首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PCR amplification of GC-rich sequences may fail due to poor denaturation or secondary structures that block elongation. Successful amplification of a 672-bp sequence encoding the barley α-amylase/subtilisin inhibitor (69% GC) was achieved in a simple two-step procedure with the addition of 20% glycerol and a high annealing temperature. This protocol may be useful for the amplification of other GC-rich sequences.  相似文献   

2.
PCR is a commonly used and highly efficient technique in biomolecular laboratories for specific amplification of DNA. However, successful DNA amplification can be very time consuming and troublesome because many factors influence PCR efficiency. Especially GC-rich DNA complicates amplification because of generation of secondary structures that hinder denaturation and primer annealing. We investigated the impact of previously recommended additives such as dimethylsulfoxide (DMSO), magnesium chloride (MgCl2), bovine serum albumin (BSA), or formamide. Furthermore, we tested company-specific substances as Q-Solution, High GC Enhancer, and Hi-Spec; various actively promoted polymerases as well as different PCR conditions for their positive effects on DNA amplification of templates with moderate and extremely high CG-content. We found considerable differences of specificity and quantity of product between different terms. In this article, we introduce conditions for optimized PCR to help resolve problems amplifying moderate to high GC-rich templates.  相似文献   

3.
ABSTRACT: BACKGROUND: While being a standard powerful molecular biology technique, applications of the PCR to the amplification of high GC-rich DNA samples still present challenges which include limited yield and poor specificity of the reaction. Organic solvents, including DMSO and formamide, have been often employed as additives to increase the efficiency of amplification of high GC content (GC > 60%) DNA sequences. Bovine serum albumin (BSA) has been used as an additive in several applications, including restriction enzyme digestions as well as in PCR amplification of templates from environmental samples that contain potential inhibitors such as phenolic compounds. FINDINGS: Significant increase in PCR amplification yields of GC-rich DNA targets ranging in sizes from 0.4 kb to 7.1 kb were achieved by using BSA as a co-additive along with DMSO and formamide. Notably, enhancing effects of BSA occurs in the initial PCR cycles with BSA additions having no detrimental impact on PCR yield or specificity. When a PCR was set up such that the cycling parameters paused after every ten cycles to allow for supplementation of BSA, combining BSA and organic solvent produced significantly higher yields relative to conditions using the solvent alone. The co-enhancing effects of BSA in presence of organic solvents were also obtained in other PCR applications, including site-directed mutagenesis and overlap extension PCR. CONCLUSIONS: BSA significantly enhances PCR amplification yield when used in combination with organic solvents, DMSO or formamide. BSA enhancing effects were obtained in several PCR applications, with DNA templates of high GC content and spanning a broad size range. When added to the reaction buffer, promoting effects of BSA were seen in the first cycles of the PCR, regardless of the size of the DNA to amplify. The strategy outlined here provides a cost-effective alternative for increasing the efficiency of PCR amplification of GC-rich DNA targets over a broad size range.  相似文献   

4.
基因(组)操作者常会遇到高GC序列难于扩增的问题。全球范围内也还没有很成熟的通用方法来解决这个问题。经过系统的摸索,发现选用有机试剂乙二醇和1,2-丙二醇能得到比较满意的特异的PCR产物。104段随机选取的GC含量在60%~80%之间的人类基因组序列(长度在700~800bp)基本上全部得到较好的扩增。  相似文献   

5.
Quantitative microfluorometric evaluation of DNA content in nerve cells of the Pulmonate Gastropod Planorbarius corneus has indicated that the increase in nuclear volume is due to DNA amplification. Indeed, it has been observed that the DNA contents are scattered at random between 2C and 1,000C values. This is not in agreement with the occurrence of repeated duplications of the whole genome. Furthermore, chromatin photo-oxidation, a technique useful in discriminating GC-rich from AT-rich DNAs, suggests that DNA amplification involves GC-rich sequences.  相似文献   

6.
高GC含量DNA模板的PCR扩增   总被引:1,自引:0,他引:1  
目的:探索高GC含量DNA的PCR扩增条件,为扩增达托霉素生物合成基因簇及拼接奠定基础。方法:在PCR扩增体系中,使用高保真的聚合酶及添加不同浓度的DMSO、7-deaza-dGTP等增强剂,并选择合适的PCR循环程序,优化富含GC的DNA的PCR扩增条件。结果:向反应体系中额外添加1%~4%的DMSO可以显著提高富含GC的DNA的PCR扩增产物量,但会降低其特异性;7-deaza-dGTP可以提高扩增产物的特异性及保真度,但产量会有所下降。应用touch down PCR并在体系中添加7-deaza-dGTP能够提高扩增产物的特异性和产率,增加扩增的保真度。结论:应用优化的PCR扩增条件将所有达托霉素生物合成基因簇分段扩增出来,并可扩增出长达6 kb的片段,且序列完全正确,可以进行后续拼接。  相似文献   

7.
Different substances such as dimethyl sulfoxide, tetramethylene sulfoxide, 2-pyrollidone, and the naturally occurring compatible solute betaine enhance PCR amplification of GC-rich DNA templates with high melting temperatures. In particular, cyclic compatible solutes outperform traditional PCR enhancers. We therefore investigated the effects that cyclic naturally occurring ectoine-type compatible solutes and their synthetic derivatives have on melting temperature of double-stranded DNA (dsDNA) and on PCR amplification of different templates. L-ectoine, betaine, and derivatives of L-ectoine decreased, whereas beta-hydroxyectoine increased, the melting temperature of dsDNA. The ability to decrease the melting temperature was greatest for homoectoine, a new synthetic derivative of l-ectoine. Furthermore, compatible solutes, especially homoectoine, enhanced PCR amplification of GC-rich DNA (72.6% GC content; effective range: 0.1-0.5M).  相似文献   

8.
The polymerase chain reaction (PCR) technique has become an indispensable method in molecular research. However, PCR-amplification of GC-rich templates is often hampered by the formation of secondary structures like hairpins and higher melting temperatures. We present a novel method termed 'Slowdown PCR', which allows the successful PCR-amplification of extremely GC-rich (>83%) DNA targets. The protocol relies on the addition of 7-deaza-2'-deoxyguanosine, a dGTP analog to the PCR mixture and a novel standardized cycling protocol with varying temperatures. The latter consists of a generally lowered ramp rate of 2.5 degrees C s(-1) and a low cooling rate of 1.5 degrees C s(-1) for reaching an annealing temperature and is run for 48 cycles. We established this protocol as a versatile method not only for amplification of extremely GC-rich regions, but also for routine DNA diagnostics and pharmacogenetics for templates with different annealing temperatures. The protocol takes 5 h to complete.  相似文献   

9.
In Synthetic Biology, de novo synthesis of GC-rich constructs poses a major challenge because of secondary structure formation and mispriming. While there are many web-based tools for codon optimizing difficult regions, no method currently exists that allows for potentially phenotypically important sequence conservation. Therefore, to overcome these limitations in researching GC-rich genes and their non-coding elements, we explored the use of DMSO and betaine in two conventional methods of assembly and amplification. For this study, we compared the polymerase (PCA) and ligase-based (LCR) methods for construction of two GC-rich gene fragments implicated in tumorigenesis, IGF2R and BRAF. Though we found no benefit in employing either DMSO or betaine during the assembly steps, both additives greatly improved target product specificity and yield during PCR amplification. Of the methods tested, LCR assembly proved far superior to PCA, generating a much more stable template to amplify from. We further report that DMSO and betaine are highly compatible with all other reaction components of gene synthesis and do not require any additional protocol modifications. Furthermore, we believe either additive will allow for the production of a wide variety of GC-rich gene constructs without the need for expensive and time-consuming sample extraction and purification prior to downstream application.  相似文献   

10.
DNA complementarity is expressed by way of three hydrogen bonds for a G:C base pair and two for A:T. As a result, careful control of the denaturation temperature of PCR allows selective amplification of AT-rich alleles. Yet for the same reason, the converse is not possible, selective amplification of GC-rich alleles. Inosine (I) hydrogen bonds to cytosine by two hydrogen bonds while diaminopurine (D) forms three hydrogen bonds with thymine. By substituting dATP by dDTP and dGTP by dITP in a PCR reaction, DNA is obtained in which the natural hydrogen bonding rule is inversed. When PCR is performed at limiting denaturation temperatures, it is possible to recover GC-rich viral genomes and inverted Alu elements embedded in cellular mRNAs resulting from editing by dsRNA dependent host cell adenosine deaminases. The editing of Alu elements in cellular mRNAs was strongly enhanced by type I interferon induction indicating a novel link mRNA metabolism and innate immunity.  相似文献   

11.
Novel sulfoxides facilitate GC-rich template amplification   总被引:5,自引:0,他引:5  
Chakrabarti R  Schutt CE 《BioTechniques》2002,32(4):866, 868, 870-866, 862, 874
Certain organic solvents, such as DMSO and betaine, have been reported to enhance PCR amplification, particularly for hard-to-amplify high-GC templates. As a result of extensive structure-activity studies between two groups of compounds--amides and sulfones--we have recently discovered several other potent PCR enhancers. Here we describe the effects of a series of different sulfoxides on GC-rich template amplification and report several of these to be exceptionally effective, often outperforming DMSO. We introduce them as novel PCR enhancers. We identify tetramethylene sulfoxide as the most potent sulfur-oxygen compound in the enhancement of PCR amplification and as one of the most potent PCR enhancers currently known.  相似文献   

12.
Bias in Template-to-Product Ratios in Multitemplate PCR   总被引:48,自引:2,他引:46       下载免费PDF全文
Bias introduced by the simultaneous amplification of specific genes from complex mixtures of templates remains poorly understood. To explore potential causes and the extent of bias in PCR amplification of 16S ribosomal DNAs (rDNAs), genomic DNAs of two closely and one distantly related bacterial species were mixed and amplified with universal, degenerate primers. Quantification and comparison of template and product ratios showed that there was considerable and reproducible overamplification of specific templates. Variability between replicates also contributed to the observed bias but in a comparatively minor way. Based on these initial observations, template dosage and differences in binding energies of permutations of the degenerate, universal primers were tested as two likely causes of this template-specific bias by using 16S rDNA templates modified by site-directed mutagenesis. When mixtures of mutagenized templates containing AT- and GC-rich priming sites were used, templates containing the GC-rich permutation amplified with higher efficiency, indicating that different primer binding energies may to a large extent be responsible for overamplification. In contrast, gene copy number was found to be an unlikely cause of the observed bias. Similarly, amplification from DNA extracted from a natural community to which different amounts of genomic DNA of a single bacterial species were added did not affect relative product ratios. Bias was reduced considerably by using high template concentrations, by performing fewer cycles, and by mixing replicate reaction preparations.  相似文献   

13.
Nucleic acid sequence-based amplification (NASBA) according to the standard protocol failed to amplify cRNA of viroids, probably because of their GC-rich and intramolecular base-paired structure. However, NASBA in the presence of inosine 5'-triphosphate successfully amplified the cRNAs to viroids in total nucleic acid extracts from citrus plants. As sequence specificity of the cRNA to viroids was confirmed by northern analysis, the amplification and fidelity of cRNAs are sufficient for the sensitive and specific detection of viroids.  相似文献   

14.
A single female of Locusta migratoria was found to be heterozygous for a supernumerary heterochromatic segment distally located on the M6 autosome close to its nucleolus organiser region (NOR). Reactions to several chromosome banding techniques revealed its heterochromatic nature and its composition of GC-rich DNA sequences and likewise the NORs in this species. This suggests an origin for the extra segment by amplification of GC-rich DNA sequences contained in the distal NOR of the M6 chromosome, which is reinforced by the observation that the NOR of segmented M6 chromosomes produced the larger nucleolus in embryo prophase cells, such as would be expected from the presence of rRNA genes in the extra segment. No accumulation mechanism was detected in this female after analyzing the 213 embryo offspring produced, but an increase in the number of nucleoli per interphase nucleus was noted in heterozygous embryos in respect to standard homozygous ones.  相似文献   

15.
Dabney J  Meyer M 《BioTechniques》2012,52(2):87-94
High-throughput sequencing technologies frequently necessitate the use of PCR for sequencing library amplification. PCR is a sometimes enigmatic process and is known to introduce biases. Here we perform a simple amplification-sequencing assay using 10 commercially available polymerase-buffer systems to amplify libraries prepared from both modern and ancient DNA. We compare the performance of the polymerases with respect to a previously uncharacterized template length bias, as well as GC-content bias, and find that simply avoiding certain polymerase can dramatically decrease the occurrence of both. For amplification of ancient DNA, we found that some commonly used polymerases strongly bias against amplification of endogenous DNA in favor of GC-rich microbial contamination, in our case reducing the fraction of endogenous sequences to almost half.  相似文献   

16.
PCR preferential amplification consists of the inefficient amplification of one allele in a heterozygous sample. Here, we report the isolation of a GC-rich human minisatellite, MsH43, that undergoes allelic preferential amplification during PCR. This effect requires the existence of a (TGGGGC)(4) motif that is able to form a G-quadruplex in the presence of K(+). This structure interferes with the DNA synthesis of the alleles harbouring this motif during PCR The present results are the first demonstration that the formation of G-quadruplex can be one of the mechanisms involved in some kinds of preferential amplification.  相似文献   

17.
Researchers face a significant problem in PCR amplification of DNA fragments with high GC contents. Analysis of these regions is of importance since many regulatory regions of different genes and their first exons are GC-rich. There are a large number of protocols for amplification of GC-rich DNA, some of which perform well but are costly. Most of the economical protocols fail to perform consistently, especially on products with >80 % GC contents and a size of >300 bp. One of these protocols requires multiple additions of DNA polymerase during thermal cycling which therefore rules out its utility if a large number of samples have to be amplified. We have established a method for simultaneous amplification of specific PCR products from a large number of human DNA samples using general laboratory reagents. These amplicons have GC contents ranging from 65–85 % and sizes up to 870 bp. The protocol uses a PCR buffer containing co-solvents including 2-mercaptoethanol and bovine serum albumin for amplification of DNA. A specific thermal cycling profile is also used which incorporates a high annealing temperature in the first 7 cycles of the reactions. The PCR products are suitable for different molecular biology applications including sequencing.  相似文献   

18.
Genome walking is a commonly used technique for the identification of DNA sequences adjacent to known regions. Despite the development of various genome walking methods, nonspecific products are often produced in certain circumstances, especially when GC-rich DNA sequences are dealt with. To effectively resolve such technical issues, a simple nested polymerase chain reaction-based genome walking method has been developed by implementing a progressively decreased annealing temperature from 70°C to 47.5°C in the first round of amplification and a high annealing temperature of 65°C in the second round of amplification. During the entire process, a lower ramp rate of 1.5°C s−1 and cooling rate of 2.5°C s−1 are performed to reach the annealing temperature. Using this method, we successfully obtained the upstream and downstream sequences of three GC-rich genes involved in the biosynthetic pathways of secondary metabolites from two bacterial genomes. The efficient amplification of DNA target longer than 1.5 Kb with GC content up to 75.0% indicates that the present technique could be a valuable tool for the investigation of biosynthetic pathways of various secondary metabolites.  相似文献   

19.
The enhancement of PCR amplification by low molecular-weight sulfones.   总被引:9,自引:0,他引:9  
R Chakrabarti  C E Schutt 《Gene》2001,274(1-2):293-298
DNA amplification by polymerase chain reaction (PCR) is frequently complicated by the problems of low yield and specificity, especially when the GC content of the target sequence is high. A common approach to the optimization of such reactions is the addition of small quantities of certain organic chemicals, such as dimethylsulfoxide (DMSO), betaine, polyethylene glycol and formamide, to the reaction mixture. Even in the presence of such additives, however, the amplification of GC-rich templates is often ineffective. In this paper, we introduce a novel class of PCR-enhancing compounds, the low molecular-weight sulfones, that are effective in the optimization of high GC template amplification. We describe here the results of an extensive structure-activity investigation in which we studied the effects of a series of six different sulfones on PCR amplification. We identify two sulfones, sulfolane and methyl sulfone, that are especially potent enhancers of high GC template amplification, and show that these compounds often outperform DMSO and betaine, two of the most effective PCR enhancers currently used. We conclude with a brief discussion of the role that the sulfone functional group may play in such enhancement.  相似文献   

20.
Ann Kenton 《Chromosoma》1991,100(7):467-478
C-banding differences within Gibasis karwinskyana (Roem & Schult.) Rohw. were reassessed using dual fluorochrome staining. Pronounced differences in C-band pattern between two subspecies with identical basic karyotypes were due to different chromosomal locations of AT-rich and GC-rich heterochromatin. The AT-rich component had an equilocal distribution in the karyotype and has evidently been accumulated at telomeres, as shown by its prevalence in supernumerary segments and B chromosomes. The GC-rich component also varied in amount, but was limited to nucleolus organizing regions (NORs) and centromeres. Centromeres and telomeres are suggested to constitute separate, although perhaps interdependent, centres of heterochromatin amplification. The possible role of nuclear architecture in determining the accumulation, distribution and spread of these sequences is discussed.Abbreviations H Hoechst 33258 - CMA chromomycin A3 - NOR nucleolus organizing region - SS supernumerary segment - Q quinacrine dihydrochloride - H+ H etc. indicate enhanced (+) and quenched (-) fluorescence with the stated fluorochrome by H.C. Macgregor  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号