首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hemoglobin system of the serpent eel Ophisurus serpens was structurally and functionally characterized with the aim of comparing it to the hemoglobin system of other fish species, as oxygen loading under the severe habitat conditions experienced by O. serpens could have necessitated specific adaptation mechanisms during evolution. The hemoglobin system of O. serpens includes one cathodic and four anodic components. The molecular mass of the α and β chains of the cathodic component as well as the 2 α and 4 β of the anodic components were determined. Analysis of the intact α and β chains from cathodic hemoglobin and their proteolytic digestion products by high-resolution MS and MS/MS experiments resulted in 92 and 95 % sequence coverage of the α and β globins, respectively. The oxygen binding properties of both hemoglobin components were analyzed with respect to their interactions with their physiological effectors. Stripped cathodic hemoglobin displayed the highest oxygen affinity among Anguilliformes with no significant effect of pH on O2-affinity. In the presence of both chloride and organic phosphates, O2-affinity was strongly reduced, and cooperativity was enhanced; moreover, cathodic hemoglobin contains two indistinguishable GTP-binding sites. Stripped anodic hemoglobins exhibited both low O2-affinity and low cooperativity and a larger Bohr effect than cathodic hemoglobin. The cathodic hemoglobin of O. serpens and the corresponding component of Conger conger share the greatest structural and functional similarity among hemoglobin systems of Anguilliformes studied to date, consistent with their phylogenetic relationship.  相似文献   

2.
We examined for the first time the hemoglobin components of the blood of the Australian lungfish, Neoceratodus forsteri and their functional responses to pH and the allosteric modulators adenosine triphosphate (ATP), guanosine triphosphate (GTP), 2,3-bisphosphoglyceric acid (BPG) and inositol hexaphosphate (IHP) at 25 degrees C. Lysates prepared from stripped, unfractionated hemolysate produced sigmoidal oxygen equilibrium curves with high oxygen affinity (oxygen partial pressure required for 50% hemoglobin saturation, p(50)=5.3 mmHg) and a Hill coefficient of 1.9 at pH 7.5. p(50) was 8.3 and 4.5 mmHg at pH 6 and 8, respectively, which corresponded to a modest Bohr coefficient (Delta log p(50)/Delta pH) of -0.13. GTP increased the pH sensitivity of oxygen binding more than ATP, such that the Bohr coefficient was -0.77 in the presence of 2 mmol L(-1) GTP. GTP was the most potent regulator of hemoglobin affinity, with concentrations of 5 mmol L(-1) causing an increase in p(50) from 5 to 19 mm Hg at pH 7.5, while the order of potency of the other phosphates was IHP>ATP>BPG. Three hemoglobin isoforms were present and each contained both alpha and beta chains with distinct molecular weights. Oxygen affinity and pH-dependence of isoforms I and II were essentially identical, while isoform III had a lower affinity and increased pH-dependence. The functional properties of the hemoglobin system of Neoceratodus appeared consistent with an active aquatic breather adapted for periodic hypoxic episodes.  相似文献   

3.
The hemoglobin of the sea snakeMicrocephalophis gracilis was purified and the primary structure of the α and β chains determined. This is the first sea snake hemoglobin structure characterized, and apparently also the first complete structure of any snake hemoglobin (an α chain of a viper was known), allowing judgments of reptilian variants. Variations between the sea snake form and other reptilian forms are large (52–65 differences for the α chains), of similar order as those between the sea snake and avian (56–65 differences) or human (58 differences) forms. Functionally, 19 residues at α/β contact areas and 7 at heme contacts are exchanged in relation to the human α and β chains. Four positions of the sea snake hemoglobin contain residues thus far unique to this form. However, all replacements appear compatible with conserved overall functional properties.  相似文献   

4.
Six haemoglobins were separated analytically from haemolysates of adult Wistar rats (Rattus norvegicus) by cellulose acetate electrophoresis and preparatively by DEAE-cellulose chromatography. The globin chains were separated from unfractionated haemolysates by CM-cellulose chromatography by using a non-linear formic acid-pyridine gradient followed by CM-cellulose chromatography in 8M-urea by using a gradient of increasing Na+ concentration in phosphate buffer, pH 6.7. Two alpha chains and three non-alpha chains were identified. Chains isolated from purified haemoglobins were correlated with chains isolated from unfractionated haemolysates by electrophoresis on urea-starch gels to make presumptive assignments of the subunit composition of the six haemoglobin tetramers. Partial amino acid sequences were determined for the major and minor alpha chains. The oxygen equilibria of two of the major haemoglobin components and of the unfractionated haemolysate were examined at pH 7.5 and 8.0. The two purified haemoglobins exhibited similar oxygen affinities; the haemolysate, however, had a lower oxygen affinity than either of the two purified haemoglobins. Both the haemolysate and the two haemoglobins showed an alkaline Bohr effect larger than that of human haemoglobin A.  相似文献   

5.
The allosteric model of Monod et al. (1965) (MWC) has been extended to take into account the effects of subunit dissociation. The problem is formulated theoretically in terms of a general model for two allosteric species (dimers and tetramers) linked by a polymerization reaction. Relationships are presented for interpreting the dimer-tetramer association constants in terms of allosteric model parameters.Sub-cases of the general model were tested against recent experimental data on the oxygenation-linked dimer-tetramer equilibria in normal human hemoglobin and in the variant hemoglobin Kansas (β102, Asp → Thr). The objectives of these analyses were: (1) to find the simplest models capable of describing the linked dimer-tetramer equilibria in the two hemoglobin systems, and (2) to evaluate the corresponding model parameters so that allosteric properties of the two hemoglobins may be compared.In the simplest version of the model, the dimer is half of an R-state tetramer. This model was found to be excluded unequivocally by the data for both normal hemoglobin and hemoglobin Kansas when the α and β chains have equal binding affinities. When this two-state model was modified to permit non-equivalent affinities for the chains, the model could be fitted to hemoglobin Kansas, but not to hemoglobin A. A model, in which the dimers are allowed to exist in a state different from the tetramer R state, was found to be consistent with the data for hemoglobin A, with equivalent binding by the α and β chains. For hemoglobin A, the unliganded R-state tetramers have a different subunit dissociation energy from that of fully liganded R-state tetramers. The simplest model capable of describing both hemoglobin A and hemoglobin Kansas was obtained by extending this three-state model to permit (but not require) functional non-equivalence of the α and β chains. For these MWC models, unique estimates were obtained for the model parameters.The allosteric constants for tetrameric hemoglobins A and Kansas are approximately equal. The value obtained from hemoglobin A is similar to previous estimates, whereas the value for hemoglobin Kansas is lower than previously estimated (Edelstein, 1971) by approximately two orders of magnitude. The low affinity of hemoglobin Kansas tetramer does not arise from an unusually high allosteric constant favoring the T-state species. It is largely the consequence of a greatly reduced oxygen affinity of β chains in the T state, and reduced values for the ratio between affinities in the R and T states.  相似文献   

6.
Nine hemoglobins were purified from blood of Salmo clarki by ion-exchange chromatography and preparative isoelectric focusing. The subunit structures of eight of the purified hemoglobins were studied by electrophoresis of globins in the presence of urea. Six are alpha 2 beta 2 tetramers while two appear to be heterotetramers of the type alpha alpha' beta 2 and alpha alpha' beta beta'. The effects of pH, nucleotides, and temperature on the oxygen equilibria of the purified hemoglobins were studied. Five hemoglobins with isoelectric points from 9.1 to 7.1 and one minor hemoglobin with an isoelectric point of 5.9 appear to have essentially identical oxygen binding properties. All have similar oxygen equilibria which are independent of pH and temperature and not affected by saturating amounts of ATP. Another minor hemoglobin with an isoelectric point below 5.9 has similar oxygen equilibria except for a possible pH dependence. Two hemoglobins, with isoelectric points of 6.5 and 6.4, have oxygen binding properties which are strongly pH and temperature dependent. Addition of ATP or GTP causes a large decrease in the oxygen affinity without affecting the cooperativity of oxygen binding. The effect of GTP is slightly greater than that of ATP. No significant differences were observed in the oxygen equilibria of these two hemoglobins. The red blood cells of S. clarki were found to contain large amounts of both ATP and GTP, with an ATP:GTP ratio of 3:1. Both nucleotides may be important modulators of hemoglobin oxygen affinity in S. clarki, in contrast to the situation in S. gairdneri, in which red blood cell GTP concentrations are considerably lower. The presence of six or possibly seven hemoglobins with identical oxygen binding properties in S. clarki suggests that, to a large extent, the physiological role of multiple hemoglobins in this species involves phenomena not directly related to the oxygen binding properties of the hemoglobins.  相似文献   

7.
Hemoglobin MSaskatoon (α2Aβ263tyr) has two α chains in the normal ferrous state, while its two β chains are in the ferric state. The reaction of hemoglobin MSaskatoon with carbon monoxide at pH 7 and 20 °C in the presence and absence of dithionite was studied. In the absence of dithionite only the α chains react and the combination rate is slow and similar to that of normal deoxyhemoglobin. After the addition of dithionite the rate of reaction is greatly increased initially and then decreases to a rate similar to that seen in the absence of dithionite. The dissociation of oxygen from hemoglobin MSaskatoon at pH 7 and 20 °C was found for the α subunits to be similar to that seen for normal oxyhemoglobin. This similarity in the kinetic properties of normal hemoglobin and the α subunits of hemoglobin MSaskatoon in both ligand combination and dissociation reactions indicates that the α subunits of hemoglobin MSaskatoon undergo a structural transition from a low to high affinity form on liganding. Since the β subunits react rapidly with carbon monoxide even when the α subunits are unliganded, it appears that the ligand binding sites of the β chains are uncoupled from the state of liganding of the α subunits.  相似文献   

8.
The effects of 2,3 diphosphoglyceric acid (2,3-DPG), adenosine triphosphate (ATP), and inositol hexaphosphate (IHP) on the oxygen affinity of whole “stripped” hemoglobin (WSH), hemoglobin H (Hb-H), hemoglobin A (Hb-A) and hemoglobin D (Hb-D) isolated from 18-day chick embryo blood have been determined. The effect of the three organic phosphates upon the oxygen dissociation curves is similar and the following order of decreasing oxygen affinity of the organic phosphates was observed for each hemoglobin: 2,3-DPG < ATP < IHP. 2,3-DPG appears to have a slightly greater effect upon the P50 of Hb-H than upon that of either of the two adult-type hemoglobins. However, this effect seems insufficient to suggest a preferential interaction of 2,3-DPG with Hb-H which would account for either the large amounts of 2,3-DPG in the erythrocytes of embryos or the higher oxygen affinity of the whole blood. The effects of the organic phosphates upon the Hill constant of the purified hemoglobins are variable. It is concluded that since the distribution of hemoglobins H, A, and D in the erythrocytes during the developmental period from 18-day embryos to 6-day chicks remains fairly constant, the previously described progressive decrease in oxygen affinity of the whole blood during this period results from changes in the total amount and distribution of the intraerythrocytic organic phosphates.2  相似文献   

9.
Crocodylus siamensis hemoglobin was purified by a size exclusion chromatography, Sephacryl S-100 with buffer containing dithiothreitol. The purified Hb was dissociated to be two forms (α chain and β chain) which observed by SDS-PAGE, indicated that the C. siamensis Hb was an unpolymerized form. The unpolymerized Hb (composed of two α chains and two β chains) showed high oxygen affinity at 3.13 mmHg (P50) and 1.96 (n value), and a small Bohr effect (δH+ = ?0.29) at a pH of 6.9–8.4. Adenosine triphosphate did not affect the oxygenation properties, whereas bicarbonate ions strongly depressed oxygen affinity. Crude C. siamensis Hb solutions were showed high O2 affinity at P50 of 2.5 mmHg which may assure efficient utilization of the lung O2 reserve during breath holding and diving. The purified Hbs were changed to cyanmethemoglobin forms prior crystallization. Rod- and plate-shaped crystals were obtained by the sitting-drop vapor-diffusion method at 5 °C using equal volumes of protein solution (37 mg/ml) and reservoir [10–13 % (w/v) PEG 4000, with 0.1 M Tris buffer in present of 0.2 M MgCl2·6H2O] solution at a pH of 7.0–8.5.  相似文献   

10.
Hemoglobins of mouse embryos at 11.5 through 16.5 days of gestation were separated by electrophoresis on cellulose acetate and quantitated by a scanning densitometer to study the effects of two radiation-induced mutations on the expression of embryonic hemoglobin genes in mice. Normal mice produce three kinds of embryonic hemoglobins. In heterozygous α-thalassemic embryos, expression of EI (x2y2) and EII (α2y2) is deficient because the x- and α-globin genes of one of the allelic pairs of Hba on chromosome 11 was deleted or otherwise inactivated by X irradiation. Simultaneous inactivation of the x- and α-globin genes indicates that these genes must be closely linked. Reduced x- and α-chain synthesis results in an excess of y chains that associate as homotetramers. This unique y4 hemoglobin also appears in β-duplication embryos where excess y chains are produced by the presence of three rather than two functional alleles of y- and β-globin genes. In double heterozygotes, which have a single functional allele of x- and α-globin genes and three functional alleles of y- and β-globin genes, synthesis of α and non-α chains is severely imbalanced and half of the total hemoglobin is y4. Mouse y4 has a high affinity for oxygen, P50 of less than 10 mm Hg, but it lacks cooperativity so is inefficient for oxygen transport. The death of double heterozygotes in late fetal or neonatal life may be due in large part to oxygen deprivation to the tissues.  相似文献   

11.
The hemoglobins of the cold-adapted Antarctic teleost Cygnodraco mawsoni   总被引:1,自引:0,他引:1  
The blood of the teleost Cygnodraco mawsoni, of the endemic Antarctic family Bathydraconidae, contains a major hemoglobin (Hb 1), accompanied by a minor component (Hb 2, about 5% of total). The two hemoglobins have identical alpha chains and differ by the beta chain. The complete amino acid sequence of the three chains has been elucidated, thus establishing the primary structure of both hemoglobins. The sequences show a 53-65% identity with non-Antarctic poikilotherm fish species; on the other hand, a very high degree of similarity (83-88%) has been found between Hb 1 and the major component of another Antarctic species of a different family. The hemoglobin functional properties relative to oxygen binding have been investigated in intact erythrocytes, 'stripped' hemolysate and purified components of C. mawsoni. The hemoglobins display the Bohr and Root effects, indicating fine regulation of oxygen binding by pH and by the physiological effectors organic phosphates.  相似文献   

12.
Deoxygenation-dependent association of hemoglobin tetramers appears to be widespread among amphibians, reptiles, and possibly all or most birds. The evidence for this conclusion depends largely on oxygen equilibria of whole blood which have Hill coefficients that reach values as high as 5-7 at 80-90% oxygenation. Computer simulation of the sedimentation velocity behavior of the major components A and D of chicken hemoglobin shows that component D but not A self-associates to form dimers of tetramers. The gradient profiles at pH 7.5 were satisfactorily fitted with an association constant of 1.26 x 10(4) M-1 and sedimentation coefficients of 4.63 and 7.35 S for tetramer and (tetramer)2, respectively. Since components A and D share common beta chains we conclude that tetramer-tetramer contacts must depend on surface residues of the alpha chains. Comparison of the amino acid sequences of the alpha D and alpha A chains of the hemoglobins from 12 avian species ranging from sparrow to ostrich shows that 20 residues are conserved in the alpha D chains but not in the alpha A chains. Nine of these (45%) are clustered between positions E20 and FG2. Four of the latter, Lys71 (E20), Asn75 (EF4), Gln78 (EF7), and Glu82 (F3) are conserved in all alpha D chains even though they do not appear to participate in intratetramer contacts. Molecular modeling indicates that residues Lys71, Gln78, and Glu82 of the alpha chain are strong candidates for the primary tetramer-tetramer contacts.  相似文献   

13.
Precise oxygen equilibrium curves have been obtained for cobalt hemoglobin at pH values from 5.5 to 8.2. The Hill plots are symmetric having asymptotes with slopes of unity. At pH 7.0, cobalt hemoglobin has p0.5 = 116 toor (15.45 kPa), pm = 117 torr (15.58 kPa) and a Hill coefficient of n = 1.72. The values of n decrease slightly with either decrease or increase of pH; the protein is almost non-cooperative at pH greater than 8.2. The Adair constants have been calculated with a non-linear least-squares program. From deltalnpm/deltapH a maximum of 2.5 Bohr protons was calculated at physiological pH values. The majority of alkaline Bohr protons are released after binding of the first and the third oxygen with maxima at pH 7.6 and 7.3, respectively. The acid Bohr effect was also observed with the majority of the protons taken up following the first and third oxygen bound. Smaller alkaline Bohr effects were obtained by differential titration and at higher pH than that calculated from oxygen equilibria. The discrepancy can be largely attributed to the binding of salt components to cobalt hemoglobin.  相似文献   

14.
  • 1.1. The hemoglobins of Leporinus friderici were separated by liquid chromatography on DEAE-Sepharose in order to isolate the two major electrophoretic components.
  • 2.2. The chromatographic fraction I (electrophoretically slow anodic) showed no Bohr effect and no nucleoside triphosphate modulation.
  • 3.3. The chromatographic fraction III (electrophoretically fast anodic) showed a normal Bohr effect and addition of nucleoside triphosphate decreased oxygen affinity but did not alter the Bohr effect.
  • 4.4. The whole hemolysate showed a normal Bohr effect and phosphate modulation altered both Bohr effect and oxygen affinity.
  • 5.5. No or little difference between the effect of adenosine or guanosine triphosphates on hemoglobin function was observed.
  相似文献   

15.
The primitive invertebrate, Phoronopsis viridis, of the phylum Phoronida, has intra-cellular hemoglobins composed of four unique polypeptide chains, two of which associate to form hetero- and homodimers and two which do not associate at all. The CO-derivatives of the associating chains are completely dimeric; removal of the ligand does not result in further aggregation as it does in several other invertebrate hemoglobins. Oxidation of the associating hemoglobins is accompanied by dissociation to monomers, but the cyanide derivative of the methemoglobin is dimeric. The four polypeptide chains all have molecular weights of about 16,000 as determined by iron content and gel electrophoresis with sodium dodecyl sulfate. The two associating chains form three components with isoelectric points at pH 5.6, 5.9, and 6.9 whereas those for the two monomeric chains are at pH 6.2 and 7.9. The chains have been characterized by amino acid composition, tryptic peptide patterns, and the amino acid sequence of the NH2-terminal segment. The oxygen equilibrium of a dimeric fraction has been determined at pH 7.5 and 20 °C; the pressure of half-saturation is 2.3 mm Hg.  相似文献   

16.
The oxygen-binding characteristics and the multiplicity of the stripped hemoglobiin from active lungfish Protopterus amphibius, are the same as in specimens that have been estivating for about 30 months, showing that alteration in the hemoglobin molecules is not involved in the earlier reported increase in oxygen affinity of whole blood during estivation (Johansen et al., '76). At pH 7.0 and 26 degrees C the hemolysates show a high oxygen affinity (P50 = 3.1 Torr), a Bohr factor (delta log P50/delta pH) of - 0.33, and a cooperativity coefficient (n) of 1.7. Between 15 and 26 degrees C, the apparent heat of oxygenation (delta H) is - 8.6 Kcal-mole-1 at pH 7.0, corresponding with data for other fish. A low sensitivity of oxygen affinity to urea appears to be adaptive to the high urea concentrations in estivating lungfish. The salt sensitivity is, however, similar to human hemoglobin. The hemoglobin consists of two major (electrophoretically anodal) components, which differ slightly in oxygen affinity but are both sensitive to pH and nucleoside triphosphates (NTP). Guanosine triphosphate (GTP), the major erythrocytic organic phosphate, however, depresses the oxygen affinity of the composite and separated hemoglobins more effectively than ATP suggesting that GTP is the primary modulator of oxygen affinity. Comparative measurements reveal only one major hemoglobin component in P. annectens which has a markedly lower oxygen affinity and phosphate sensitivity than P. amphibius hemoglobins and thus seems less pliable to phosphate-mediated variation in oxygen affinity. The data are discussed in relation to the hemoglobin systems of other fish.  相似文献   

17.
Patients on a chronic hemodialysis regimen were studied with respect to their erythrocyte adaptation to anemia. Erythrocyte 2,3-diphosphoglycerate (DPG) concentration was suboptimal compared with that of anemic patients who were not uremic. In uremic patients erythrocyte 2,3-DPG correlated poorly with hemoglobin level but more strongly with plasma pH. Differences between observed levels of erythrocyte 2,3-DPG and the values predicted using data from other anemic patients also correlated with pH. Gradual correction of plasma pH with oral sodium bicarbonate resulted in a substantial increase in erythrocyte 2,3-DPG and a decrease in oxygen affinity. Therefore, maintenance of normal pH in uremic subjects may improve tissue oxygenation. On the other hand, the rapid correction of acidosis during dialysis resulted in increased oxygen affinity. This response was due to the direct effect of pH on oxygen affinity in the absence of a significant change in erythrocyte 2,3-DPG or adenosine triphosphate (ATP) during hemodialysis. Erythrocyte ATP but not 2,3-DPG correlated with serum inorganic phosphate in uremic subjects. A 21% reduction of serum phosphate produced by ingestion of aluminum hydroxide gel had no significant effect on these variables.  相似文献   

18.
The Spot, Leiostomus xanthrus, has a single tetrameric hemoglobin. Structural studies indicate the presence of alpha- and beta-like chains with COOH-terminal sequences of --Arg and --TYR-His, respectively, the same as is found in human hemoglobin. Spot hemoglobin possesses a Root effect: a heterotropic control mechanism like the Bohr effect but with more extreme pH dependence in the equilibria and kinetics of O2 and CO binding. The Root effect seems to be a molecular adaptation, in that pH- and anion-sensitive hemoglobins may help fish achieve neutral buoyancy by facilitating O2 delivery to the swim bladder. Changes in the kinetics of both "on" and "off" processes contribute to the greatly decreased ligand affinity of Spot hemoglobin at low pH. The time course ofligand combination at low pH is biphasic and wavelength dependent, suggesting a differential effect of pH on the alpha- and beta-like chains. The change in the shape of the ligand-binding curve with pH may be interpreted in terms of a proton-dependent transition between low (T) and high (R) affinity conformations. However, this may not be the only mechanism, since differential pH effects on the two types of chains may also contribute to the observed pH dependence.  相似文献   

19.
The complete primary structure of the major hemoglobin component from the adult European lynx (Lynx lynx) is presented. Presence of two hemoglobin components and three chains, βA, βB, and α, identified by gel electrophoresis. The purification of the globin chains achieved by ion-exchange chromatography. The globin chains were digested with trypsin. The peptide generated were purified by reversed-phase HPLC. Sequencing of the native chains up to 42 cycles and of the tryptic peptides were deduced by Edman degradation in liquid- and gasphase sequencer. The primary structure established aligned with those of human Hb-A. The comparison of lynx globin chains with other representatives of the Felidae, lion, tiger, jaguar, leopard, and cat revealed high homology.  相似文献   

20.
α and β chains of hemoglobin have been modified with cobalt(II) tetrasulfonated phthalocyanine in place of heme. They display properties very similar to those of iron(II) phthalocyanine modified α and β chains. Mixed together they form tetrameric cobalt(II) phthalocyanine hemoglobin.Incorporation of Co(II)L into α and β globins results in stabilization of the protein structure, which is shown by a marked increase in its helicity content. Cobalt phthalocyanine substituted α and β chains are able to combine reversibly with oxygen giving more stable oxygenated species than their native analogues. The rate of both processes is lower in the case of the modified α chain. Recombination of the phthalocyanine α and β chains with the alternate heme containing chains give tetrameric hybrid hemoglobins. These comprise two phthalocyanine modified subunits and two heme containing subunits. The helicity content of the tetrameric hybrid hemoglobin calculated for one subunit is lower that the arithmetic mean of helicities for its isolated subunits. This suggests a destabilizing chain-chain interaction within the tetramer. Unlike in the separated subunits, oxygen binding by hybrid hemoglobins is irreversible. Deoxygenation by argon bubbling leads to the formation of inactive species which in oxygen atmosphere undergo irreversible oxidation with destruction of the complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号