首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetic variation for quantitative traits is often greater than that expected to be maintained by mutation in the face of purifying natural selection. One possible explanation for this observed variation is the action of heterogeneous natural selection in the wild. Here we report that selection on quantitative trait loci (QTL) for fitness traits in the model plant species Arabidopsis thaliana differs among natural ecological settings and genetic backgrounds. At one QTL, the allele that enhanced the viability of fall-germinating seedlings in North Carolina reduced the fecundity of spring-germinating seedlings in Rhode Island. Several other QTL experienced strong directional selection, but only in one site and seasonal cohort. Thus, different loci were exposed to selection in different natural environments. Selection on allelic variation also depended upon the genetic background. The allelic fitness effects of two QTL reversed direction depending on the genotype at the other locus. Moreover, alternative alleles at each of these loci caused reversals in the allelic fitness effects of a QTL closely linked to TFL1, a candidate developmental gene displaying nucleotide sequence polymorphism consistent with balancing selection. Thus, both environmental heterogeneity and epistatic selection may maintain genetic variation for fitness in wild plant species.  相似文献   

2.
We examined the adaptive importance of allozyme variation in wild barley (Hordeum spontaneum). The test involved a nested sampling design with four population groups, each representing a different environment, and a comparison of observed allozyme variation with that expected under the assumption that allozymes are not neutral. Measurements of plant fitness in indigenous and alien environments in reciprocal introductions of seeds and seedlings in the four environments provided a guideline for the expected pattern of allozyme variation. The results showed considerable variation in both the degree of regional and population subdivision and the pattern of the subdivision among loci. The observed pattern of variation was ambiguous. Although two alleles exhibited a pattern of distribution that cannot be explained by genetic drift as a function of geographic distance, we failed to detect either a significant relationship between genetic distance and environmental similarity or any favored epistatic allele combinations across the four environments. Our results suggest that interpretation of allozyme variation in wild barley as adaptive and directly related to local environment still needs justification. Although we could not reject the null hypothesis, a proposed methodology seeking a concordance between observed and "adaptive" (i.e., expected under hypothesis that allozymes are not neutral) allozyme variation may prove to be effective in resolving the neutralist-selectionist debate when applied to other species.  相似文献   

3.
Current methods for studying the genetic basis of adaptation evaluate genetic associations with ecologically relevant traits or single environmental variables, under the implicit assumption that natural selection imposes correlations between phenotypes, environments and genotypes. In practice, observed trait and environmental data are manifestations of unknown selective forces and are only indirectly associated with adaptive genetic variation. In theory, improved estimation of these forces could enable more powerful detection of loci under selection. Here we present an approach in which we approximate adaptive variation by modeling phenotypes as a function of the environment and using the predicted trait in multivariate and univariate genome-wide association analysis (GWAS). Based on computer simulations and published flowering time data from the model plant Arabidopsis thaliana, we find that environmentally predicted traits lead to higher recovery of functional loci in multivariate GWAS and are more strongly correlated to allele frequencies at adaptive loci than individual environmental variables. Our results provide an example of the use of environmental data to obtain independent and meaningful information on adaptive genetic variation.  相似文献   

4.
Investigating patterns of genetic variation in hybridizing species provides an opportunity to understand the impact of natural selection on intraspecific genetic variability and interspecific gene exchange. The Atlantic eels Anguilla rostrata and A. anguilla each occupy a large heterogeneous habitat upon which natural selection could differentially shape genetic variation. They also produce viable hybrids only found in Iceland. However, the possible footprint of natural selection on patterns of genetic variation within species and introgressive hybridization in Icelandic eels has never been assessed. We revisited amplified fragment length polymorphism data collected previously using population genomics and admixture analyses to test if (i) genetic variation could be influenced by non-neutral mechanisms at both the intra- and interspecific levels, and if (ii) selection could shape the spatio-temporal distribution of Icelandic hybrids. We first found candidate loci for directional selection within both species. Spatial distributions of allelic frequencies displayed by some of these loci were possibly related with the geographical patterns of life-history traits in A. rostrata , and could have been shaped by natural selection associated with an environmental gradient along European coasts in A. anguilla . Second, we identified outlier loci at the interspecific level. Non-neutral introgression was strongly suggested for some of these loci. We detected a locus at which typical A. rostrata allele hardly crossed the species genetic barrier, whereas three other loci showed accelerated patterns of introgression into A. anguilla in Iceland. Moreover, the level of introgression at these three loci increased from the glass eel to the yellow eel stage, supporting the hypothesis that differential survival of admixed genotypes partly explains the spatio-temporal pattern of hybrid abundance previously documented in Iceland.  相似文献   

5.
陆地棉主要产量相关性状的SSR标记关联分析   总被引:1,自引:0,他引:1  
高产优质育种是我国棉花育种的主要目标。寻找与目标性状关联的分子标记,可克服常规育种的盲目性,提高分子标记辅助选择育种的准确性。本研究对118份陆地棉种质资源的衣分、单铃重、单株铃数及子指等4个产量相关性状进行2年2点的表型鉴定,并利用覆盖全基因组的、有多态性的214对SSR标记进行标记与性状的关联分析。结果表明:118份材料的4个产量相关性状表型变异丰富,平均变异系数的变幅在6.1%~19.1%之间,且在各环境中表现较为稳定;基因型分析表明,214对标记共检测到460个等位变异,基因多样性指数平均为0.5151,PIC值平均为0.4587,表明该批标记具有较多的等位变异数和较高的基因多样性;群体结构分析表明该批材料可分为4个亚群,且各类群中材料与地理来源无对应关系;关联分析结果显示,在显著条件下(-log10P1.3,P0.05),共有39个标记位点能够在2个及2个以上的环境中同时检测到,其中有4个标记位点同时与2个以上性状相关联,进一步比较发现,有7个位点与前人研究结果一致,其余32个位点为新发现的位点。研究结果可为陆地棉产量性状遗传改良的分子标记辅助选择提供理论依据。  相似文献   

6.
Genetic theory predicts that directional selection should deplete additive genetic variance for traits closely related to fitness, and may favor the maintenance of alleles with antagonistically pleiotropic effects on fitness-related traits. Trait heritability is therefore expected to decline with the degree of association with fitness, and some genetic correlations between selected traits are expected to be negative. Here we demonstrate a negative relationship between trait heritability and association with lifetime reproductive success in a wild population of bighorn sheep (Ovis canadensis) at Ram Mountain, Alberta, Canada. Lower heritability for fitness-related traits, however, was not wholly a consequence of declining genetic variance, because those traits showed high levels of residual variance. Genetic correlations estimated between pairs of traits with significant heritability were positive. Principal component analyses suggest that positive relationships between morphometric traits constitute the main axis of genetic variation. Trade-offs in the form of negative genetic or phenotypic correlations among the traits we have measured do not appear to constrain the potential for evolution in this population.  相似文献   

7.
Reduced genetic variation at marker loci in small populations has been well documented, whereas the relationship between quantitative genetic variation and population size has attracted little empirical investigation. Here we demonstrate that both neutral and quantitative genetic variation are reduced in small populations of a fragmented plant metapopulation, and that both drift and selective change are enhanced in small populations. Measures of neutral genetic differentiation (F(ST)) and quantitative genetic differentiation (Q(ST)) in two traits were higher among small demes, and Q(ST) between small populations exceeded that expected from drift alone. This suggests that fragmented populations experience both enhanced genetic drift and divergent selection on phenotypic traits, and that drift affects variation in both neutral markers and quantitative traits. These results highlight the need to integrate natural selection into conservation genetic theory, and suggests that small populations may represent reservoirs of genetic variation adaptive within a wide range of environments.  相似文献   

8.
J. S. F. Barker  P. D. East    B. S. Weir 《Genetics》1986,112(3):577-611
Temporal variation in allozyme frequencies at six loci was studied by making monthly collections over 4 yr in one population of the cactophilic species Drosophila buzzatii. Ten sites were defined within the study locality, and for all temporal samples, separate collections were made at each of these sites. Population structure over microgeographic space and changes in population structure over time were analyzed using F-statistic estimators, and multivariate analyses of allele and genotype frequencies with environmental variables were carried out. Allele frequencies showed significant variation over time, although there were no clear cyclical or seasonal patterns. A biplot analysis of allele frequencies over seasons within years and over years showed clear discrimination among years by alleles at four loci. During the 4 yr, three alleles showed directional changes which were associated with directional changes in environmental variables. Significant associations with one or more environmental variables were found for allele frequencies at every locus and for both expected and observed heterozygosities (except those for Est-1 and Est-2). Thus, variation in allele frequencies over time cannot be attributed solely to drift. Significant linkage disequilibria were detected among three loci (Est-2, Hex and Aldox), but there was no evidence for spatial or temporal patterns. The F-statistic analyses showed significant differentiation among months within years for all loci, but the statistic used (coancestry) was heterogeneous among loci. Estimates of F (inbreeding) for all loci were significantly different from zero, with the loci in four groups, Adh-1 (negative), Pgm(small positive), Est-2 and Hex (intermediate) and Est-1 and Aldox (high positive). The correlation of genes within individuals within populations (f) for each locus in each month by site sample differed among loci, as did the (f) for each locus in each month by site sample differed among loci, as did the patterns of change in f over time (seasons). Heterogeneity in the F-statistic estimates indicates that natural selection is directly or indirectly affecting allele and genotype frequencies at some loci. However, the F-statistic analyses showed essentially no microgeographic structure (i.e., among sites), although there was significant heterogeneity in allele frequencies among flies emerging from individual rots. Thus, microspatial heterogeneity probably is most important at the level of individual rots, and coupled with habitat selection, it could be a major factor promoting diversifying selection and the maintenance of polymorphism.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Theory predicts that selection acting across environments should erode genetic variation in reaction norms; i.e., selection should weaken genotype × environment interaction (G × E). In spite of this expectation, G × E is often detected in fitness-related traits. It thus appears that G × E is at least sometimes sustained under selection, a possibility that highlights the need for theory that can account for variation in the presence and strength of G × E. We tested the hypothesis that trait differences in developmental architecture contribute to variation in the expression of G × E. Specifically, we assessed the influence of canalization (robustness to genetic or environmental perturbations) and condition-dependence (association between trait expression and prior resource acquisition or vital cellular processes). We compared G × E across three trait types expected to differ in canalization and condition-dependence: mating signals, body size-related traits, and genitalia. Because genitalia are expected to show the least condition-dependence and the most canalization, they should express weaker G × E than the other trait types. Our study species was a member of the Enchenopa binotata species complex of treehoppers. We found significant G × E in most traits; G × E was strongest in signals and body traits, and weakest in genitalia. These results support the hypothesis that trait differences in developmental architecture (canalization and condition-dependence) contribute to variation in the expression of G × E. We discuss implications for the dynamics of sexual selection on different trait types.  相似文献   

10.
In this paper, we analyze the genetic variability in four Tunisian natural populations of Medicago ciliaris using 19 quantitative traits and six polymorphic microsatellite loci. We investigated the amplification transferability of 30 microsatellites developed in the model legume M. truncatula to M. ciliaris. Results revealed that about 56.66% of analyzed markers are valuable genetic markers for M. ciliaris. The most genetic diversity at quantitative traits and microsatellite loci was found to occur within populations (>80%). Low differentiations among populations at quantitative traits Q ST  = 0.146 and molecular markers F ST  = 0.18 were found. The majority of measured traits exhibited no significant difference in the level of Q ST and F ST . Furthermore, significant correlations established between these traits and eco-geographical factors suggested that natural selection should be invoked to explain the level of phenotypic divergence among populations rather than drift. There was no significant correlation between population differentiation at quantitative traits and molecular markers. Significant spatial genetic structure consistent with models of isolation by distance was detected within all studied populations. The site-of-origin environmental factors explain about 9.07% of total phenotypic genetic variation among populations. The eco-geographical factors that influence more the variation of measured traits among populations are the soil texture and altitude. Nevertheless, there were no consistent pattern of associations between gene diversity (He) and environmental factors.  相似文献   

11.
P. E. Jorde  N. Ryman 《Genetics》1996,143(3):1369-1381
We studied temporal allele frequency shifts over 15 years and estimated the genetically effective size of four natural populations of brown trout (Salmo trutta L.) on the basis of the variation at 14 polymorphic allozyme loci. The allele frequency differences between consecutive cohorts were significant in all four populations. There were no indications of natural selection, and we conclude that random genetic drift is the most likely cause of temporal allele frequency shifts at the loci examined. Effective population sizes were estimated from observed allele frequency shifts among cohorts, taking into consideration the demographic characteristics of each population. The estimated effective sizes of the four populations range from 52 to 480 individuals, and we conclude that the effective size of natural brown trout populations may differ considerably among lakes that are similar in size and other apparent characteristics. In spite of their different effective sizes all four populations have similar levels of genetic variation (average heterozygosity) indicating that excessive loss of genetic variability has been retarded, most likely because of gene flow among neighboring populations.  相似文献   

12.
A primary goal of evolutionary genetics is to discover and explain the genetic basis of fitness-related traits and how this genetic basis evolves within natural populations. Unprecedented technological advances have fueled the discovery of genetic variants associated with ecologically relevant phenotypes in many different life forms, as well as the ability to scan genomes for deviations from selectively neutral models of evolution. Theoretically, the degree of overlap between lists of genomic regions identified using each approach is related to the genetic architecture of fitness-related traits and the strength and type of natural selection molding variation at these traits within natural populations. Here we address for the first time in a plant the degree of overlap between these lists, using patterns of nucleotide diversity and divergence for >7000 unique amplicons described from the extensive expressed sequence tag libraries generated for loblolly pine (Pinus taeda L.) in combination with the >1000 published genetic associations. We show that loci associated with phenotypic traits are distinct with regard to neutral expectations. Phenotypes measured at the whole plant level (e.g., disease resistance) exhibit an approximately twofold increase in the proportion of adaptive nonsynonymous substitutions over the genome-wide average. As expected for polygenic traits, these signals were apparent only when loci were considered at the level of functional sets. The ramifications of this result are discussed in light of the continued efforts to dissect the genetic basis of quantitative traits.  相似文献   

13.
Selection maintains MHC diversity through a natural population bottleneck   总被引:1,自引:0,他引:1  
A perceived consequence of a population bottleneck is the erosion of genetic diversity and concomitant reduction in individual fitness and evolutionary potential. Although reduced genetic variation associated with demographic perturbation has been amply demonstrated for neutral molecular markers, the effective management of genetic resources in natural populations is hindered by a lack of understanding of how adaptive genetic variation will respond to population fluctuations, given these are affected by selection as well as drift. Here, we demonstrate that selection counters drift to maintain polymorphism at a major histocompatibility complex (MHC) locus through a population bottleneck in an inbred island population of water voles. Before and after the bottleneck, MHC allele frequencies were close to balancing selection equilibrium but became skewed by drift when the population size was critically low. MHC heterozygosity generally conformed to Hardy-Weinberg expectations except in one generation during the population recovery where there was a significant excess of heterozygous genotypes, which simulations ascribed to strong differential MHC-dependent survival. Low allelic diversity and highly skewed frequency distributions at microsatellite loci indicated potent genetic drift due to a strong founder affect and/or previous population bottlenecks. This study is a real-time examination of the predictions of fundamental evolutionary theory in low genetic diversity situations. The findings highlight that conservation efforts to maintain the genetic health and evolutionary potential of natural populations should consider the genetic basis for fitness-related traits, and how such adaptive genetic diversity will vary in response to both the demographic fluctuations and the effects of selection.  相似文献   

14.
Understanding the genetic basis of local adaptation requires insight in the fitness effects of individual loci under natural field conditions. While rapid progress is made in the search for genes that control differences between plant populations, it is typically unknown whether the genes under study are in fact key targets of habitat-specific natural selection. Using a quantitative trait loci (QTL) approach, we show that a QTL associated with flowering-time variation between two locally adapted wild barley populations is an important determinant of fitness in one, but not in the other population's native habitat. The QTL mapped to the same position as a habitat-specific QTL for field fitness that affected plant reproductive output in only one of the parental habitats, indicating that the genomic region is under differential selection between the native habitats. Consistent with the QTL results, phenotypic selection of flowering time differed between the two environments, whereas other traits (growth rate and seed weight) were under selection but experienced no habitat-specific differential selection. This implies the flowering-time QTL as a driver of adaptive population divergence. Our results from phenotypic selection and QTL analysis are consistent with local adaptation without genetic trade-offs in performance across environments, i.e. without alleles or traits having opposing fitness effects in contrasting environments.  相似文献   

15.
Kim Y  Maruki T 《Genetics》2011,189(1):213-226
A central problem in population genetics is to detect and analyze positive natural selection by which beneficial mutations are driven to fixation. The hitchhiking effect of a rapidly spreading beneficial mutation, which results in local removal of standing genetic variation, allows such an analysis using DNA sequence polymorphism. However, the current mathematical theory that predicts the pattern of genetic hitchhiking relies on the assumption that a beneficial mutation increases to a high frequency in a single random-mating population, which is certainly violated in reality. Individuals in natural populations are distributed over a geographic space. The spread of a beneficial allele can be delayed by limited migration of individuals over the space and its hitchhiking effect can also be affected. To study this effect of geographic structure on genetic hitchhiking, we analyze a simple model of directional selection in a subdivided population. In contrast to previous studies on hitchhiking in subdivided populations, we mainly investigate the range of sufficiently high migration rates that would homogenize genetic variation at neutral loci. We provide a heuristic mathematical analysis that describes how the genealogical structure at a neutral locus linked to the locus under selection is expected to change in a population divided into two demes. Our results indicate that the overall strength of genetic hitchhiking--the degree to which expected heterozygosity decreases--is diminished by population subdivision, mainly because opportunity for the breakdown of hitchhiking by recombination increases as the spread of the beneficial mutation across demes is delayed when migration rate is much smaller than the strength of selection. Furthermore, the amount of genetic variation after a selective sweep is expected to be unequal over demes: a greater reduction in expected heterozygosity occurs in the subpopulation from which the beneficial mutation originates than in its neighboring subpopulations. This raises a possibility of detecting a "hidden" geographic structure of population by carefully analyzing the pattern of a selective sweep.  相似文献   

16.
Genetic diversity at 38 microsatellite (short sequence repeats (SSRs)) loci was studied in a sample of 54 plants representing a natural population of wild barley, Hordeum spontaneum, at the Neve Yaar microsite in Israel. Wild barley at the microsite was organized in a mosaic pattern over an area of 3180 m2 in the open Tabor oak forest, which was subdivided into four microniches: (i) sun-rock (11 genotypes), (ii) sun-soil (18 genotypes), (iii) shade-soil (11 genotypes), and (iv) shade-rock (14 genotypes). Fifty-four genotypes were tested for ecological-genetic microniche correlates. Analysis of 36 loci showed that allele distributions at SSR loci were nonrandom but structured by ecological stresses (climatic and edaphic). Sixteen (45.7%) of 35 polymorphic loci varied significantly (p < 0.05) in allele frequencies among the microniches. Significant genetic divergence and diversity were found among the four subpopulations. The soil and shade subpopulations showed higher genetic diversities at SSR loci than the rock and sun subpopulations, and the lowest genetic diversity was observed in the sun-rock subpopulation, in contrast with the previous allozyme and RAPD studies. On average, of 36 loci, 88.75% of the total genetic diversity exists within the four microniches, while 11.25% exists between the microniches. In a permutation test, G(ST) was lower for 4999 out of 5000 randomized data sets (p < 0.001) when compared with real data (0.1125). The highest genetic distance was between shade-soil and sun-rock (D = 0.222). Our results suggest that diversifying natural selection may act upon some regulatory regions, resulting in adaptive SSR divergence. Fixation of some loci (GMS61, GMS1, and EBMAC824) at a specific microniche seems to suggest directional selection. The pattern of other SSR loci suggests the operation of balancing selection. SSRs may be either direct targets of selection or markers of selected haplotypes (selective sweep).  相似文献   

17.
Recent studies of evolution in heterogeneous environments have concentrated on the role of coarse-grained environmental variation. Here I explore the potential for a modular organism to adapt to fine-grained environmental variation through within-individual variation among modules. I describe the pattern of variation among leaves of single individuals and report results of initial analyses of genetic variation for within-individual variability in leaf traits and of genetic correlations that could influence the rate of further evolution of within-individual variation of these traits. Plants from 24 paternal half-sib families were raised in growth chambers, and five traits were measured for two leaves produced by each plant. Four of the five traits differed significantly between sampling times. Genetic analyses revealed significant additive genetic variation for within-individual variation in several traits. Estimates of family mean correlations between traits expressed at different times suggest few relationships that would be expected to impede response to selection for changes in the pattern of within-individual variation in leaf traits. These results support the possibility that within-individual variation could evolve as an adaptive response to fine-grained environmental variation and suggest a need for further investigation to improve understanding of evolution in heterogeneous environments.  相似文献   

18.
The mummichog, Fundulus heteroclitus, exhibits extensive latitudinal clinal variation in a number of physiological and biochemical traits, coupled with phylogeographical patterns at mitochondrial and nuclear DNA loci that suggest a complicated history of spatially variable selection and secondary intergradation. This species continues to serve as a model for understanding local and regional adaptation to variable environments. Resolving the influences of historical processes on the distribution of genetic variation within and among extant populations of F. heteroclitus is crucial to a better understanding of how populations evolve in the context of contemporary environments. In this study, we analysed geographical patterns of genetic variation at eight microsatellite loci among 15 populations of F. heteroclitus distributed throughout the North American range of the species from Nova Scotia to Georgia. Genetic variation in Northern populations was lower than in Southern populations and was strongly correlated with latitude throughout the species range. The most common Northern alleles at all eight loci exhibited concordant latitudinal clinal patterns, and the existence of an abrupt transition zone in allele frequencies between Northern and Southern populations was similar to that observed for mitochondrial DNA and allozyme loci. A significant pattern of isolation by distance was observed both within and between northern and southern regions. This pattern was unexpected, particularly for northern populations, given the recent colonization history of post-Pleistocene habitats, and was inconsistent with either a recent northward population expansion or a geographically restricted northern Pleistocene refugium. The data provided no evidence for recent population bottlenecks, and estimates of historical effective population sizes suggest that post-Pleistocene populations have been large throughout the species distribution. These results suggest that F. heteroclitus was broadly distributed throughout most of its current range during the last glacial event and that the abrupt transition in allele frequencies that separate Northern and Southern populations may reflect regional disequilibrium conditions associated with the post-Pleistocene colonization history of habitats in that region.  相似文献   

19.
Genetic differentiation among nine populations of the endemic lizard Lacerta dugesii Milne-Edwards 1829 (Lacertidae) from four groups of islands constituting the Archipelago of Madeira, was investigated by protein electrophoresis at 23 enzyme loci. Among twenty polymorphic loci, the total genetic diversity was due primarily to intra-population variation. The allele and genotypic frequencies among populations showed some heterogeneity, allowing the species to present a structuring pattern compatible with their geographical clustering. Some evidence suggests that selection acting on some loci in different ecological conditions may be responsible for the clustering of the populations studied. There was no apparent isolation effect expected under an "island" model of population divergence, and no correlation was found between genetic and geographic distances among populations. Morphological variation of the proposed three L. dugesii subspecies is not congruent with the allozyme analysis. This most probably suggests a rapid colonization of the islands followed by a strong effect of selection operating over the morphological characters used to define the subspecies.  相似文献   

20.
Genetic architecture of a selection response in Arabidopsis thaliana   总被引:1,自引:0,他引:1  
Quantitative trait locus (QTL) mapping has become an established and effective method for studying the genetic architecture of complex traits. In this report, we use a QTL mapping approach in combination with data from a large selection experiment in Arabidopsis thaliana to explore a response to selection of experimental populations with differentiated genetic backgrounds. Experimental populations with genetic backgrounds derived from ecotypes Landsberg and Niederzenz were exposed to multiple generations of fertility and viability selection. This selection resulted in phenotypic shifts in a number of life-history and fitness-related characters including early development time, flowering time, dry biomass, longevity, and fruit production. Quantitative trait loci were mapped for these traits and their positions were compared to previously characterized allele frequency changes in the experimental populations (Ungerer et al. 2003). Quantitative trait locus positions largely colocalized with genomic regions under strong and consistent selection in populations with differentiated genetic backgrounds, suggesting that alleles for these traits were selected similarly in differentiated genetic backgrounds. However, one QTL region exhibited a more variable response; being positively selected on one genetic background but apparently neutral in another. This study demonstrates how QTL mapping approaches can be combined with map-based population genetic data to study how selection acts on standing genetic variation in populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号