首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract When tomato plants of the high-altitude species Lycopersicon hirsutum and of the cultivated Lycopersicon esculentum were grown at 24/18°C (day/night), the effects of temperature, photon flux density, and intercellular CO2 concentration up to about 600 μl l?1 on net CO2 uptake were similar in the two species. Acclimation of these plants at 12/6°C (day/night) resulted, after 4 d or longer, in a similar downward shift of about 5°C in the optimum temperature for CO2 uptake. However, in comparison with the cultivated species, the high-altitude plants achieved a higher rate of CO2 uptake at saturating concentrations of intercellular CO2, maintained a higher level of saturating-light CO2 uptake rate at 10°C after exposure to chilling stress (10°C and photon flux density of 400 μmol m?2s?1 d and 5°C night) for 7–18 d, and displayed a better capacity for rapid recovery after prolonged stress. The greater capacity for CO2 uptake observed in the high-altitude species during and after exposure to chilling stress was also reflected in its higher growth rate under those conditions compared with plants of L. esculentum. These advantages of the high-altitude species may partly explain its ability to survive and complete its life cycle under the environmental conditions prevailing in its natural habitat.  相似文献   

2.
3.
Abstract. Comparisons were made between the changes in mRNA levels induced by low night temperatures in the cold–sensitive tomato and two altitudinal ecotypes of the wild species L. hirsutum. Changes in mRNA levels were detected by resolving in vitro translation products of poly(A)+ RNA by 2-D PAGE. The treatment was applied by first growing plants in a thermoperiod of 25/18°C and then switching to 25/6°C. All tomatoes displayed a diurnal cycling in which a set of mRNAs accumulated at the end of the 18°C nights, whereas another accumulated at the end of the 25°C days. The accumulation of night specific mRNAs was inhibited by 6°C nights in the cold sensitive tomatoes while that of the tolerant one was only marginally affected. All tomatoes showed a similar reduction in the apparent turnover rate of the day specific mRNAs during the 6°C nights. Finally, low night temperatures induced the accumulation of six to eight mRNAs in all genotypes. This number increased by 15 in L. esculentum after the seventh night and are likely involved in stress response rather than acclimation/tolerance. The tomato is proposed as a genetic model to discriminate genes involved in acclimation/tolerance from those involved in stress response.  相似文献   

4.
Air temperatures of greater than 35 °C are frequently encountered in groundnut‐growing regions, especially in the semi‐arid tropics. Such extreme temperatures are likely to increase in frequency under future predicted climates. High air temperatures result in failure of peg and pod set due to lower pollen viability. The response of pollen germination and pollen tube growth to temperature was quantified in order to identify differences in pollen tolerance to temperature among 21 groundnut genotypes. Plants were grown from sowing to harvest in a poly‐tunnel under an optimum temperature of 28/22 °C (day/night). Pollen was collected at anther dehiscence and was exposed to temperatures from 10° to 47·5 °C at 2·5 °C intervals. The results showed that a modified bilinear model most accurately described the response to temperature of percentage pollen germination and maximum pollen tube length. Genotypes were found to range from most tolerant to most susceptible based on both pollen characters and membrane thermostability. Mean cardinal temperatures (Tmin, Topt and Tmax) averaged over 21 genotypes were 14·1, 30·1 and 43·0 °C for percentage pollen germination and 14·6, 34·4 and 43·4 °C for maximum pollen tube length. The genotypes 55‐437, ICG 1236, TMV 2 and ICGS 11 can be grouped as tolerant to high temperature and genotypes Kadiri 3, ICGV 92116 and ICGV 92118 as susceptible genotypes, based on the cardinal temperatures. The principal component analysis identified maximum percentage pollen germination and pollen tube length of the genotypes, and Tmax for the two processes as the most important pollen parameters in describing a genotypic tolerance to high temperature. The Tmin and Topt for pollen germination and tube growth, rate of pollen tube growth were less predictive in discriminating genotypes for high temperature tolerance. Genotypic differences in heat tolerance‐based on pollen response were poorly related (R2 = 0·334, P = 0·006) to relative injury as determined by membrane thermostability.  相似文献   

5.
Mung bean and tomato were in vitro selected from cotyledons on MS medium for improved tolerance to NaCl. The growth responses; the Na, K, proline and anthocyanin contents; and activities of phenylalanine ammonia lyase (PAL, EC 4.3.1.5), tyrosine ammonia lyase (TAL, EC 4.3.1) and chalcone isomerase (CI, EC 5.5.1.5) of the selected plants were characterised and compared with those of the original plants in relation to treatment with NaCl. The treatments significantly reduced fresh and dry weights of shoots and roots; the reduction was least pronounced in selected plants. Meanwhile, Na content was significantly increased; however, K was decreased, a trend that was obvious in original plants but withdrawn following in vitro selection with a consequent lowering in Na/K ratio. In addition, proline was greatly induced by NaCl; the induction was most pronounced in selected plants. Moreover, NaCl significantly increased anthocyanin and activities of PAL, TAL and CI in shoots and roots of both species; the increase was lesser in the selected than in the original plants. These findings indicated that selection of mung bean and tomato resulted in a recovery of growth, overproduction of proline and K and withdrawal of Na and secondary metabolism parameters relative to original plants pointing out to an improved tolerance to NaCl following in vitro selection.  相似文献   

6.
Abstract. Deuterium-labelled ABA-aldehyde was fed to various tomato genotypes. Normal and notabilis mutant plants incorporated substantial amounts of the label into ABA. In contrast, two ABA-deficient mutants, flacca and sitiens , reduced ABA-aldehyde to a mixture of cis- and trans -ABA alcohol rather than oxidizing it to ABA. It was concluded that ABA-aldehyde is the immediate precursor of ABA in higher plants. It appears that the flacca and sitiens lesions both act to block the last step of the ABA biosynthetic pathway. The mutant gene loci are likely to be involved in coding for different sub-units of the same dehydrogenase enzyme.  相似文献   

7.
番茄线粒体和内质网小分子热激蛋白基因的分子克隆   总被引:10,自引:0,他引:10  
以热激处理的番茄(Lycopersicon esculentum Mill.)花为实验材料,构建了cDNA库,运用RT-PCR方法克隆番茄粒体和内质网小分子热激蛋白cDNA,利用这两个保守区片段为探针,筛选cDNA库,获得线粒体和内质网小分子热激蛋白全序列cDNA。;通过分析线粒体和内质网小分子热激蛋白基因对温度的反应,发现小分子热激蛋白基因在番茄花中的热激应答温度低于它们在叶片中的热激应答温度,并且番茄叶片中的线粒体小分子热激蛋白基因还具有低温应答特性。对线粒体和内质网小分子热激蛋白基因的分子结构特点,小分子热激蛋白基因在番茄花中的特别热激应答温度的调控机理以及线粒体小分子热激蛋白的基因在中片中的低温度应答成因进行了讨论。  相似文献   

8.
A cDNA library was constructed with the heat shocked tomato (Lycopersicon esculentum Mill.) flowers and then was screened with the probes of mitochondrial and endoplasmic reticulum conservative regions that were cloned by using RT-PCR. The complete cDNAs of mitochondrial and endoplasmic reticulum small heat shock protein ( shsp ) were selected out from the cDNA library. Furthermore, the temperature responses of these shsp genes were determined. Northern hybridization showed that the heat response temperatures of both genes in tomato flower were lower than that in leaf and that mitochondria shsp in leaf was cold-inducible. In this paper, the molecular features of the cloned genes, the causes of the uncommon heat response temperatures of sHSP in flower and the cold inducible character of mitochondria shsp gene in leaf were discussed.   相似文献   

9.
10.
《Current biology : CB》2022,32(20):4465-4472.e6
  1. Download : Download high-res image (155KB)
  2. Download : Download full-size image
  相似文献   

11.
Photosynthetic activity, in leaf slices and isolated thylakoids, was examined at 25° C after preincubation of the slices at either 25° C or 4° C at a moderate photon flux density (PFD) of 450 mol·m–2·s–1, or at 4° C in the dark. The plants used wereSpinacia oleracea L.,Cucumis sativus L. andNerium oleander L. which was acclimated to growth at 20° C or 45° C. The plants were grown at a PFD of 550 mol·m–2·s–1. Photosynthesis, measured as CO2-dependent O2 evolution, was not inhibited in leaf slices from any plant after preincubation at 25° C at a moderate PFD or at 4° C in the dark. However, exposure to 4° C at a moderate PFD induced an inhibition of CO2-dependent O2 evolution within 1 h inC. sativus, a chilling-sensitive plant, and in 45° C-grownN. oleander. The inhibition in these plants after 5 h reached 80% and 40%, respectively, and was independent of the CO2 concentration but was reduced at O2 concentrations of less than 3%. Methyl-viologen-dependent O2 exchange in leaf slices from these plants was not inhibited. There was no photoxidation of chlorophyll, in isolated thylakoids, or any inhibition of electron transport at photosystem (PS)II, PSI or through both photosystems which would account for the inhibition of photosynthesis. The conditions which inhibit photosynthesis in chilling-sensitive plants do not cause inhibition inS. oleracea, a chilling-insensitive plant, or in 20° C-grownN. oleander. The CO2-dependent photosynthesis, measured at 5° C, was reduced to about 3% of that recorded at 25° C in chilling-sensitive plants but only to about 30% in the chilling-insensitive plants. Methyl-viologen-dependent O2 exchange, measured at 5° C, was greater than 25% of the activity at 25° C in all the plants. The results indicate that the mechanism of the chilling-induced inhibition of photosynthesis does not involve damage to PSII. That inhibition of photosynthesis is observed only in the chilling-sensitive plants indicates it is related, in some way, to the disproportionate decrease in photosynthetic activity in these plants at chilling temperatures.Abbreviations Chl chlorophyll - DPIPH reduced form of 2,6-dichlorophenol-indophenol - DMQ 2,5-dimethyl-p-benzoquinone - MV methyl viologen - 20°-oleander Nerium oleander grown at 20° C - 45°-oleander N. oleander grown at 45° C - PFD photon flux density (photon fluence rate) - PSI and PSII photosystem I and II, respectively  相似文献   

12.
Volatiles emitted from the leaves of Lycopersicon esculentum at the two-, ten-leaf and anthesis periods were collected by a gas absorbing method and analyzed by gas chromatography (GC)-mass spectrometry. In total, 33 compounds of volaUles emitted from three developmental stage plants were separated and identified, and quantitatively analyzed by the internal standard addition method. All of the samples of volatile were found to be rich in monoterpenes and sesquiterpenes.β-phellandrene and caryophyllene predominated in the volatiles of the leaves of plants at the two- and ten-leaf stages. Furthermore, (E)-2-hexenal were the dominant components in the volatiles emitted from anthesis plants. The results of volatiles analyzed show that the compositions varied depending on the developmental stages. The volatiles emitted from crushed tomato leaves of plants at the anthesis stage had the most strongly inhibitory activity against the spore germination and hyphal growth of Botrytis cinerea and Fusarium oxysporum, followed by ten- and two-leaf plants. However, the activity of volatiles, emitted from the leaves of plants at the two-leaf stage, in inhibiting F. oxysporum was greater than B. cinerea.  相似文献   

13.
Free fatty acids (FFA) generated in thylakoids upon chilling of tomato leaves at 0°C for a few days result in release of functionally active Mn and inactivation of O2 evolution. Chilling does not lead to a decrease in the extrinsic 16, 23 and 33 kDa polypeptides. Upon illumination of chilled leaves both Mn content and O2 evolution in thylakoids are restored and FFA content is reduced to the level of the control. Photoactivation of O2 evolution in chilled leaves does not change the ratio of unsaturated/saturated FFA. Constant Arrhenius activation energy (Ea) for O2 evolution by thylakoids isolated from control leaves was found, whereas it increased at temperatures below 8.0 and 10.5°C in thylakoids from cold-treated and photoactivated leaves, respectively. This indicates that restoration of O2 evolution as well as of FFA and Mn contents is not accompanied by a complete reversal of membrance conformation.  相似文献   

14.
Root growth as a function of ammonium and nitrate in the root zone   总被引:6,自引:1,他引:6  
We examined the effect of soil NH4+ and NO3? content upon the root systems of field-grown tomatoes, and the influence of constant, low concentrations of NH4+ or NO3? upon root growth in solution culture. In two field experiments, few roots were present in soil zones with low extractable NH4+ or NO3?; they increased to a maximum in zones having 2μg-N NO3? g?1 soil and 6 μg-N NO3= g?1 soil, but decreased in zones having higher NH4+ or NO3? levels. Root branching was relatively insensitive to available mineral nitrogen. Plants maintained in solution culture at constant levels of NH4+ or NO3?, had similar shoot biomass, but all root parameters – biomass, length, branching and area – were greater under NH4 nutrition than under NO3?. These results suggest that the size of root system depends on a functional equilibrium between roots and shoots (Brouwer 1967) and on the balance between soil NH4+ and NO3?.  相似文献   

15.
The Mi‐1.2 gene, identified from wild varieties of tomato, Solanum peruvianum (Mill) (Solanaceae), has been incorporated into near‐isogenic commercial varieties of tomato and has been shown to confer resistance to three different species of phloem feeders: aphids, whiteflies, and nematodes. The results presented here show that plants bearing Mi‐1.2 were also resistant to the tomato psyllid, Bactericerca [Paratrioza] cockerelli (Sulc) (Homoptera: Psyllidae), a serious pest of tomato, Solanum lycopersicon (Mill), in the western half of North America. In choice studies, tomato psyllids preferred to settle on plants that did not contain the gene [Moneymaker (mi‐1.2)] compared to near‐isogenic plants with the gene [Motelle (Mi‐1.2)]. As a result, total oviposition was higher on the susceptible variety, although no‐choice studies indicated that there were no differences in numbers of eggs laid by individual females on either variety. Survival from egg to adult was higher on plants lacking the gene compared to plants containing the gene. However, there were no differences in total development time of individuals reared from either variety. The results suggest that mechanisms of resistance to the tomato psyllid observed in plants bearing the Mi‐1.2 gene are distinct from the mechanisms of resistance to the three phloem feeders examined in other studies.  相似文献   

16.
In addition to the well-studied evolutionary parameters of (1) phenotype-fitness covariance and (2) the genetic basis of phenotypic variation, adaptive evolution by natural selection requires that (3) fitness variation is effected by heritable genetic differences among individuals and (4) phenotype-fitness covariances must be, at least in part, underlain by genetic covariances. These latter two requirements for adaptive evolutionary change are relatively unstudied in natural populations. Absence of the latter requirements could explain stasis of apparently directionally selected heritable traits. We provide complementary analyses of selection and variation at phenotypic and genetic levels for juvenile growth rate in brook charr Salvelinus fontinalis in Freshwater River, Newfoundland, Canada. Contrary to the vast majority of reports in fish, we found very little viability selection of juvenile body size. Large body size appears nonetheless to be selectively advantageous via a relationship with early maturity. Genetic patterns in evolutionary parameters largely reflected phenotypic patterns. We have provided inference of selection based on longitudinal data, which are uncommon in high fecundity organisms. Furthermore we have provided a practicable framework for further studies of the genetic basis of natural selection.  相似文献   

17.
Soybean genotypes resistant to stink bugs are derived from complex breeding processes obtained through indirect selection. The aim of the present work was to estimate genetic parameters for guiding selection strategies towards resistant genotypes, based on those traits associated with responses to pod-attacking stink bugs, such as the grain filling period (GFP), leaf retention (LR), percentage index of pod damage (PIPD) and percentage of spotted seeds (PSS). We assessed the parental lines IAC-100 (resistant) and FT-Estrela (susceptible), the progenies F(2) and F (4) , 30 progenies F (2:3) , 30 progenies BC (1) F (2:3) and 30 progenies BC (2) F (2:3) , besides the cultivars BRS Celeste and MGBR-46 (Conquista). Three field experiments, using randomized complete block design with three replications, were installed in Goiania-GO, in the 2002/03 season. Each experiment consisted of 36 treatments (6 common and 30 regular). Heritability estimates were: 74.6 and 36.1 (GFP); 51.9 and 19.9 (LR); 49.6 and 49.6 (PIPD) and 55.8 and 20.3 (PSS), in both the broad and narrow senses, respectively. Based on these results, we concluded that the best strategy for obtaining stink bug-resistant genotypes consists of selecting the PIPD trait in early generations (F (3) or F (4) ), followed by selection for the GFP, LR and PSS traits in generations with higher endogamy levels.  相似文献   

18.
In an experimental study of adaptation to negative pleiotropic effects of a major fungicide resistance mutation in the filamentous fungus Aspergillus nidulans we have investigated the relative effectiveness of artificial selection vs. natural selection on the rate of compensatory evolution. Using mycelial growth rate as a fitness measure, artificial selection involved the weekly transfer of the fastest growing sector onto a fresh plate. Natural selection was approximated by transferring random samples of all the spores produced by the mycelium. Fungicide resistant and fungicide sensitive haploid and diploid strains were used in an evolution experiment over 10 weekly transfers, which is equivalent to 1200 cell cycles. Two different environmental conditions were applied: a constant fungicide-free environment and a weekly alternation between presence and absence of fungicide. Results show that for all strains and conditions used the transfer of a random sample of all spores leads to more rapid adaptation than the transfer of the visually 'fittest' sector. The rates of compensatory evolution in the constant and the alternating environment did not differ. Moreover, haploid strains tend to have a higher rate of adaptation than isogenic diploid strains.  相似文献   

19.
Population genetic simulation has emerged as a common tool for investigating increasingly complex evolutionary and demographic models. Software capable of handling high-level model complexity has recently been developed, and the advancement of tree sequence recording now allows simulations to merge the efficiency and genealogical insight of coalescent simulations with the flexibility of forward simulations. However, frameworks utilizing these features have not yet been compared and benchmarked. Here, we evaluate various simulation workflows using the coalescent simulator msprime and the forward simulator SLiM, to assess resource efficiency and determine an optimal simulation framework. Three aspects were evaluated: (1) the burn-in, to establish an equilibrium level of neutral diversity in the population; (2) the forward simulation, in which temporally fluctuating selection is acting; and (3) the final computation of summary statistics. We provide typical memory and computation time requirements for each step. We find that the fastest framework, a combination of coalescent and forward simulation with tree sequence recording, increases simulation speed by over twenty times compared to classical forward simulations without tree sequence recording, although it does require six times more memory. Overall, using efficient simulation workflows can lead to a substantial improvement when modelling complex evolutionary scenarios—although the optimal framework ultimately depends on the available computational resources.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号