首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
2.
Nuclei isolated from rat liver, incubated in the presence of liposomes of different phospholipids, undergo typical modifications: chromatin dispersion and reduction of the interchromatin granules in nuclei incubated with negatively charged liposomes and increase of the chromatin density and of the number and size of the interchromatin granules in nuclei incubated with neutral liposomes. The possibility that the observed modifications are caused by an impairment of the transport and translocation of ribonucleoproteins belonging to the inner nuclear matrix, is suggested by the results obtained by radiotracer techniques on the release of RNA from liposome-incubated nuclei.  相似文献   

3.
4.
Summary Polyclonal antibodies have been produced which react with a nuclear protein having a molecular weight of 107kD and a pl of 8.7–8.8 (designated p107). This protein is shown to be a component of the residual ribonucleoprotein (RNP) network of the nuclear matrix. P107 localized exclusively to the nuclear interior but not within nucleolar or chromatin domains. We have taken advantage of this unique probe to examine whether the RNP network of the isolated nuclear matrix has a physical counterpart in situ. We show that RNA, p107, divalent cations and the 28 kD Sm antigen of U-snRNPs are components of in situ macromolecular assemblies. While the morphology and intranuclear distribution of these assemblies are insensitive to the removal of chromatin, they are markedly altered by degradation of RNA. Digestion in situ of RNA in the presence of EDTA followed by extraction with high ionic strength buffers solubilized the components of these assemblies. Electron microscopic and immunobiochemical data are presented which support the concept that the residual RNP network of the nuclear matrix is an isolate of a pre-existing structure, and that perturbations in this internal network can be created by RNA degradation, depletion of essential metal ions and proteolysis.Abbreviations CRLM polyclonal chicken antibody raised against rat liver nuclear matrix - Sm monoclonal antibody specific for the 28 kd protein antigen of U1, U2, U4, U5 and U6 snRNPs - hnRNP ribonucleoprotein particles containing hnRNA - snRNP ribonucleoprotein particles containing snRNA - PBS phosphate buffered saline - PMSF phenylmethylsulfonyl fluoride - PAGE polyacrylamide gel electrophoresis - EDTA ethylenediaminetetraacetic acid - VRC vanadium ribonucleoside complex - BSA bovine serum albumin - DMSO dimethylsulfoxide - HS high salt buffer - LS low salt buffer  相似文献   

5.
The gentle removal of chromatin uncovers a nuclear matrix consisting of two parts: a nuclear lamina connected to the intermediate filaments of the cytoskeleton and an internal matrix of thick, polymorphic fibers connecting the lamina to masses in the nuclear interior. This internal nuclear matrix can be further fractionated to uncover a highly branched network of 9 nm and 13 nm core filaments retaining some enmeshed bodies. The core filament network retains most of the nuclear RNA, as well as the fA12RNP antigen, and may be the most basic or core element of internal nuclear structure. One high molecular weight protein component of the core filament network, the H1B2 antigen, is normally masked in the interphase nucleus and is uncovered as the chromatin condenses at mitosis. This protein is associated with a fibrogranular network surrounding and connected to the chromosomes. The core filament-associated fA12 antigen also becomes associated with this perichromosomal network. We propose that the core filament nuclear matrix structure may not completely disassemble at mitosis but, rather, that parts remain as a structural network connected to chromosomes and other mitotic structures. These mitotic networks may, in turn, serve as the core structures on which the nuclear matrices of daughter cells are built.  相似文献   

6.
7.
Rat liver nuclear skeleton and small molecular weight RNA species   总被引:9,自引:5,他引:4  
Small molecular weight RNA species (smwRNAs) were studied in rat liver nuclei with and without chromatin as well as with and without nuclear envelope and nucleoplasm. From all the species identified, only two, N5 and 5Sb, were related to ribosomes. The others were localized exclusively in the nuclear skeleton or the spongelike network that was described in the preceding communication. This network or protein matrix contains a less abundant but exclusive set of molecules designated 5Sa, N1, and 4.5S, as well as other more abundant molecules which also exist in rat liver endoplasmic reticulum but not in polysomes or postribosomal RNP complexes. The smwRNAs behave like HnRNA; they remain located in the nuclear skeleton when nuclei are deprived of nucleoplasm and chromatin. With the information presently available, it is not possible to know whetherer both species are in the same or different RNP complexes and whether some of the smwRNAs contribute to the architecture of the nuclear skeleton. Distinct from any other nuclear RNA species, smwRNAs have two unique properties: facility of extraction, and resistance to nuclear ribonuclease digestion.  相似文献   

8.
The small nuclear RNP (alpha-RNP) tightly bound to chromatin has been isolated. alpha-RNP can be removed from chromatin together with the acid-soluble proteins. The RNA from this RNP has been isolated; its electrophoretic mobility is equal to that of 4 S RNA. The study of the resistance of alpha-RNA to RNases (A, T1 and S1) in salt solutions of various ionic strengths allows us to conclude that the alpha-RNA has a well-developed secondary structure. The alpha-RNA is tightly associated with the protein moiety of alpha-RNP and has developed secondary structure. The alpha-RNA is tightly associated with the protein moiety of alpha-RNP and has a high metabolic activity.  相似文献   

9.
10.
This review summarizes available data on the structural and functional role of neutral lipids and phospholipids in normal and tumor eukaryotic cells. The role of acidic phospholipids (cardiolipin, phosphatidylinositol, and phosphatidylglycerol) in regulation of activities of DNA- and RNA-polymerases, DNA-topoisomerases I and II, DNA-methylases, and replication initiation proteins (dnaA and T-antigen) is discussed. The role of sphingolipids is emphasized considering, on one hand, the involvement of sphingosines in signal transduction, chromatin association-dissociation, and regulation of DNA and RNA synthesis and protein kinase C and, on the other hand, participation of ceramides and dihydroceramides in apoptosis. The possible role of sphingomyelin, sphingosine, cardiolipin, and diglycerides in the contacts of DNA loops with nuclear matrix is analyzed. Lipid hormones indirectly influence supercoiled DNA conformation; the effect of hormones on metabolism of phospholipids and neutral lipids in chromatin and nuclear matrix is reviewed. Characteristics of lipid composition in chromatin and nuclear matrix of the tumor cells are discussed.  相似文献   

11.
I Faiferman  A O Pogo 《Biochemistry》1975,14(17):3808-3816
Rapidly labeled polydispersed nuclear RNA is part of a ribonucleoprotein (RNP) network which in turn is tightly bound to the nuclear membrane. The membranous attachment, therefore, established a connection between chromatin and cytoplasm. The ultrastructure of the RNP network comprises fibrils and granules similar to those observed in intact nuclei. When bound to the nuclear membrane it has the composition of 63% protein, 14% RNA, 0.4% DNA, and 22.6% lipids. The proportion of lipids diminishes to 2.2% when nuclear membrane is not present. Chromatin, nucleoli, and ribosomes are minor contaminants since histones and ribosomal proteins are not detectable in polyacrylamide gel electrophoresis. Nuclear disruption at high pressure in a French pressure cell causes fragmentation of the RNP network into a series of polydispersed RNP particles. Fragmentation can be prevented by using mild pressure, or by disrupting nuclei with high salt buffer and digesting the dispersed chromatin with deoxyribonuclease. A RNP network, almost free of membrane, is also obtained if the nucleus is deprived of its envelope by treatment with Triton X-100. Since no polydispersed RNP particles are found following dissolution of the nuclear membrane, it is assumed that the particles are components of the RNP network whose fragmentation occurs as a consequence of two processes: (a) activation of nuclear nucleases and (b) shearing forces.  相似文献   

12.
13.
14.
15.
The formation of pseudouridine (psi) in U5 RNA during ribonucleoprotein (RNP) assembly was investigated by using HeLa cell extracts. In vitro transcribed, unmodified U5 RNA assembled into an RNP particle with the same buoyant density and sedimentation velocity as did U5 small nuclear RNP from extracts. The greatest amount of psi modification was detected when a combination of S100 and nuclear extracts was used for assembly. psi formation was inhibited when ATP and creatine phosphate or MgCl2 were not included in the assembly reaction, paralleling the inhibition of RNP particle formation. A time course of assembly and psi formation showed that psi modification lags behind RNP assembly and that at very early time points, Sm-reactive U5 small nuclear RNPs are not modified. Two of three psi modifications normally found in U5 RNA were present in RNA incubated in the extracts. Mutations in the form of deletions and truncations were made in the U5 sequence, and the effect of these mutations on psi formation was investigated. A mutation in the area of stem-loop I which contains the psi moieties or in the Sm binding sequence affected psi formation.  相似文献   

16.
The sera of patients with mixed connective tissue disease (MCTD) have high titers of antibodies directed against nuclear U1-ribonucleoprotein (U1-RNP). This antigen is easily extracted from nuclear preparations with physiologic saline and from tissue sections with 0.1 HCl, leaving the nucleic acids and nuclear matrix behind. When U1-RNP is extracted from HEp-2 cells with 0.1 N HCl, the sera of 32/32 patients with MCTD react with another antigen that is exposed by the extraction procedure. This antigen is not destroyed by trypsin and deoxyribonuclease 1 treatment but is sensitive to both purified ribonuclease A and purified micrococcal nuclease. Absorption studies showed that the antibody reacting with this antigen cannot be absorbed by sheep red blood cells coated with extracts of rabbit thymus that contain U1-RNP. Radioimmunoassay showed that the reaction of the unadsorbed antibody was with heterogeneous nuclear ribonucleoprotein or ribonucleic acid (hnRNP/RNA) and not with transfer RNA or ribosomal RNA. The hnRNP/RNA antigen is demonstrated as discrete particles in the internucleolar chromatin of interphase cells, but in metaphase cells the antigen is diffusely dispersed. The distribution, solubility, and biochemical characteristics suggest that the antigenic moiety is part of the nuclear matrix. Therefore, MCTD sera contain antibodies that react with at least two species of nuclear RNP: small nuclear RNP (snRNP), as described by others, and a high m.w. hnRNP/RNA bound to the nuclear matrix.  相似文献   

17.
18.
Ethidium bromide (EB) is widely used for investigating the DNA conformation in chromatin both with conventional and cytofluorimetric techniques. Since the interaction of the dye with DNA should result in structural deformations which can be different in isolated or in situ chromatin, a study has been performed on the effects caused by different amounts of EB and the analogous propidium iodide on isolated nuclei, in which chromatin maintains its native relationships with the other nuclear structures (envelope, nucleolus, interchromatin RNP, nuclear matrix). The results obtained by comparing ultrastructural observations in thin sections and in freeze-fracturing with conformational analysis in multiparameter flow cytometry indicate that the phenanthridinic fluorochromes, especially at the high concentrations used for cytofluorimetric analyses, cause deep rearrangements of the chromatin in situ. These effects consist both in aggregation and condensation of the fibers into the dense chromatin domains, and in an increase of the supernucleosomal configuration associated with an enlargement of interchromatin spaces in which the RNP particles appear particularly evident. These results, discussed with those available on isolated chromatin, suggest that any unwinding effect of the intercalating dyes on the DNA cause a general condensation of chromatin as a consequence of the constraints which characterize the organization of the chromatin inside the nucleus.  相似文献   

19.
20.
The nonchromatin structure or matrix of the nucleus has been studied using an improved fractionation in concert with resinless section electron microscopy. The resinless sections show the nucleus of the intact cell to be filled with a dense network or lattice composed of soluble proteins and chromatin in addition to the structural nuclear constituents. In the first fractionation step, soluble proteins are removed by extraction with Triton X-100, and the dense nuclear lattice largely disappears. Chromatin and nonchromatin nuclear fibers are now sharply imaged. Nuclear constituents are further separated into three well-defined, distinct protein fractions. Chromatin proteins are those that require intact DNA for their association with the nucleus and are released by 0.25 M ammonium sulfate after internucleosomal DNA is cut with DNAase I. The resulting structure retains most heterogeneous nuclear ribonucleoprotein (hnRNP) and is designated the RNP-containing nuclear matrix. The proteins of hnRNP are those associated with the nucleus only if RNA is intact. These are released when nuclear RNA is briefly digested with RNAase A. Ribonuclease digestion releases 97% of the hnRNA and its associated proteins. These proteins correspond to the hnRNP described by Pederson (Pederson, T., 1974, J. Mol. Biol., 83:163-184) and are distinct from the proteins that remain in the ribonucleoprotein (RNP)-depleted nuclear matrix. The RNP-depleted nuclear matrix is a core structure that retains lamins A and C, the intermediate filaments, and a unique set of nuclear matrix proteins (Fey, E. G., K. M. Wan, and S. Penman, 1984, J. Cell Biol. 98:1973-1984). This core had been previously designated the nuclear matrix-intermediate filament scaffold and its proteins are a third, distinct, and nonoverlapping subset of the nuclear nonhistone proteins. Visualizing the nuclear matrix using resinless sections shows that nuclear RNA plays an important role in matrix organization. Conventional Epon-embedded electron microscopy sections show comparatively little of the RNP-containing and RNP-depleted nuclear matrix structure. In contrast, resinless sections show matrix interior to be a three-dimensional network of thick filaments bounded by the nuclear lamina. The filaments are covered with 20-30-nm electron dense particles which may contain the hnRNA. The large electron dense bodies, enmeshed in the interior matrix fibers, have the characteristic morphology of nucleoli. Treatment of the nuclear matrix with RNAase results in the aggregation of the interior fibers and the extensive loss of the 20-30-nm particles.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号