首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Notch signaling is an evolutionarily conserved intercellular signaling pathway that plays numerous crucial roles in vascular development and physiology. Compelling evidence indicates that Notch signaling is vital for vascular morphogenesis including arterial and venous differentiation and endothelial tip and stalk cell specification during sprouting angiogenesis and also vessel maturation featured by mural cell differentiation and recruitment. Notch signaling is also required for vascular homeostasis in adults by keeping quiescent phalanx cells from re-entering cell cycle and by modulating the behavior of endothelial progenitor cells. We will summarize recent advances of Notch pathway in vascular biology with special emphasis on the underlying molecular mechanisms.  相似文献   

9.
Koch AJ  Holaska JM 《PloS one》2012,7(5):e37262
Emerin is an integral membrane protein of the inner nuclear membrane. Mutations in emerin cause X-linked Emery-Dreifuss muscular dystrophy (EDMD), a disease characterized by skeletal muscle wasting and dilated cardiomyopathy. Current evidence suggests the muscle wasting phenotype of EDMD is caused by defective myogenic progenitor cell differentiation and impaired muscle regeneration. We obtained genome-wide expression data for both mRNA and micro-RNA (miRNA) in wildtype and emerin-null mouse myogenic progenitor cells. We report here that emerin-null myogenic progenitors exhibit differential expression of multiple signaling pathway components required for normal muscle development and regeneration. Components of the Wnt, IGF-1, TGF-β, and Notch signaling pathways are misexpressed in emerin-null myogenic progenitors at both the mRNA and protein levels. We also report significant perturbations in the expression and activation of p38/Mapk14 in emerin-null myogenic progenitors, showing that perturbed expression of Wnt, IGF-1, TGF-β, and Notch signaling components disrupts normal downstream myogenic signaling in these cells. Collectively, these data support the hypothesis that emerin is essential for proper myogenic signaling in myogenic progenitors, which is necessary for myogenic differentiation and muscle regeneration.  相似文献   

10.
Numerous lines of evidence suggest that Notch signaling plays a pivotal role in controlling the production of neurons from progenitor cells. However, most experiments have relied on gain-of-function approaches because perturbation of Notch signaling results in death prior to the onset of neurogenesis. Here, we examine the requirement for Notch signaling in the development of the striatum through the analysis of different single and compound Notch1 conditional and Notch3 null mutants. We find that normal development of the striatum depends on the presence of appropriate Notch signals in progenitors during a critical window of embryonic development. Early removal of Notch1 prior to neurogenesis alters early-born patch neurons but not late-born matrix neurons in the striatum. We further show that the late-born striatal neurons in these mutants are spared as a result of functional compensation by Notch3. Notably, however, the removal of Notch signaling subsequent to cells leaving the germinal zone has no obvious effect on striatal organization and patterning. These results indicate that Notch signaling is required in neural progenitor cells to control cell fate in the striatum, but is dispensable during subsequent phases of neuronal migration and differentiation.  相似文献   

11.
Control of the growth and differentiation of neural stem cells is fundamental to brain development and is largely dependent on the Notch signaling pathway. The mechanism by which the activity of Notch is regulated during brain development has remained unclear, however. Fbxw7 (also known as Fbw7, SEL-10, hCdc4, or hAgo) is the F-box protein subunit of an Skp1-Cul1-F-box protein (SCF)-type ubiquitin ligase complex that plays a central role in the degradation of Notch family members. We now show that mice with brain-specific deletion of Fbxw7 (Nestin-Cre/Fbxw7(F/F) mice) die shortly after birth with morphological abnormalities of the brain and the absence of suckling behavior. The maintenance of neural stem cells was sustained in association with the accumulation of Notch1 and Notch3, as well as up-regulation of Notch target genes in the mutant mice. Astrogenesis was also enhanced in the mutant mice in vivo, and the differentiation of neural progenitor cells was skewed toward astrocytes rather than neurons in vitro, with the latter effect being reversed by treatment of the cells with a pharmacological inhibitor of the Notch signaling pathway. Our results thus implicate Fbxw7 as a key regulator of the maintenance and differentiation of neural stem cells in the brain.  相似文献   

12.
The Notch signaling pathway controls patterning and cell fate decisions during development in metazoans, and is associated with human diseases such as cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) and certain cancers. Studies over the last several years have revealed sophisticated regulation of both the membrane-bound Notch receptor and its ligands by vesicle trafficking. This is perhaps most evident in neural progenitor cells in Drosophila, which divide asymmetrically to segregate Numb, an endocytic adaptor protein that acts as a Notch pathway inhibitor, to one daughter cell. Here, we discuss recent findings addressing how receptor and ligand trafficking to specific membrane compartments control activation of the Notch pathway in asymmetrically dividing cells and other tissues.  相似文献   

13.
Zheng M  Zhang Z  Zhao X  Ding Y  Han H 《遗传学报》2010,37(9):573-582
The retina is one of the most essential elements of vision pathway in vertebrate. The dysplasia of retina cause congenital blindness or vision disability in individuals, and the misbalance in adult retinal vascular homeostasis leads to neovaseularization-associated diseases in adults, such as diabetic retinopathy or age-related macular degeneration. Many developmental signaling pathways are involved in the process of retinal development and vascular homeostasis. Among them, Notch signaling pathway has long been studied, and Notch signaling-interfered mouse models show both neural retina dysplasia and vascular abnormality. In this review, we discuss the roles of Notch signaling in the maintenance of retinal progenitor cells, specification of retinal neurons and glial cells, and the sustaining of retina vascular homeostasis, especially from the aspects of conditional knockout mouse models. The potential of Notch signal mampulation may provide a powerful cell fate- and neovascularization-controlling tool that could have important applications in la'eatment of retinal diseases.  相似文献   

14.
In vertebrates, skeletal muscle is derived from mesodermal structures called somites. Myogenic progenitor cells that form skeletal muscles of the trunk and limbs are derived from the dermomyotome, the dorsal region of the somite. These cells enter the myogenic program by activating a set of four myogenic regulatory factors. During embryonic and fetal growth, muscle progenitor cells provide the source for muscle growth. Around birth, the muscle progenitor enters quiescence, and adopts a satellite cell position on muscle fibers, providing a pool of adult muscle stem cells. They are essential for the growth and regeneration of muscles. Among the mechanisms that control the maintenance of satellite cells properties, the Notch pathway plays a crucial role. In facts, this pathway is implicated from the early steps of somitogenesis and the development of skeletal muscles in the embryo. Furthermore, during ageing, Notch activity decreases which results in decreased muscle regeneration. Thus, the Notch pathway is a key regulator of muscle plasticity.  相似文献   

15.
During the development of the spinal cord, proliferative neural progenitors differentiate into postmitotic neurons with distinct fates. How cells switch from progenitor states to differentiated fates is poorly understood. To address this question, we studied the differentiation of progenitors in the zebrafish spinal cord, focusing on the differentiation of Kolmer-Agduhr″ (KA″) interneurons from lateral floor plate (LFP) progenitors. In vivo cell tracking demonstrates that KA″ cells are generated from LFP progenitors by both symmetric and asymmetric cell divisions. A photoconvertible reporter of signaling history (PHRESH) reveals distinct temporal profiles of Hh response: LFP progenitors continuously respond to Hh, while KA″ cells lose Hh response upon differentiation. Hh signaling is required in LFP progenitors for KA″ fate specification, but prolonged Hh signaling interferes with KA″ differentiation. Notch signaling acts permissively to maintain LFP progenitor cells: activation of Notch signaling prevents differentiation, whereas inhibition of Notch signaling results in differentiation of ectopic KA″ cells. These results indicate that neural progenitors depend on Notch signaling to maintain Hh responsiveness and rely on Hh signaling to induce fate identity, whereas proper differentiation depends on the attenuation of both Notch and Hh signaling.  相似文献   

16.
不对称分裂是干/祖细胞发育分化中的基本过程,膜相关蛋白Numb在其中发挥重要作用.Numb极性分布于细胞一侧,在干/祖细胞有丝分裂时不对等分配至两个子代细胞,使子代细胞产生不同分化命运.如一个保持在干/祖细胞状态,而另一个发育为神经元,这一过程主要通过抑制Notch信号通路发挥作用.近年在哺乳动物中的研究中发现,高强度Notch信号又能够反馈抑制Numb活性.Numb具有维持神经干/祖细胞增殖与促进分化的双重作用,Numb的命运决定作用还与Shh信号通路和p53蛋白等相关.另外,Numb参与调控细胞的粘连、迁移以及神经元轴突的分支与延长.本文主要对Numb在果蝇及哺乳动物神经干/祖细胞中的定位以及其在决定细胞命运和分化中的调控作用进行综述.  相似文献   

17.
18.
Notch signaling in the nervous system. Pieces still missing from the puzzle   总被引:10,自引:0,他引:10  
Notch has been known for many years as a receptor for inhibitory signals that shapes the pattern of the nervous system during its development. Genes in the Notch pathway function to prevent neural determination so that only a subset of the available ectodermal cells become neural precursors. The localization of Notch signaling is crucial for determining where neural precursor cells arise on a cell-by-cell basis. The unresolved problem is that studies of the expression of Notch protein and its ligands are inconsistent with the pattern of neurogenesis. During neural cell fate specification, distributions of Notch protein and of its ligand Delta appear uniform. Under the reigning paradigm, such widespread expression should lead to N signal transduction in all cells and thereby prevent any neural specification. Yet, contrary to this expectation, neural elements still form, in characteristic patterns, hence, Notch signal transduction must have been inactive in the precursor cells. The mechanism preventing Notch signaling in certain cells must be posttranslational but it has not yet been identified. This review will outline the experimental evidence supporting this view of Notch signaling, and briefly evaluate some of the possible mechanisms that have been suggested.  相似文献   

19.
In Drosophila, mitotic neural progenitor cells asymmetrically segregate the cell fate determinant Numb in order to block Notch signaling in only one of the two daughter cells. Sanpodo, a membrane protein required for Notch signaling in asymmetrically dividing cells, is sequestered from the plasma membrane to intracellular vesicles in a Numb-dependent way after neural progenitor cell mitosis. However, the significance of Numb-dependent Sanpodo regulation is unclear. In this study, we conducted a structure–function analysis to identify the determinants of Sanpodo targeting in vivo. We identified an NPAF motif in the amino-terminal cytoplasmic tail of Sanpodo, which is conserved among insect Sanpodo homologues. The Sanpodo NPAF motif is predicted to bind directly to the Numb phosphotyrosine-binding domain and is critical for Numb binding in vitro. Deletion or mutation of the NPAF motif results in accumulation of Sanpodo at the plasma membrane in Numb-positive cells in vivo. Genetic analysis of Sanpodo NPAF mutants shows that Numb-dependent Sanpodo endocytic targeting can be uncoupled from Notch signaling regulation. Our findings demonstrate that Sanpodo contains an evolutionarily conserved motif that has been linked to Numb-dependent regulation in vertebrates and further support the model that Numb regulates Notch signaling independently of Sanpodo membrane trafficking in neural progenitor cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号