6) Type II is isolated from Type I without gross changes in tertiary structure, as judged by the unaltered rate constants of dissociation of NADH (k-1) and NAD+ (k4) and association of NADH (k1). (7) Type II differs from Type I in two respects, (a) The accessibility of the acceptors is greater by at least two orders of magnitude (k3). (b) The redox potential of the prosthetic group FMN is 120 mV less, as judged by a drop in the value of k2 by four orders of magnitude. It is suggested that one or more of the iron-sulphur proteins present in Type-I but lacking in Type-II dehydrogenase functions as an effector, regulating the redox potential of the FMN.  相似文献   

4.
A membrane-associated NADH dehydrogenase from beef neutrophils was purified to homogeneity, using detergent (cholate plus Triton X-100) extraction and chromatography on DEAE-Sepharose CL-6B, agarose-hexane-NAD, and hydroxylapatite. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed an apparent subunit molecular weight of 17,500, but the enzyme was highly aggregated (Mr greater than 450,000) in nondenaturing gels containing 0.1% Triton X-100. The protein band in nondenaturing gels was also stained for activity using NADH and nitro blue tetrazolium. The enzyme showed greatest electron acceptor activity with ferricyanide (100%), followed by cytochrome c (3.5%), dichloroindophenol (2.7%), and cytochrome b5 (0.34%). No activity was seen with oxygen. The Km values for NADH and ferricyanide were 18 and 9.5 microM, respectively, and NAD+ was a weak competitive inhibitor (Ki = 118 microM). No activity was seen with NADPH. No effects were seen with mitochondrial respiratory inhibitors such as azide, cyanide, or rotenone, but p-chloromercuribenzoate was strongly inhibitory and N-ethylmaleimide was weakly inhibitory. No free flavin was detectable in enzyme preparations. Based upon kinetic, physical, and inhibition properties, this NADH dehydrogenase differs from those previously described in microsomes and erythrocyte plasma membrane.  相似文献   

5.
NADH diferric transferrin reductase in liver plasma membrane   总被引:6,自引:0,他引:6  
Evidence is presented that rat liver plasma membranes contain a distinct NADH diferric transferrin reductase. Three different assay procedures for demonstration of the activity are described. The enzyme activity is highest in isolated plasma membrane, and activity in other internal membranes is one-eighth or less than in plasma membrane. The activity is inhibited by apotransferrin and antitransferrin antibodies. Trypsin treatment of the membranes leads to rapid loss of the transferrin reductase activity as compared with NADH ferricyanide reductase activity. Erythrocyte plasma membranes, which lack transferrin receptors, show no diferric transferrin reductase activity, although NADH ferricyanide reductase is present. The transferrin reductase is inhibited by agents that inhibit diferric transferrin reduction by intact cells and is activated by CHAPS (3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfate) detergent. Inhibitors of mitochondrial electron transport have no effect on the activity. We propose that the NADH diferric transferrin reductase in plasma membranes measures the activity of the enzyme that causes the reduction of diferric transferrin by intact cells. This transmembrane electron transport system requires the transferrin receptor for diferric transferrin reduction. Because the transmembrane electron transport has been shown to stimulate cell growth, the reduction of diferric transferrin at the cell surface may be an important function for diferric transferrin in stimulation of cell growth, in addition to its role in iron transport.  相似文献   

6.
Sharova IV  Vekshin NL 《Biofizika》2004,49(5):814-821
Two types of NADH oxidation, rotenone-sensitive and rotenone-insensitive, in suspension of beef heart mitochondria were investigated by the spectrophotometric method. The oxidation of the added NADH by mitochondria in hypotonic media occurs only through the NADH dehydrogenase of the respiratory chain, since it was totally blocked by rotenone or amytal (and also by antimycin A or azide), but the ferricyanide-activated NADH oxidation was insensitive to these inhibitors. The insensitivity of the NADH dehydrogenase to rotenone appears to be due to a shunt of the electron transfer to ferricyanide without involving of ubiquinone. Both types of the oxydation occur through one and the same enzyme, which exists in two states. The evidence in favour of this is that NAD+ and DTT slightly influence the first type of oxidation but strongly inhibit the second one. The ferricyanide-activated NADH oxidation takes place in NADH dehydrogenase fragments released from mitochondria. Low Ds-Na concentrations block the respiratory chain NADH oxidation but increase the velocity of the ferricyanide-dependent oxidation. Probably, the increase is the result of the detergent-induced additional releasing of the fragments. The express-method for the preparation of the initially purified fraction with a high yield of detergent-containing fragments of the active enzyme is described.  相似文献   

7.
The kinetics of NADH oxidation by the outer membrane electron transport system of intact beetroot (Beta vulgaris L.) mitochondria were investigated. Very different values for Vmax and the Km for NADH were obtained when either antimycin A-insensitive NADH-cytochrome c activity (Vmax= 31 ± 2.5 nmol cytochrome c (mg protein)?1 min?1; Km= 3.1 ± 0.8 μM) or antimycin A-insensitive NADH-ferricyanide activity (Vmax= 1.7 ± 0.7 μmol ferricyanide (mg protein)?1 min?1; Km= 83 ± 20 μM) were measured. As ferricyanide is believed to accept electrons closer to the NADH binding site than cytochrome c, it was concluded that 83 ± 20 μM NADH represented a more accurate estimate of the binding affinity of the outer membrane dehydrogenase for NADH. The low Km determined with NADH-cytochrome c activity may be due to a limitation in electron flow through the components of the outer membrane electron transport chain. The Km for NADH of the externally-facing inner membrane NADH dehydrogenase of pea leaf (Pisum sativum L. cv. Massey Gem) mitochondria was 26.7 ± 4.3 μM when oxygen was the electron acceptor. At an NADH concentration at which the inner membrane dehydrogenase should predominate, the Ca2+ chelator, ethyleneglycol-(β-aminoethylether)-N,N,-tetraacetic acid (EGTA), inhibited the oxidation of NADH through to oxygen and to the ubiquinone-10 analogues, duroquinone and ubiquinone-1, but had no effect on the antimycin A-insensitive ferricyanide reduction. It is concluded that the site of action of Ca2+ involves the interaction of the enzyme with ubiquinone and not with NADH.  相似文献   

8.
An NADH oxidase was purified to homogeneity from Leuconostoc mesenteroides with a specific activity 100-fold higher than that of the crude extract. The purified NADH oxidase was an acidic protein having an S0 20,W of 5.49S and a molecular weight of 104,000, consisting of a dimer with 53,000 subunit size. The enzyme could use O2, dichlorophenolindophenol and methylene blue as oxidants, but not H2O2, cytochrome c, or ferricyanide. The physiological substrate was beta-NADH (Km = 0.12 mM) with O2 as the oxidant, probably forming H2O, rather than H2O2. Activity toward alpha-NADH was observed (Km = 0.14 mM), but the maximum velocity was 3 orders of magnitude lower than that with beta-NADH. alpha-NADPH and beta-NADPH were inert for the reaction. The enzyme showed a flavoprotein absorption spectrum with maxima at 273, 379, and 450 nm with a shoulder at 465 nm: the absorption at 450-465 nm disappeared on adding excess NADH or hydrosulfite. One mol of the holoenzyme contained approximately 2 mol of FAD. The apoenzyme was obtained by treatment with EDTA-KBr solution and could be reconstituted partially by adding FAD, but not riboflavin or FMN. The maximum activity of the reaction was observed at pH 6.5 in a temperature range of 35-45 degrees C. The activation energy was estimated to be 3.77 kcal/mol. The enzyme was inhibited by SH reagents, quinacrine, quinine, and Cu2+, but not by EDTA. Adenine and its nucleoside 5'-di- and triphosphates showed competitive inhibitions, while various metabolites, such as H2O2, FDP, acetyl phosphate, lactate, ethanol, and acetate, did not affect the reaction.  相似文献   

9.
The ferricyande assay for Type I NADH dehydrogenase (high molecular weight soluble form) was evaluated. A turnover number of 4.2 × 105 min?1, based on Vmax(ferricyanide) and FMN content, and Km(ferricyanide) of 2.2 mM were determined for this enzyme. Inclusion of a NAD-recycling system consisting of alcohol dehydrogenase and ethanol is suggested for determination of Km(NADH). This Km was found to be 17 μ M in contrast to earlier reported values of around 100 μ M.  相似文献   

10.
Lysine residues outside of the NADH-binding site in the soluble catalytic fragment of cytochrome b5 reductase were modified with ethyl acetimidate and acetic anhydride while the binding site was protected by formation of the stable oxidized nucleotide-reduced flavoprotein complex. This treatment had a minimal effect on enzyme activity; the turnover number with potassium ferricyanide was 45,300 in the native reductase and 39,200 in the derivative. Subsequent reaction with [3H]acetic anhydride after the removal of NADH resulted in the loss of 91% of the enzyme activity and the incorporation of 1.9 eq of acetyl groups into the protein. Treatment with 1 M hydroxylamine at pH 13 indicated that only lysine residues were acetylated, and fragmentation of the derivative with cyanogen bromide and subfragmentation with trypsin and chymotrypsin demonstrated that only Lys110 was labeled at high specific activity, with a stoichiometry of 0.83 acetyl groups/mol, in good agreement with the loss of enzyme activity observed. The remaining label was distributed at low levels among four or more additional lysine residues. These results demonstrate that only Lys110 is specifically protected by NADH and is therefore the residue which provides the epsilon-amino group implicated in NADH binding in cytochrome b5 reductase.  相似文献   

11.
Purification and properties of NADH oxidase from Bacillus megaterium   总被引:3,自引:0,他引:3  
NADH oxidase, which catalyzes the oxidation of NADH, with the consumption of a stoichiometric amount of oxygen, to NAD+ and hydrogen peroxide was purified from Bacillus megaterium by 5'-AMP Sepharose affinity chromatography to homogeneity. The enzyme is a dimeric protein containing 1 mol of FAD per mol of subunit, Mr = 52,000. The absorption maxima of the native enzyme (oxidized form) were found at 270, 383, and 450 with a shoulder at 475 nm in 50 mM KPi buffer, pH 7.0. The visible absorption bands at 383 and 450 nm disappeared on the addition of NADH under anaerobic conditions and reappeared upon the introduction of air. Thus, the non-covalently bound FAD functioned as a prosthetic group for the enzyme. We tentatively named this new enzyme NADH oxidase (NADH:oxygen oxidoreductase, hydrogen peroxide forming). This enzyme stereospecifically oxidizes the pro-S hydrogen at C-4 of the pyridine ring of NADH.  相似文献   

12.
The purified respiratory chain NADH dehydrogenase of Escherichia coli oxidizes NADH with either dichlorophenolindophenol (DCIP). ferricyanide, or menadione as electron acceptors, with values for NADH are similar with the three electron acceptors (approximately 50 muM). The purified enzyme contains no flavin and has an absolute requirement for FAD, with Km values around 4 muM. The pH optimum of the enzyme appears to be between 6.5 and 7; the optimum is difficult to establish because of nonenzymatic reduction of DCIP at the lower pH values. Potassium cyanide stimulates the DCIP reductase activity about 2-fold, but has no effect on ferricyanide reductase. The enzyme exhibits hyperbolic kinetics with respect to NADH concentration in both the ferricyanide and DCIP reductase assays, but cooperatively is seen in the menadione reductase reaction. NAD+ is an effective competitive inhibitor of the reaction (Ki congruent to 20 muM); in the presence of NAD+, the NADH saturation curve becomes cooperative, even in the DCIP reductase assay. Many adenine containing nucleotides are competitive inhibitors of the enzyme. The apparent Ki values for these nucleotides as inhibitors of the purified enzyme, the membrane-bound NADH dehydrogenase, and the NADH oxidase are equivalent. An examination of inhibitory effects of a series of adenine nucleotides suggests that the inhibitors act as analogues of NAD+, which is the true physiological inhibitor. The results suggest that the enzyme in situ is always partially inhibited by the levels of NAD- in the E coli cell, and thus behaves in a cooperative fashion to changes in the NAD+/NADH ratio. An antibody has been elicited against the purified NADH dehydrogenase. Immunodiffusion and crossed immunoelectrophoresis show that the antibody is directed principally against the NADH dehydrogenase, with some activity against minor contaminants in the purified preparation. The antibody inhibits NADH dehydrogenase activity 50% at saturating levels. When this antibody preparation is used to examine solubilized membrane preparations, two major immunoprecipitates are found. A parallel inhibition of the membrane-bound NADH dehydrogenase and NADH oxidase activities is seen, supporting the hypothesis that the purified enzyme is indeed a component of the respiratory chain-dependent NADH oxidase pathway.  相似文献   

13.
The NADH:ubiquinone, but not the NADH:ferricyanide, reductase activity of mitochondrial complex I (NADH:ubiquinone oxidoreductase) is inhibited by incubation of the enzyme at pH 6.0 and 0 degree C with ethoxyformic anhydride (EFA), and the inhibition is partially reversed by subsequent incubation of EFA-treated complex I with hydroxylamine. These results and spectral changes of EFA-treated complex I in the u.v. region are consistent with modification of essential histidyl or tyrosyl residues between the primary NADH dehydrogenase and the site of ubiquinone reduction. Treatment of complex I with EFA in the presence of high concentrations of Seconal or Demerol did not protect against EFA inactivation, suggesting that the site of EFA modification may not be the same as the inhibiton sites of Seconal and Demerol. However, the presence of NADH during incubation of complex I with EFA greatly enhanced the inhibition rate, indicating that the reduced conformation of complex I is more susceptible to attack by EFA.  相似文献   

14.
Nitrate reductase from wheat (Triticum aestivum L. cv Bindawarra) leaves is inactivated by pretreatment with NADH, in the absence of nitrate, a 50% loss of activity occurring in 30 minutes at 25°C with 10 micromolar NADH. Nitrate (50 micromolar) prevented inactivation by 10 micromolar NADH while cyanide (1 micromolar) markedly enhanced the degree of inactivation.

A rapid reactivation of NADH-inactivated nitrate reductase occurred after treatment with 0.3 millimolar ferricyanide or exposure to light (230 milliwatts per square centimeter) plus 20 micromolar flavin adenine dinucleotide. When excess NADH was removed, the enzyme was also reactivated by autoxidation. Nitrate did not influence the rate of reactivation.

Leaf nitrate reductase, from plants grown for 12 days on 1 millimolar nitrate, isolated in the late photoperiod or dark period, was activated by ferricyanide or light treatment. This suggests that, at these times of the day, the nitrate reductase in the leaves of the low nitrate plants is in a partially inactive state (NADH-inactivated). The nitrate reductase from moisture-stressed plants showed a greater degree of activation after light treatment, and inactive enzyme in them was detected earlier in the photoperiod.

  相似文献   

15.
Glyoxysomes isolated from castor bean (Ricinus communis L., var Hale) endosperm had NADH:ferricyanide reductase and NADH:cytochrome c reductase activities averaging 720 and 140 nanomole electrons/per minute per milligram glyoxysomal protein, respectively. These redox activities were greater than could be attributed to contamination of the glyoxysomal fractions in which 1.4% of the protein was mitochondrial and 5% endoplasmic reticulum. The NADH:ferricyanide reductase activity in the glyoxysomes was greater than the palmitoyl-coenzyme A (CoA) oxidation activity which generated NADH at a rate of 340 nanomole electrons per minute per milligram glyoxysomal protein. Palmitoyl-CoA oxidation could be coupled to ferricyanide or cytochrome c reduction. Complete oxidation of palmitoyl-CoA, yielding 14 nanomole electrons/per nanomole palmitoyl-CoA, was demonstrated with the acceptors, NAL, cytochrome c, and ferricyanide. Malate was also oxidized by glyoxysomes, if acetyl-CoA, ferricyanide, or cytochrome c was present. Glyoxysomal NADH:ferricyanide reductase activity has the capacity to support the combined rates of NADH generation by β-oxidation and the glyoxylate cycle.  相似文献   

16.
E. Komor  M. Thom  A. Maretzki 《Planta》1987,170(1):34-43
Suspension-cultured cells of sugarcane (Saccharum sp. hybrids) did not oxidize exogenously supplied NADH in the absence of ferricyanide (potassium hexacyanoferrate [III]), whereas they did at a low rate in the presence of ferricyanide. Concomitantly, ferricyanide was reduced at a slow rate. Neither a pH change nor a change in respiration was caused by the addition of NADH and-or ferricyanide, but ferricyanide was a strong inhibitor of sugar transport. In contrast to cells, protoplasts rapidly oxidized exogenous NADH. This oxidation was accompanied by an increase in oxygen consumption and a net proton disappearance from the medium. Exogenous ferricyanide was reduced only slowly by protoplasts. Simultaneous presence of NADH and ferricyanide produced two effects: 1) a very rapid stoichiometric oxidation of NADH and reduction of ferricyanide until one of the reaction compounds was exhausted, and 2) a nearly instantaneous inhibition of the slower phase of NADH oxidation, which was observed in the presence of NADH but absence of ferricyanide. The extra oxygen consumption and the alkalinization of the medium, as observed with NADH, were also immediately stopped by ferric ions and ferrous ions. The presence of NADH and ferricyanide caused a fast stoichiometric acidification of the medium. These results were taken as evidence that the oxidation of NADH in the absence of ferricyanide is not related to the NADH-ferricyanide-coupled redox reaction. Furthermore, addition of NADH caused some uncoupling of the protoplasts, an effect which would explain the strong acidification of the cell cytoplasm and the inhibition of various transport systems. The NADH-oxidizing systems oxidized both the -configurated pyridine nucleotide and the -configurated form. Since NADH-linked dehydrogenases usually do not work with -NADH (with the exception of the endoplasmic-reticulum-bound electron-transport system), the observed activities could have been derived from contaminating membranes and dying protoplasts in the suspension. All reported reactions partly or predominantly occurred in the supernatant of the protoplast suspension and increased considerably during incubation of the protoplasts. The rates and quantities of oxygen consumption, pH change, and ferricyanide reduction fitted with NADH oxidation in a stoichiometric ratio, which implied that all these reactions occurred in the extracellular space, without involving transmembrane steps. No evidence for a physiological role in energization of the plasmalemma was found.Abbreviation NADH -nicotinamide adenine dinucleotide reduced form  相似文献   

17.
Erythrocyte ghost NADH dehydrogenase is inhibited in a competitive fashion by ATP and ADP whereas other nucleoside di- and triphosphates, cyclic nucleosides, as well as non-phosphorylating ATP analogs are relatively ineffective. In addition, this enzyme, measured with ferricyanide as electron acceptor, is inhibited by uncouplers of oxidative phosphorylation (proton-conducting reagents), the inhibition being competitive in character (i.e., the uncouplers were without influence upon maximum velocity). The effectiveness of the uncouplers was in the order of their hydrophobic character with the presence of the alkyl side chain rendering nonyl-dinitrophenol much more active than 2,6-dinitrophenol itself. Hydrophobic compounds that are not protonophores (e.g., eosin, proflavin or valinomycin) were not inhibitory. Whereas adenine nucleotides probably inhibit NADH oxidation competitively through structural similarity with the substrate, it appears unlikely that uncouplers compete at the NADH site directly. Rather, the apparently-competitive inhibition in the latter case may reflect competition for proton transfer to an acceptor residing in a hydrophobic region of the enzyme complex.  相似文献   

18.
Erythrocyte ghost NADH dehydrogenase is inhibited in a competitive fashion by ATP and ADP whereas other nucleoside di- and triphosphates, cyclic nucleosides, as well as non-phosphorylating ATP analogs are relatively ineffective. In addition, this enzyme, measured with ferricyanide as electron acceptor, is inhibited by uncouplers of oxidative phosphorylation (proton-conducting reagents), the inhibition being competitive in character (i.e., the uncouplers were without influence upon maximum velocity). The effectiveness of the uncouplers was in the order of their hydrophobic character with the presence of the alkyl side chain rendering nonyl-dinitrophenol much more active than 2,6-dinitrophenol itself. Hydrophobic compounds that are not protonophores (e.g., eosin, proflavin or valinomycin) were not inhibitory. Whereas adenine nucleotides probably inhibit NADH oxidation competitively through structural similarity with the substrate, it appears unlikely that uncouplers compete at the NADH site directly. Rather, the apparently-competitive inhibition in the latter case may reflect competition for proton transfer to an acceptor residing in a hydrophobic region of the enzyme complex.  相似文献   

19.
An exo-NADH oxidase system [NADH oxidase system (external)], effecting intact-mitochondrial oxidation of added NADH, was studied in pigeon heart mitochondria. Breast muscle mitochondria showed an equal specific activity of the system. The exo-NADH oxidase activity (200 micron mol of NADH/min per g of protein) equalled two-thirds of the State-3 respiratory activity with malate + pyruvate or one-seventh of the total NADH oxidase activity of heart mitochondria. The activity was not caused by use of proteinase in the preparation procedure and all measured parameters were very reproducible from preparation to preparation. The activity is therefore most likely not due to preparation artefacts. The exo-NADH oxidase system is present in all mitochondria in the preparation and is not confined to a subpopulation. The system reduced all cytochrome anaerobically and direct interaction with all cytochrome oxidase was demonstrated by interdependent cyanide inhibition. The exo-NADH oxidase system seems to be located at the outer surface of the mitochondrial inner membrane because, for instance, only this system was rapidly inhibited by rotenone, and ferricyanide could act as acceptor in the rotenone-inhibited system (reductase activity = 20 times oxidase activity). In the presence of antimycin, added NADH reduced only a part of the b-cytochromes. Freezing and thawing the mitochondria, one of the methods used for making them permeable to NADH, destroyed this functional compartmentation. The characteristics of the exo-NADH oxidase system and the malate-aspartate shuttle are compared and the evidence for the shuttle's function in heart in vivo is re-evaluated. It is proposed that oxidation of cytoplasmic NADH in red muscles primarily is effected by the exo-NADH oxidase system.  相似文献   

20.
The existence of an external hexammineruthenium-stimulated NADH oxidase in rat liver mitochondria is postulated. This enzyme is localized on the outer surface of the inner mitochondrial membrane, is specific for NADH and requires oxygen. The apparent affinity of the enzyme for NADH amounts to about 4 microM. Furthermore, the enzyme is characterized by an alkaline pH optimum and a linear Arrhenius plot (14 kJ/mol). The electron transfer from NADH to oxygen is not linked with the respiratory chain but is connected with the formation of superoxide radicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号